metal-organic compounds
trans-Bis(dimethyl sulfoxide-κO)bis(3-nitrobenzohydroxamato-κ2O,O′)zinc(II)
aLaboratório de Físico-Química Aplicada e Tecnológica, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900, Rio Grande-RS, Brazil, and bLaboratório de Materiais Inorgânicos, Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil
*Correspondence e-mail: julianovicenti@gmail.com
Single crystals of the title complex, [Zn(C7H5N2O4)2(C2H6OS)2] or [Zn(NBZH)2(DMSO)2], were isolated from a dimethyl sulfoxide (DMSO) solution containing [Zn(NBZH)2]·2H2O (NBZH = 3-nitrobenzohydroxamate anion). The comprises of one O,O′-chelating NBZH anion, one O-bound DMSO ligand and one zinc(II) cation localized on an inversion centre. The three-dimensional crystal packing includes N—H⋯O and C—H⋯O hydrogen bonding, as well as O⋯H and H⋯H contacts identified by Hirshfeld isosurface analysis.
Keywords: crystal structure; hydroxamate; Hirshfeld surface analysis; zinc(II).
CCDC reference: 1940726
Structure description
RC(=O)–NH–OH (where R = alkyl, aryl), play important roles in biology and medicine and have been a source of great interest because they present a wide variety of biological activities (Codd, 2008; Marmion et al., 2004). These are related to the ability to form stable complexes with metal ions, especially iron(III) (Ugwu et al., 2014; Griffith et al., 2008). In addition, this class of compounds provides several sites for hydrogen-bonding interactions with enzyme structures, thus becoming potent and selective inhibitors of a number of enzymes such as matrix metalloproteinase (Muri et al., 2002; Sani et al., 2004), peroxidases (O'Brien et al., 2000; Indiani et al., 2003), histone deacetylases (Richon, 2006; Krennhrubec et al., 2007), or ureases (Xiao et al., 2013; Krajewska, 2009; Shi et al., 2016). In our previous work, we have synthesized, characterized and investigated some physical-chemical properties of zinc(II) aromatic hydroxamates (Gonçalves et al., 2019) and report here the of [Zn(C7H5N2O4)2(C2H6OS)2] or [Zn(NBZH)2(DMSO)2].
A slightly distorted octahedral environment around the zinc(II) cation (site symmetry ) is generated by x, −y, −z, leading to an all-trans configuration of the two ligands (Fig. 1). In the molecular structure, the O-bound DMSO molecule has a distance of 2.3473 (12) Å for Zn1—O5, indicating an elongation along the axial position. The O,O′-chelating NBZH ligand shows shorter distances of 2.0029 (11) Å for Zn1—O1 and 2.0675 (11) Å for Zn1—O2 in the equatorial positions. The nitro group attached to the NBZH ligand is almost planar with the aromatic ring, displaying a dihedral angle of 3.2 (2)°.
2 −In the 2(DMSO)2] (Fig. 2) are packed along the [010] and [001] directions. The intermolecular interactions collated in Table 1 are suggestive of two weak non-classical C—H⋯O hydrogen bonds involving dimethylsulfoxide molecules. As shown in Fig. 3, the hydroxamate fragment plays a dominant role in the packing through an N—H⋯O5 hydrogen bond of medium strength along [100] (Table 1). These structural features generate a three-dimensional supramolecular network that was further investigated by Hirshfeld surface analysis (Fig. 4), as determined with CrystalExplorer (Turner et al., 2017). The results indicate a significant contribution by O⋯H contacts, corresponding to 43.1% of the two-dimensional fingerprint plots. H⋯H and C⋯H contacts are also observed, covering 30.1% and 11.6% of the isosurface, respectively, followed by C⋯C (2.9%), S⋯H (2.6%) and N⋯H (1%) interactions.
discrete molecular units of [Zn(NBZH)Synthesis and crystallization
Suitable single crystals of the title compound were obtained within one week from a dimethylsulfoxide solution containing [Zn(NBZH)2]·2H2O, previously reported by us (Gonçalves et al., 2019).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1940726
https://doi.org/10.1107/S2414314619010058/wm4110sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619010058/wm4110Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006), Mercury (Macrae et al., 2006) and CrystalExplorer17 (Turner et al., 2017); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(C7H5N2O4)2(C2H6OS)2] | Z = 1 |
Mr = 583.91 | F(000) = 298 |
Triclinic, P1 | Dx = 1.663 Mg m−3 |
a = 6.4899 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.8961 (3) Å | Cell parameters from 9996 reflections |
c = 11.4224 (4) Å | θ = 3.0–30.3° |
α = 83.496 (1)° | µ = 1.30 mm−1 |
β = 84.591 (1)° | T = 294 K |
γ = 89.567 (1)° | Block, yellow |
V = 578.98 (3) Å3 | 0.20 × 0.15 × 0.10 mm |
Bruker APEXII CCD diffractometer | 2961 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.032 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 30.6°, θmin = 3.0° |
Tmin = 0.786, Tmax = 0.880 | h = −9→9 |
30874 measured reflections | k = −11→11 |
3558 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: mixed |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0663P)2 + 0.1979P] where P = (Fo2 + 2Fc2)/3 |
3558 reflections | (Δ/σ)max = 0.001 |
166 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.500000 | 0.500000 | 1.000000 | 0.03291 (10) | |
S1 | 0.35743 (8) | 0.88919 (6) | 0.91043 (4) | 0.04435 (13) | |
C1 | 0.8166 (2) | 0.47473 (18) | 0.82661 (13) | 0.0259 (3) | |
O1 | 0.75668 (17) | 0.64360 (15) | 0.98049 (10) | 0.0319 (2) | |
N1 | 0.88330 (19) | 0.58558 (17) | 0.89218 (12) | 0.0281 (3) | |
H1 | 1.006 (3) | 0.618 (3) | 0.8898 (19) | 0.037 (5)* | |
C3 | 0.8709 (2) | 0.32583 (19) | 0.64935 (13) | 0.0288 (3) | |
H3 | 0.730590 | 0.299127 | 0.659747 | 0.035* | |
O2 | 0.63195 (17) | 0.41942 (16) | 0.84399 (10) | 0.0350 (3) | |
O5 | 0.30496 (19) | 0.70808 (15) | 0.89650 (12) | 0.0388 (3) | |
C6 | 1.2902 (3) | 0.3979 (3) | 0.61715 (16) | 0.0396 (4) | |
H6 | 1.431200 | 0.421972 | 0.607033 | 0.048* | |
O4 | 1.0035 (3) | 0.1408 (2) | 0.38495 (13) | 0.0596 (4) | |
C5 | 1.2036 (3) | 0.3072 (2) | 0.53664 (15) | 0.0386 (4) | |
H5 | 1.283893 | 0.269754 | 0.472840 | 0.046* | |
O3 | 0.7091 (3) | 0.1606 (2) | 0.48421 (16) | 0.0629 (4) | |
C4 | 0.9935 (3) | 0.2746 (2) | 0.55502 (14) | 0.0317 (3) | |
C2 | 0.9584 (2) | 0.41788 (18) | 0.72915 (12) | 0.0259 (3) | |
C8 | 0.1489 (5) | 1.0145 (3) | 0.8571 (3) | 0.0721 (8) | |
H8A | 0.165888 | 1.130499 | 0.872306 | 0.108* | |
H8B | 0.020259 | 0.970410 | 0.896870 | 0.108* | |
H8C | 0.148280 | 1.010210 | 0.773505 | 0.108* | |
N2 | 0.8946 (3) | 0.18484 (19) | 0.46896 (13) | 0.0413 (3) | |
C7 | 1.1708 (2) | 0.4532 (2) | 0.71197 (15) | 0.0331 (3) | |
H7 | 1.231884 | 0.514253 | 0.764663 | 0.040* | |
C9 | 0.5491 (5) | 0.9574 (4) | 0.7945 (3) | 0.0868 (10) | |
H9A | 0.507520 | 0.927737 | 0.720948 | 0.130* | |
H9B | 0.677978 | 0.902758 | 0.809873 | 0.130* | |
H9C | 0.565880 | 1.078767 | 0.789709 | 0.130* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02448 (13) | 0.04346 (16) | 0.03212 (15) | −0.01039 (10) | 0.00407 (9) | −0.01494 (11) |
S1 | 0.0614 (3) | 0.0350 (2) | 0.0395 (2) | −0.01645 (19) | −0.0177 (2) | −0.00475 (17) |
C1 | 0.0233 (6) | 0.0292 (7) | 0.0254 (6) | −0.0030 (5) | −0.0023 (5) | −0.0036 (5) |
O1 | 0.0265 (5) | 0.0382 (6) | 0.0324 (5) | −0.0062 (4) | 0.0034 (4) | −0.0145 (4) |
N1 | 0.0212 (5) | 0.0331 (6) | 0.0303 (6) | −0.0053 (5) | 0.0014 (4) | −0.0082 (5) |
C3 | 0.0265 (6) | 0.0305 (7) | 0.0298 (7) | −0.0011 (5) | −0.0033 (5) | −0.0046 (5) |
O2 | 0.0234 (5) | 0.0491 (7) | 0.0346 (6) | −0.0105 (4) | 0.0028 (4) | −0.0179 (5) |
O5 | 0.0351 (6) | 0.0337 (6) | 0.0491 (7) | −0.0088 (5) | −0.0093 (5) | −0.0071 (5) |
C6 | 0.0250 (7) | 0.0538 (10) | 0.0398 (9) | 0.0008 (7) | 0.0016 (6) | −0.0084 (7) |
O4 | 0.0774 (11) | 0.0651 (10) | 0.0399 (8) | 0.0042 (8) | −0.0002 (7) | −0.0262 (7) |
C5 | 0.0355 (8) | 0.0470 (9) | 0.0328 (8) | 0.0067 (7) | 0.0037 (6) | −0.0090 (7) |
O3 | 0.0543 (9) | 0.0770 (11) | 0.0651 (10) | −0.0103 (8) | −0.0140 (7) | −0.0338 (8) |
C4 | 0.0375 (8) | 0.0303 (7) | 0.0284 (7) | 0.0026 (6) | −0.0055 (6) | −0.0057 (6) |
C2 | 0.0244 (6) | 0.0275 (6) | 0.0258 (6) | 0.0001 (5) | −0.0019 (5) | −0.0032 (5) |
C8 | 0.102 (2) | 0.0500 (13) | 0.0705 (16) | 0.0217 (13) | −0.0284 (15) | −0.0171 (12) |
N2 | 0.0558 (9) | 0.0359 (7) | 0.0350 (7) | 0.0027 (6) | −0.0089 (6) | −0.0124 (6) |
C7 | 0.0250 (7) | 0.0431 (8) | 0.0323 (7) | −0.0027 (6) | −0.0028 (5) | −0.0092 (6) |
C9 | 0.0757 (18) | 0.090 (2) | 0.086 (2) | −0.0402 (16) | −0.0005 (15) | 0.0262 (17) |
Zn1—O1i | 2.0029 (11) | C6—C7 | 1.381 (2) |
Zn1—O1 | 2.0029 (11) | C6—C5 | 1.389 (3) |
Zn1—O2i | 2.0675 (11) | C6—H6 | 0.9300 |
Zn1—O2 | 2.0675 (11) | O4—N2 | 1.219 (2) |
Zn1—O5 | 2.3473 (12) | C5—C4 | 1.381 (3) |
Zn1—O5i | 2.3474 (12) | C5—H5 | 0.9300 |
S1—O5 | 1.5019 (13) | O3—N2 | 1.214 (2) |
S1—C9 | 1.769 (3) | C4—N2 | 1.471 (2) |
S1—C8 | 1.783 (3) | C2—C7 | 1.400 (2) |
C1—O2 | 1.2686 (17) | C8—H8A | 0.9600 |
C1—N1 | 1.3153 (19) | C8—H8B | 0.9600 |
C1—C2 | 1.484 (2) | C8—H8C | 0.9600 |
O1—N1 | 1.3584 (16) | C7—H7 | 0.9300 |
N1—H1 | 0.84 (2) | C9—H9A | 0.9600 |
C3—C4 | 1.375 (2) | C9—H9B | 0.9600 |
C3—C2 | 1.391 (2) | C9—H9C | 0.9600 |
C3—H3 | 0.9300 | ||
O1i—Zn1—O1 | 180.0 | C7—C6—C5 | 121.26 (15) |
O1i—Zn1—O2i | 81.79 (4) | C7—C6—H6 | 119.4 |
O1—Zn1—O2i | 98.20 (4) | C5—C6—H6 | 119.4 |
O1i—Zn1—O2 | 98.21 (4) | C4—C5—C6 | 117.40 (15) |
O1—Zn1—O2 | 81.80 (4) | C4—C5—H5 | 121.3 |
O2i—Zn1—O2 | 180.0 | C6—C5—H5 | 121.3 |
O1i—Zn1—O5 | 86.04 (4) | C3—C4—C5 | 122.78 (16) |
O1—Zn1—O5 | 93.96 (4) | C3—C4—N2 | 118.22 (15) |
O2i—Zn1—O5 | 88.40 (5) | C5—C4—N2 | 118.98 (15) |
O2—Zn1—O5 | 91.60 (5) | C3—C2—C7 | 118.73 (14) |
O1i—Zn1—O5i | 93.96 (4) | C3—C2—C1 | 116.91 (13) |
O1—Zn1—O5i | 86.04 (4) | C7—C2—C1 | 124.35 (13) |
O2i—Zn1—O5i | 91.60 (5) | S1—C8—H8A | 109.5 |
O2—Zn1—O5i | 88.40 (5) | S1—C8—H8B | 109.5 |
O5—Zn1—O5i | 180.00 (5) | H8A—C8—H8B | 109.5 |
O5—S1—C9 | 106.83 (13) | S1—C8—H8C | 109.5 |
O5—S1—C8 | 105.71 (11) | H8A—C8—H8C | 109.5 |
C9—S1—C8 | 97.80 (16) | H8B—C8—H8C | 109.5 |
O2—C1—N1 | 120.85 (13) | O3—N2—O4 | 123.43 (17) |
O2—C1—C2 | 119.91 (13) | O3—N2—C4 | 118.52 (15) |
N1—C1—C2 | 119.22 (12) | O4—N2—C4 | 118.04 (17) |
N1—O1—Zn1 | 106.70 (8) | C6—C7—C2 | 120.31 (15) |
C1—N1—O1 | 120.95 (12) | C6—C7—H7 | 119.8 |
C1—N1—H1 | 124.8 (15) | C2—C7—H7 | 119.8 |
O1—N1—H1 | 113.9 (15) | S1—C9—H9A | 109.5 |
C4—C3—C2 | 119.51 (14) | S1—C9—H9B | 109.5 |
C4—C3—H3 | 120.2 | H9A—C9—H9B | 109.5 |
C2—C3—H3 | 120.2 | S1—C9—H9C | 109.5 |
C1—O2—Zn1 | 107.94 (9) | H9A—C9—H9C | 109.5 |
S1—O5—Zn1 | 115.22 (7) | H9B—C9—H9C | 109.5 |
O2—C1—N1—O1 | 0.2 (2) | C4—C3—C2—C1 | 177.88 (13) |
C2—C1—N1—O1 | 178.50 (12) | O2—C1—C2—C3 | 9.7 (2) |
Zn1—O1—N1—C1 | 9.65 (16) | N1—C1—C2—C3 | −168.60 (14) |
N1—C1—O2—Zn1 | −9.65 (17) | O2—C1—C2—C7 | −171.33 (15) |
C2—C1—O2—Zn1 | 172.04 (10) | N1—C1—C2—C7 | 10.3 (2) |
C9—S1—O5—Zn1 | 91.19 (13) | C3—C4—N2—O3 | 0.5 (2) |
C8—S1—O5—Zn1 | −165.37 (12) | C5—C4—N2—O3 | −178.16 (18) |
C7—C6—C5—C4 | 0.1 (3) | C3—C4—N2—O4 | 179.45 (16) |
C2—C3—C4—C5 | 1.5 (2) | C5—C4—N2—O4 | 0.8 (2) |
C2—C3—C4—N2 | −177.04 (13) | C5—C6—C7—C2 | 0.3 (3) |
C6—C5—C4—C3 | −1.0 (3) | C3—C2—C7—C6 | 0.3 (2) |
C6—C5—C4—N2 | 177.56 (15) | C1—C2—C7—C6 | −178.66 (15) |
C4—C3—C2—C7 | −1.1 (2) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8C···O4ii | 0.96 | 2.55 | 3.381 (3) | 145 |
C8—H8A···O1iii | 0.96 | 2.66 | 3.533 (3) | 150 |
N1—H1···O5iv | 0.84 (2) | 2.08 (2) | 2.916 (1) | 175 (2) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+2; (iv) x+1, y, z. |
Acknowledgements
The authors acknowledge CT–Infra (FINEP).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Codd, R. (2008). Coord. Chem. Rev. 252, 1387–1408. Web of Science CrossRef CAS Google Scholar
Gonçalves, B. L., Ramos, D. F., Halicki, P. C. B., da Silva, P. E. A. & Vicenti, J. R. M. (2019). Chemical Data Collections, 22, 100240–100248. Google Scholar
Griffith, D., Krot, K., Comiskey, J., Nolan, K. B. & Marmion, C. J. (2008). Dalton Trans. pp. 137–147. CrossRef Google Scholar
Indiani, C., Santoni, E., Becucci, B., Boffi, A., Fukuyama, K. & Smulevich, G. (2003). Biochemistry, 42, 14066–14074. CrossRef PubMed CAS Google Scholar
Krajewska, B. (2009). J. Mol. Catal. B Enzym. 59, 9–21. CrossRef CAS Google Scholar
Krennhrubec, K., Marshall, B. L., Hedglin, M., Verdin, E. & Ulrich, S. M. (2007). Bioorg. Med. Chem. Lett. 17, 2874–2878. CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marmion, C. J., Griffith, D. & Nolan, K. B. (2004). Eur. J. Inorg. Chem. 2004, 3003–3016. CrossRef Google Scholar
Muri, E. M. F., Nieto, M. J., Sindelar, R. D. & Williamson, J. S. (2002). Curr. Med. Chem. 9, 1631–1653. CrossRef PubMed CAS Google Scholar
O'Brien, E. C., Farkas, E., Gil, M. J., Fitzgerald, D., Castineras, A. & Nolan, K. B. (2000). J. Inorg. Biochem. 79, 47–51. PubMed CAS Google Scholar
Richon, V. M. (2006). Br. J. Cancer, 95, S2–S6. CrossRef CAS Google Scholar
Sani, M., Belotti, D., Giavazzi, R., Panzeri, W., Volonterio, A. & Zanda, M. (2004). Tetrahedron Lett. 45, 1611–1615. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, W.-K., Deng, R.-C., Wang, P.-F., Yue, Q.-Q., Liu, Q., Ding, K.-L., Yang, M.-H., Zhang, H.-Y., Gong, S.-H., Deng, M., Liu, W.-R., Feng, Q.-J., Xiao, Z.-P. & Zhu, -L. (2016). Bioorg. Med. Chem. 24, 4519–4527. CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Ugwu, D. I., Ezema, B. E., Eze, F. U., Ayogu, J. I., Ezema, C. G. & Ugwuja, D. I. (2014). Am. J. Org. Chem. 4, 26–51. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, Z.-P., Peng, Z.-P., Dong, J.-J., Deng, R.-C., Wang, X.-D., Ouyang, H., Yang, P., He, J., Wang, W.-F., Zhu, M., Peng, X.-C., Peng, W.-X. & Zhu, H.-L. (2013). Eur. J. Med. Chem. 68, 212–221. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.