organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,10-Di­hydro­indeno­[2,1-a]indene

CROSSMARK_Color_square_no_text.svg

aUniversity of Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 26 August 2019; accepted 27 August 2019; online 30 August 2019)

The title compound, C16H12, crystallizes with four half mol­ecules in the asymmetric unit, each of which is located on a crystallographic centre of inversion. The mol­ecules are essentially planar. The crystal studied was a non-merohedral twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indeno­indene is well known as starting material for e.g. penta­lenes (Frank & Gompper, 1987[Frank, W. & Gompper, R. (1987). Tetrahedron Lett. 28, 3083-3086.]) and has been studied as a stiffened stilbene (Ogawa et al., 1988[Ogawa, K., Futakami, M., Suzuki, H. & Kira, A. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 2115-2118.]; Krohn et al., 2019[Krohn, O. A., Quick, M., Ioffe, I. N., Mazaleva, O. N., Lenoir, D., Detert, H. & Kovalenko, S. A. (2019). J. Phys. Chem. B, 123, 4291-4300.]). While the compound is formed in pyrolytic processes (Hofmann et al., 1995[Hofmann, J., Zimmermann, G., Guthier, K., Hebgen, P. & Homann, K.-H. (1995). Liebigs Ann. , pp. 631-636.]), synthetic routes involve benzo­cyclo­butene derivatives (Barton & Shepherd 1987[Barton, J. W. & Shepherd, M. K. (1987). J. Chem. Soc. Perkin Trans. 1, pp. 1561-1565.]; Schiess & Heitzmann 1977[Schiess, P. & Heitzmann, M. (1977). Angew. Chem. 89, 485-485.]; Detert & Schollmeyer 2018[Detert, H. & Schollmeyer, D. (2018). IUCrData, 3, x181550.]) and a photochemical rearrangement (Oelgemöller et al., 2002[Oelgemöller, M., Brem, B., Frank, R., Schneider, S., Lenoir, D., Hertkorn, N., Origane, Y., Lemmen, P., Lex, J. & Inoue, Y. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1760-1771.]).

Four independent and nearly identical mol­ecules of the title compound with essential C2h symmetry fill the unit cell (Fig. 1[link]). The crystal packing shows pairs of tilted mol­ecules along the a axis and along the b axis (Fig. 2[link]). The mol­ecules are completely planar [maximum deviation from the mean plane of all carbon atoms in a mol­ecule: 0.014 (3) Å for C6D]. The central di­hydro­penta­lene unit shows averaged bond lengths of 1.466 (4) Å for C2—C3 and 1.331 (4) Å for C2—C2′. A comparison of these data with trans stilbene (1.466 and 1.324 Å, respectively; Luo et al., 2019[Luo, X., Chen, X., Chen, L., Zhang, K. & Li, Y. (2019). Chem. Commun. 55 20170-20173.]) reveals a bond-length convergence in the planarized indeno­indene [dihedral angle = 1.2 (2)°] relative to the twisted stilbene (phenyl­ethenyl torsion angle = 6.64°)

[Figure 1]
Figure 1
Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the a axis. Symmetry-independent mol­ecules are drawn with different colours.

Synthesis and crystallization

The title compound was prepared according to Oelgemöller et al. (2002[Oelgemöller, M., Brem, B., Frank, R., Schneider, S., Lenoir, D., Hertkorn, N., Origane, Y., Lemmen, P., Lex, J. & Inoue, Y. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1760-1771.]). Single crystals were obtained by slow evaporation of a solution in di­chloro­methane/propanol-2 (2:1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The crystal studied was a non-merohedral two-component twin with a fractional contribution of 0.4085 (12) for the minor domain.

Table 1
Experimental details

Crystal data
Chemical formula C16H12
Mr 204.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 7.5009 (9), 7.6819 (9), 19.387 (3)
α, β, γ (°) 99.733 (11), 100.641 (11), 90.523 (9)
V3) 1081.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.22 × 0.15 × 0.04
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 14443, 14443, 7500
Rint ?
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.141, 1.03
No. of reflections 14443
No. of parameters 290
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.21
Computer programs: X-AREA and X-RED (Stoe & Cie, 1996[Stoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 1996); cell refinement: X-AREA (Stoe & Cie, 1996); data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

5,10-Dihydroindeno[2,1-a]indene top
Crystal data top
C16H12Z = 4
Mr = 204.26F(000) = 432
Triclinic, P1Dx = 1.255 Mg m3
a = 7.5009 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6819 (9) ÅCell parameters from 2411 reflections
c = 19.387 (3) Åθ = 2.8–28.0°
α = 99.733 (11)°µ = 0.07 mm1
β = 100.641 (11)°T = 193 K
γ = 90.523 (9)°Plate, colourless
V = 1081.2 (2) Å30.22 × 0.15 × 0.04 mm
Data collection top
Stoe IPDS 2T
diffractometer
7500 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusθmax = 28.4°, θmin = 2.7°
Detector resolution: 6.67 pixels mm-1h = 99
rotation method scansk = 1010
14443 measured reflectionsl = 2525
14443 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.1143P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
14443 reflectionsΔρmax = 0.29 e Å3
290 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin. BASF 0.40850 Twin law for transforming hkl(1) to hkl(2): -1.00006 0.00023 0.00003 0.00016 -1.00020 0.00001 0.95946 0.87001 1.00038

Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with isotropic displacement parameters set to 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.6265 (4)0.1349 (3)0.58366 (16)0.0420 (7)
H1A0.5702700.2391990.6071000.050*
H1B0.7583940.1602780.5889480.050*
C2A0.5377 (3)0.0821 (3)0.50682 (15)0.0379 (7)
C3A0.5094 (3)0.1575 (3)0.44194 (16)0.0371 (7)
C4A0.5622 (3)0.3197 (3)0.42737 (17)0.0424 (7)
H4A0.6277030.4069850.4641470.051*
C5A0.5171 (4)0.3509 (4)0.35798 (18)0.0463 (8)
H5A0.5533280.4603410.3470820.056*
C6A0.4206 (4)0.2254 (4)0.30472 (18)0.0475 (8)
H6A0.3905930.2500000.2576420.057*
C7A0.3663 (4)0.0633 (4)0.31857 (17)0.0461 (8)
H7A0.2996030.0225370.2815310.055*
C8A0.4111 (3)0.0299 (3)0.38696 (16)0.0396 (7)
C1B0.9607 (4)0.6291 (3)0.58564 (17)0.0485 (8)
H1C0.8349720.6521700.5925010.058*
H1D1.0408490.7336460.6091370.058*
C2B0.9702 (4)0.5806 (3)0.50825 (17)0.0428 (7)
C3B0.9306 (3)0.6610 (3)0.44363 (17)0.0416 (7)
C4B0.8648 (4)0.8222 (3)0.43136 (18)0.0472 (8)
H4B0.8377650.9070550.4693070.057*
C5B0.8391 (4)0.8579 (4)0.36300 (19)0.0512 (8)
H5B0.7922980.9679560.3539380.061*
C6B0.8799 (4)0.7372 (4)0.30744 (19)0.0523 (8)
H6B0.8621140.7656770.2609010.063*
C7B0.9472 (4)0.5735 (4)0.3191 (2)0.0537 (9)
H7B0.9749210.4898980.2808730.064*
C8B0.9724 (3)0.5359 (3)0.38743 (18)0.0439 (7)
C1C0.6484 (4)0.4528 (4)0.08155 (17)0.0491 (8)
H1E0.7601770.5270690.1024050.059*
H1F0.6709750.3287680.0872300.059*
C2C0.5827 (3)0.4677 (3)0.00581 (17)0.0422 (7)
C3C0.6498 (4)0.4309 (3)0.06130 (17)0.0422 (7)
C4C0.8104 (4)0.3624 (3)0.07899 (18)0.0506 (8)
H4C0.9032170.3301260.0435410.061*
C5C0.8316 (4)0.3425 (3)0.14959 (19)0.0530 (8)
H5C0.9395570.2953840.1627280.064*
C6C0.6969 (4)0.3906 (4)0.20061 (19)0.0537 (8)
H6C0.7136960.3771950.2485810.064*
C7C0.5370 (4)0.4585 (4)0.18306 (19)0.0512 (8)
H7C0.4450290.4911650.2187060.061*
C8C0.5134 (4)0.4776 (3)0.11433 (17)0.0429 (7)
C1D0.1447 (4)0.1273 (4)0.08064 (18)0.0545 (8)
H1G0.1685420.2557300.0838980.065*
H1H0.2551700.0744070.1035470.065*
C2D0.0818 (4)0.0383 (3)0.00570 (18)0.0461 (8)
C3D0.1529 (4)0.0084 (3)0.06117 (18)0.0451 (7)
C4D0.3153 (4)0.0594 (3)0.07869 (19)0.0525 (8)
H4D0.4063670.1278110.0438340.063*
C5D0.3409 (4)0.0080 (4)0.1484 (2)0.0555 (8)
H5D0.4503380.0419990.1615360.067*
C6D0.2082 (5)0.0922 (4)0.1985 (2)0.0569 (9)
H6D0.2279750.1284830.2457490.068*
C7D0.0464 (4)0.1404 (4)0.18077 (19)0.0538 (8)
H7D0.0449610.2080780.2157380.065*
C8D0.0193 (4)0.0903 (3)0.11304 (19)0.0467 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0377 (15)0.0378 (14)0.0459 (19)0.0018 (11)0.0034 (13)0.0003 (12)
C2A0.0280 (14)0.0375 (14)0.046 (2)0.0033 (11)0.0065 (13)0.0017 (13)
C3A0.0260 (13)0.0400 (14)0.045 (2)0.0029 (10)0.0086 (13)0.0063 (13)
C4A0.0326 (14)0.0404 (15)0.052 (2)0.0012 (11)0.0064 (14)0.0024 (14)
C5A0.0391 (16)0.0437 (16)0.059 (2)0.0007 (12)0.0120 (15)0.0131 (15)
C6A0.0438 (17)0.0529 (17)0.046 (2)0.0044 (13)0.0081 (15)0.0107 (15)
C7A0.0433 (17)0.0443 (16)0.047 (2)0.0017 (12)0.0047 (15)0.0003 (14)
C8A0.0309 (14)0.0378 (14)0.050 (2)0.0030 (11)0.0107 (14)0.0028 (13)
C1B0.0444 (17)0.0417 (15)0.058 (2)0.0015 (12)0.0159 (15)0.0037 (13)
C2B0.0300 (13)0.0409 (14)0.055 (2)0.0026 (10)0.0113 (13)0.0038 (14)
C3B0.0285 (14)0.0421 (15)0.054 (2)0.0032 (11)0.0119 (14)0.0043 (14)
C4B0.0367 (15)0.0449 (16)0.060 (2)0.0036 (12)0.0139 (15)0.0048 (15)
C5B0.0392 (16)0.0478 (17)0.068 (3)0.0023 (12)0.0127 (16)0.0111 (16)
C6B0.0483 (18)0.0549 (18)0.055 (2)0.0045 (14)0.0114 (16)0.0123 (16)
C7B0.0486 (18)0.0484 (18)0.062 (3)0.0057 (14)0.0153 (17)0.0023 (16)
C8B0.0325 (14)0.0396 (15)0.058 (2)0.0045 (11)0.0101 (14)0.0017 (14)
C1C0.0473 (17)0.0473 (16)0.051 (2)0.0010 (13)0.0026 (15)0.0165 (14)
C2C0.0426 (15)0.0292 (13)0.051 (2)0.0031 (11)0.0029 (15)0.0103 (13)
C3C0.0506 (17)0.0307 (14)0.046 (2)0.0035 (12)0.0108 (15)0.0083 (13)
C4C0.0574 (19)0.0395 (15)0.055 (2)0.0042 (13)0.0067 (17)0.0138 (15)
C5C0.057 (2)0.0428 (16)0.060 (2)0.0033 (13)0.0187 (18)0.0043 (15)
C6C0.066 (2)0.0473 (17)0.048 (2)0.0080 (15)0.0156 (18)0.0038 (15)
C7C0.0547 (19)0.0494 (17)0.047 (2)0.0093 (14)0.0039 (16)0.0083 (15)
C8C0.0464 (17)0.0334 (14)0.047 (2)0.0053 (12)0.0060 (15)0.0067 (13)
C1D0.0495 (18)0.0459 (16)0.062 (2)0.0013 (13)0.0032 (16)0.0057 (15)
C2D0.0440 (16)0.0286 (14)0.059 (2)0.0023 (11)0.0074 (16)0.0065 (14)
C3D0.0525 (18)0.0321 (14)0.053 (2)0.0110 (12)0.0115 (16)0.0130 (13)
C4D0.0554 (19)0.0352 (15)0.063 (3)0.0011 (13)0.0002 (17)0.0086 (15)
C5D0.055 (2)0.0489 (17)0.069 (3)0.0053 (14)0.0181 (18)0.0218 (17)
C6D0.068 (2)0.0544 (18)0.051 (2)0.0175 (16)0.0114 (19)0.0142 (16)
C7D0.0508 (19)0.0484 (17)0.058 (2)0.0094 (14)0.0006 (17)0.0090 (16)
C8D0.0456 (17)0.0354 (15)0.058 (2)0.0071 (12)0.0029 (16)0.0117 (14)
Geometric parameters (Å, º) top
C1A—C2A1.500 (4)C1C—C2C1.484 (4)
C1A—C8Ai1.518 (4)C1C—C8Ciii1.531 (4)
C1A—H1A0.9900C1C—H1E0.9900
C1A—H1B0.9900C1C—H1F0.9900
C2A—C2Ai1.341 (4)C2C—C2Ciii1.335 (5)
C2A—C3A1.453 (4)C2C—C3C1.465 (4)
C3A—C4A1.393 (3)C3C—C4C1.396 (4)
C3A—C8A1.408 (4)C3C—C8C1.406 (4)
C4A—C5A1.387 (4)C4C—C5C1.390 (4)
C4A—H4A0.9500C4C—H4C0.9500
C5A—C6A1.376 (4)C5C—C6C1.377 (4)
C5A—H5A0.9500C5C—H5C0.9500
C6A—C7A1.390 (4)C6C—C7C1.388 (4)
C6A—H6A0.9500C6C—H6C0.9500
C7A—C8A1.374 (4)C7C—C8C1.360 (4)
C7A—H7A0.9500C7C—H7C0.9500
C1B—C2B1.499 (4)C1D—C2D1.485 (4)
C1B—C8Bii1.506 (4)C1D—C8Div1.526 (4)
C1B—H1C0.9900C1D—H1G0.9900
C1B—H1D0.9900C1D—H1H0.9900
C2B—C2Bii1.329 (5)C2D—C2Div1.321 (5)
C2B—C3B1.472 (4)C2D—C3D1.475 (4)
C3B—C4B1.379 (4)C3D—C4D1.393 (4)
C3B—C8B1.410 (4)C3D—C8D1.395 (4)
C4B—C5B1.378 (4)C4D—C5D1.392 (4)
C4B—H4B0.9500C4D—H4D0.9500
C5B—C6B1.379 (4)C5D—C6D1.380 (4)
C5B—H5B0.9500C5D—H5D0.9500
C6B—C7B1.397 (4)C6D—C7D1.385 (4)
C6B—H6B0.9500C6D—H6D0.9500
C7B—C8B1.384 (4)C7D—C8D1.357 (4)
C7B—H7B0.9500C7D—H7D0.9500
C2A—C1A—C8Ai101.2 (2)C2C—C1C—C8Ciii100.7 (2)
C2A—C1A—H1A111.5C2C—C1C—H1E111.6
C8Ai—C1A—H1A111.5C8Ciii—C1C—H1E111.6
C2A—C1A—H1B111.5C2C—C1C—H1F111.6
C8Ai—C1A—H1B111.5C8Ciii—C1C—H1F111.6
H1A—C1A—H1B109.3H1E—C1C—H1F109.4
C2Ai—C2A—C3A109.8 (3)C2Ciii—C2C—C3C109.6 (3)
C2Ai—C2A—C1A111.8 (3)C2Ciii—C2C—C1C113.0 (4)
C3A—C2A—C1A138.4 (2)C3C—C2C—C1C137.4 (2)
C4A—C3A—C8A120.1 (3)C4C—C3C—C8C120.1 (3)
C4A—C3A—C2A132.5 (3)C4C—C3C—C2C133.1 (3)
C8A—C3A—C2A107.5 (2)C8C—C3C—C2C106.8 (2)
C5A—C4A—C3A118.5 (3)C5C—C4C—C3C118.6 (3)
C5A—C4A—H4A120.7C5C—C4C—H4C120.7
C3A—C4A—H4A120.7C3C—C4C—H4C120.7
C6A—C5A—C4A120.9 (3)C6C—C5C—C4C120.4 (3)
C6A—C5A—H5A119.6C6C—C5C—H5C119.8
C4A—C5A—H5A119.6C4C—C5C—H5C119.8
C5A—C6A—C7A121.2 (3)C5C—C6C—C7C121.1 (3)
C5A—C6A—H6A119.4C5C—C6C—H6C119.5
C7A—C6A—H6A119.4C7C—C6C—H6C119.5
C8A—C7A—C6A118.6 (3)C8C—C7C—C6C119.3 (3)
C8A—C7A—H7A120.7C8C—C7C—H7C120.3
C6A—C7A—H7A120.7C6C—C7C—H7C120.3
C7A—C8A—C3A120.7 (3)C7C—C8C—C3C120.5 (3)
C7A—C8A—C1Ai129.7 (3)C7C—C8C—C1Ciii129.5 (3)
C3A—C8A—C1Ai109.6 (3)C3C—C8C—C1Ciii109.9 (3)
C2B—C1B—C8Bii101.0 (2)C2D—C1D—C8Div100.7 (2)
C2B—C1B—H1C111.6C2D—C1D—H1G111.6
C8Bii—C1B—H1C111.6C8Div—C1D—H1G111.6
C2B—C1B—H1D111.6C2D—C1D—H1H111.6
C8Bii—C1B—H1D111.6C8Div—C1D—H1H111.6
H1C—C1B—H1D109.4H1G—C1D—H1H109.4
C2Bii—C2B—C3B109.3 (4)C2Div—C2D—C3D109.2 (4)
C2Bii—C2B—C1B112.7 (4)C2Div—C2D—C1D113.2 (4)
C3B—C2B—C1B138.0 (2)C3D—C2D—C1D137.5 (2)
C4B—C3B—C8B120.6 (3)C4D—C3D—C8D120.2 (3)
C4B—C3B—C2B132.7 (3)C4D—C3D—C2D132.9 (3)
C8B—C3B—C2B106.7 (2)C8D—C3D—C2D106.9 (3)
C5B—C4B—C3B118.7 (3)C5D—C4D—C3D118.5 (3)
C5B—C4B—H4B120.7C5D—C4D—H4D120.8
C3B—C4B—H4B120.7C3D—C4D—H4D120.8
C4B—C5B—C6B121.5 (3)C6D—C5D—C4D120.3 (3)
C4B—C5B—H5B119.3C6D—C5D—H5D119.8
C6B—C5B—H5B119.3C4D—C5D—H5D119.8
C5B—C6B—C7B120.5 (3)C5D—C6D—C7D120.7 (3)
C5B—C6B—H6B119.7C5D—C6D—H6D119.6
C7B—C6B—H6B119.7C7D—C6D—H6D119.6
C8B—C7B—C6B118.5 (3)C8D—C7D—C6D119.6 (3)
C8B—C7B—H7B120.7C8D—C7D—H7D120.2
C6B—C7B—H7B120.7C6D—C7D—H7D120.2
C7B—C8B—C3B120.2 (3)C7D—C8D—C3D120.7 (3)
C7B—C8B—C1Bii129.5 (3)C7D—C8D—C1Div129.4 (3)
C3B—C8B—C1Bii110.3 (3)C3D—C8D—C1Div109.9 (3)
C8Ai—C1A—C2A—C2Ai0.1 (3)C8Ciii—C1C—C2C—C2Ciii0.0 (4)
C8Ai—C1A—C2A—C3A179.9 (3)C8Ciii—C1C—C2C—C3C180.0 (3)
C2Ai—C2A—C3A—C4A178.8 (3)C2Ciii—C2C—C3C—C4C179.4 (3)
C1A—C2A—C3A—C4A1.0 (5)C1C—C2C—C3C—C4C0.6 (5)
C2Ai—C2A—C3A—C8A0.1 (3)C2Ciii—C2C—C3C—C8C0.0 (3)
C1A—C2A—C3A—C8A179.9 (3)C1C—C2C—C3C—C8C180.0 (3)
C8A—C3A—C4A—C5A0.5 (4)C8C—C3C—C4C—C5C0.2 (4)
C2A—C3A—C4A—C5A178.3 (3)C2C—C3C—C4C—C5C179.5 (3)
C3A—C4A—C5A—C6A0.7 (4)C3C—C4C—C5C—C6C0.4 (4)
C4A—C5A—C6A—C7A0.4 (4)C4C—C5C—C6C—C7C0.5 (4)
C5A—C6A—C7A—C8A0.1 (4)C5C—C6C—C7C—C8C0.0 (4)
C6A—C7A—C8A—C3A0.3 (4)C6C—C7C—C8C—C3C0.6 (4)
C6A—C7A—C8A—C1Ai178.5 (2)C6C—C7C—C8C—C1Ciii179.6 (2)
C4A—C3A—C8A—C7A0.0 (4)C4C—C3C—C8C—C7C0.7 (4)
C2A—C3A—C8A—C7A179.1 (2)C2C—C3C—C8C—C7C179.8 (2)
C4A—C3A—C8A—C1Ai179.0 (2)C4C—C3C—C8C—C1Ciii179.5 (2)
C2A—C3A—C8A—C1Ai0.1 (3)C2C—C3C—C8C—C1Ciii0.0 (3)
C8Bii—C1B—C2B—C2Bii0.2 (4)C8Div—C1D—C2D—C2Div0.7 (4)
C8Bii—C1B—C2B—C3B179.7 (3)C8Div—C1D—C2D—C3D179.7 (3)
C2Bii—C2B—C3B—C4B179.1 (3)C2Div—C2D—C3D—C4D179.8 (3)
C1B—C2B—C3B—C4B0.4 (5)C1D—C2D—C3D—C4D1.2 (5)
C2Bii—C2B—C3B—C8B0.4 (4)C2Div—C2D—C3D—C8D0.4 (4)
C1B—C2B—C3B—C8B179.9 (3)C1D—C2D—C3D—C8D179.4 (3)
C8B—C3B—C4B—C5B0.6 (4)C8D—C3D—C4D—C5D0.8 (4)
C2B—C3B—C4B—C5B178.9 (3)C2D—C3D—C4D—C5D179.9 (3)
C3B—C4B—C5B—C6B0.9 (4)C3D—C4D—C5D—C6D0.4 (4)
C4B—C5B—C6B—C7B0.7 (4)C4D—C5D—C6D—C7D1.2 (4)
C5B—C6B—C7B—C8B0.3 (4)C5D—C6D—C7D—C8D0.8 (4)
C6B—C7B—C8B—C3B0.0 (4)C6D—C7D—C8D—C3D0.3 (4)
C6B—C7B—C8B—C1Bii178.9 (3)C6D—C7D—C8D—C1Div179.6 (3)
C4B—C3B—C8B—C7B0.2 (4)C4D—C3D—C8D—C7D1.1 (4)
C2B—C3B—C8B—C7B179.4 (2)C2D—C3D—C8D—C7D179.4 (2)
C4B—C3B—C8B—C1Bii179.3 (2)C4D—C3D—C8D—C1Div179.5 (2)
C2B—C3B—C8B—C1Bii0.3 (3)C2D—C3D—C8D—C1Div0.0 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y, z.
 

Acknowledgements

The authors are grateful to N. Jacobs for the preparation of the title compound.

References

First citationBarton, J. W. & Shepherd, M. K. (1987). J. Chem. Soc. Perkin Trans. 1, pp. 1561–1565.  CrossRef Google Scholar
First citationDetert, H. & Schollmeyer, D. (2018). IUCrData, 3, x181550.  Google Scholar
First citationFrank, W. & Gompper, R. (1987). Tetrahedron Lett. 28, 3083–3086.  CrossRef CAS Google Scholar
First citationHofmann, J., Zimmermann, G., Guthier, K., Hebgen, P. & Homann, K.-H. (1995). Liebigs Ann. , pp. 631–636.  Google Scholar
First citationKrohn, O. A., Quick, M., Ioffe, I. N., Mazaleva, O. N., Lenoir, D., Detert, H. & Kovalenko, S. A. (2019). J. Phys. Chem. B, 123, 4291–4300.  CrossRef CAS PubMed Google Scholar
First citationLuo, X., Chen, X., Chen, L., Zhang, K. & Li, Y. (2019). Chem. Commun. 55 20170–20173.  Google Scholar
First citationOelgemöller, M., Brem, B., Frank, R., Schneider, S., Lenoir, D., Hertkorn, N., Origane, Y., Lemmen, P., Lex, J. & Inoue, Y. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1760–1771.  Google Scholar
First citationOgawa, K., Futakami, M., Suzuki, H. & Kira, A. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 2115–2118.  CrossRef Google Scholar
First citationSchiess, P. & Heitzmann, M. (1977). Angew. Chem. 89, 485–485.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds