organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,2,4,5-Tetra­chloro-3,6-di­iodo­benzene benzene monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Missouri State University, 901 South National Avenue, Springfield MO 65804 , USA
*Correspondence e-mail: ericbosch@missouristate.edu

Edited by M. Zeller, Purdue University, USA (Received 8 July 2019; accepted 11 July 2019; online 19 July 2019)

The title compound, C6Cl4I2·C6H6, crystallizes from benzene solution as cube-shaped crystals in the triclinic space group P[\overline{1}] with Z = 1. The asymmetric unit of the crystal structure contains one half of each mol­ecule. In the crystal, the benzene ring is almost orthogonal to the perhalo­benzene ring and the mol­ecules are linked by C—I⋯π inter­actions, with a close contact between the iodine atom and the benzene ring of 3.412 (1) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Halogen bonding, the attractive inter­action between the electropositive σ-hole on a bonded halogen, commonly iodine, and a Lewis base, has been widely used in the supra­molecular association of multi-component systems (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]). With respect to iodo­benzene, it has been established that the addition of fluorine atoms to the benzene ring enhances the σ-hole on iodine resulting in stronger attractions between the components (Präsang et al., 2009[Präsang, C., Whitwood, A. C. & Bruce, D. W. (2009). Cryst. Growth Des. 9, 5319-5326.]). Surprisingly, the application of iodo­perchloro­benzenes had not been reported until we reported that the co-crystallization of 1,2,4,5-tetra­chloro-3,6-di­iodo­benzene with 1,2-di­pyridyl­ethene resulted in a halogen-bonded co-crystal in which the alkenes were oriented such that they underwent photo-induced 2 + 2 cyclo­addition (Bosch et al., 2019[Bosch, E., Kruse, S. J., Krueger, H. R. Jr & Groeneman, R. H. (2019). Cryst. Growth Des. 19, 3092-3096.]). After preparation of 1,2,4,5-tetra­chloro-3,6-di­iodo­benzene, recrystallization from benzene provided clear, colourless cube-shaped crystals that lost lustre and became opaque several hours after removal from the mother liquor. The crystal structure revealed that the cube-shaped crystals represented a 1:1 benzene solvate.

The asymmetric unit comprises one half of the tetra­chloro­diodo­benzene and one half of the benzene mol­ecule with a dihedral angle between the rings of 85.89 (16)°, as shown in Fig. 1[link]. The closest contact between the tetra­chloro­diiodo­benzene and the benzene is between the iodine atom and C4 with a distance of 3.434 (2) Å. Indeed the C1—I1⋯C4 bond angle is almost linear at 178.09 (6)°. This inter­action is highlighted in the two Hirshfeld surface plots in Fig. 2[link] (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The C—I⋯π inter­actions form a stepped chain of alternating tetra­chloro­diiodo­benzene and benzene mol­ecules (Fig. 3[link]) with adjacent tetra­chloro­diiodo­benzene mol­ecules slip-stacked with a centroid–centroid distance of 5.4399 (10) Å and perpendicular distance between the perhalo­benzene planes of 3.6607 (7) Å (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

[Figure 1]
Figure 1
The asymmetric unit of the title solvate showing the atom-numbering scheme. Displacement ellipsoids of non-hydrogen atoms are drawn at the 50% level while H atoms are shown as circles of arbitrary size. The inter­molecular C—I⋯π contact is shown as a dashed line.
[Figure 2]
Figure 2
Two views of the Hirshfeld surface of the title solvate highlighting the short contact between I1 and C4 with the halo­benzene shown as a ball and stick model in (a) and the benzene ring shown as a ball and stick model in (b).
[Figure 3]
Figure 3
Partial view of the crystal structure of the title solvate showing the stepped chain formed by the C—I⋯π inter­actions and also showing the offset π-stacking of the 1,4-di­iodo­tetra­chloro­benzene mol­ecules.

Synthesis and crystallization

1,2,4,5-Tetra­chloro-3,6-di­iodo­benzene was prepared by the reaction of 1,2,4,5-tetra­chloro­benzene with iodine and sodium metaperiodate in concentrated sulfuric acid. Cube-shaped crystals of the title solvate were obtained on recrystallization from benzene solution. Crystallization from mesitylene, chloro­form or di­chloro­methane yielded block-shaped crystals with structures similar to that previously reported (Reddy et al., 2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C6Cl4I2·C6H6
Mr 545.77
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 5.4399 (4), 6.3599 (4), 11.0232 (8)
α, β, γ (°) 96.702 (1), 92.728 (1), 98.599 (1)
V3) 373.69 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 4.90
Crystal size (mm) 0.39 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.611, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4913, 1668, 1634
Rint 0.018
(sin θ/λ)max−1) 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.032, 1.09
No. of reflections 1668
No. of parameters 82
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.39
Computer programs: SMART and SAINT (Bruker, 2014[Bruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2014); cell refinement: SMART (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

1,2,4,5-Tetrachloro-3,6-diiodobenzene benzene monosolvate top
Crystal data top
C6Cl4I2·C6H6Z = 1
Mr = 545.77F(000) = 252
Triclinic, P1Dx = 2.425 Mg m3
a = 5.4399 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.3599 (4) ÅCell parameters from 4302 reflections
c = 11.0232 (8) Åθ = 3.3–27.3°
α = 96.702 (1)°µ = 4.90 mm1
β = 92.728 (1)°T = 100 K
γ = 98.599 (1)°Cut cube, colourless
V = 373.69 (5) Å30.39 × 0.12 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1668 independent reflections
Radiation source: fine-focus sealed tube1634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.3660 pixels mm-1θmax = 27.3°, θmin = 1.9°
phi and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 88
Tmin = 0.611, Tmax = 1.000l = 1414
4913 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.013H-atom parameters constrained
wR(F2) = 0.032 w = 1/[σ2(Fo2) + (0.0129P)2 + 0.2107P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1668 reflectionsΔρmax = 0.46 e Å3
82 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.63204 (2)0.24241 (2)0.70975 (2)0.01586 (5)
Cl10.70962 (8)0.35540 (7)0.42245 (4)0.01743 (9)
C10.8497 (3)0.0970 (3)0.58350 (15)0.0125 (3)
Cl21.04287 (8)0.14760 (7)0.24148 (4)0.01843 (9)
C20.8716 (3)0.1608 (3)0.46708 (16)0.0130 (3)
C31.0207 (3)0.0648 (3)0.38431 (16)0.0127 (3)
C40.2926 (4)0.4936 (3)0.92088 (17)0.0220 (4)
H40.1502800.4884640.8665580.026*
C50.4738 (4)0.6732 (3)0.93667 (18)0.0216 (4)
H50.4559400.7916290.8936550.026*
C60.6826 (4)0.6801 (3)1.01573 (18)0.0217 (4)
H60.8081050.8030231.0265400.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01473 (7)0.01688 (7)0.01605 (7)0.00549 (4)0.00276 (4)0.00209 (4)
Cl10.0194 (2)0.01586 (19)0.0194 (2)0.00981 (16)0.00007 (16)0.00377 (15)
C10.0112 (7)0.0113 (7)0.0143 (8)0.0021 (6)0.0016 (6)0.0017 (6)
Cl20.0233 (2)0.0205 (2)0.0141 (2)0.00780 (16)0.00371 (16)0.00617 (16)
C20.0122 (7)0.0100 (7)0.0170 (8)0.0031 (6)0.0016 (6)0.0017 (6)
C30.0129 (8)0.0132 (8)0.0117 (7)0.0014 (6)0.0004 (6)0.0013 (6)
C40.0160 (8)0.0363 (11)0.0149 (8)0.0092 (8)0.0013 (7)0.0019 (7)
C50.0240 (9)0.0251 (9)0.0182 (9)0.0086 (8)0.0063 (7)0.0052 (7)
C60.0192 (9)0.0257 (10)0.0191 (9)0.0015 (7)0.0050 (7)0.0008 (7)
Geometric parameters (Å, º) top
I1—C12.0922 (17)C4—C51.381 (3)
Cl1—C21.7254 (17)C4—C6ii1.394 (3)
C1—C21.396 (2)C4—H40.9500
C1—C3i1.400 (2)C5—C61.390 (3)
Cl2—C31.7215 (17)C5—H50.9500
C2—C31.397 (2)C6—H60.9500
C2—C1—C3i118.86 (15)C5—C4—C6ii120.31 (18)
C2—C1—I1121.01 (12)C5—C4—H4119.8
C3i—C1—I1120.13 (12)C6ii—C4—H4119.8
C1—C2—C3120.44 (15)C4—C5—C6119.78 (18)
C1—C2—Cl1120.37 (13)C4—C5—H5120.1
C3—C2—Cl1119.17 (13)C6—C5—H5120.1
C2—C3—C1i120.70 (16)C5—C6—C4ii119.90 (19)
C2—C3—Cl2119.10 (13)C5—C6—H6120.0
C1i—C3—Cl2120.21 (13)C4ii—C6—H6120.0
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+2.
 

Acknowledgements

We thank the Missouri State University Provost Incentive Fund that funded the purchase of the X-ray diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBosch, E., Kruse, S. J., Krueger, H. R. Jr & Groeneman, R. H. (2019). Cryst. Growth Des. 19, 3092–3096.  CSD CrossRef CAS Google Scholar
First citationBruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPräsang, C., Whitwood, A. C. & Bruce, D. W. (2009). Cryst. Growth Des. 9, 5319–5326.  Google Scholar
First citationReddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222–2234.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds