metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[di­aqua­cadmium(II)]-μ2-3-(4-carboxyl­atophen­yl)propionato]

CROSSMARK_Color_square_no_text.svg

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA, and bMichigan State University, Department of Chemistry, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 July 2019; accepted 11 July 2019; online 19 July 2019)

In the title compound, [Cd(C10H8O4)(H2O)2)]n, the CdII cation is coordinated in a distorted trigonal–prismatic fashion. 3-(4-Carb­oxy­phen­yl)propionate (cpp) ligands connect the CdII cations into zigzag [Cd(cpp)(H2O)2)]n coordination polymer chains, which are oriented parallel to [101]. The chains aggregate into supra­molecular layers oriented parallel to (10[\overline{1}]) by means of O—H⋯O hydrogen bonding between bound water mol­ecules and ligating cpp carboxyl­ate O atoms. The layers stack in an ABAB pattern along [100] via other O—H⋯O hydrogen-bonding mechanisms also involving the bound water mol­ecules. The crystal studied was an inversion twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was isolated during an exploratory synthetic effort aiming to produce a cadmium coordination polymer containing both 3-(4-carb­oxy­phen­yl)propionate (cpp) and butane-(1,4-di­yl)dinicotinamide (bbn) ligands. Cadmium camphorate coordination polymers containing the bbn ligand or other related di­pyridyl­amides have shown intriguing and diverse topologies (Przybyla & LaDuca, 2018[Przybyla, J. J. & LaDuca, R. L. (2018). CrystEngComm, 20, 280-293.]).

The asymmetric unit of the title compound contains a CdII cation, a cpp ligand, and two bound water mol­ecules (O5, O6). The CdII cation is coordinated in a {CdO6} trigonal prismatic fashion, with two bound water mol­ecules and chelating carboxyl­ate groups belonging to two different cpp ligands. An ellipsoid plot of the coordination environment and complete ligand set is shown in Fig. 1[link]. The bis­(bidentate) cpp ligands form [Cd(cpp)(H2O)2]n zigzag coordination polymer chains oriented parallel [101] (Fig. 2[link]). Within a chain, the Cd⋯Cd distance through a ligand measures 13.480 (2) Å.

[Figure 1]
Figure 1
The coordination environment of the CdII atom, showing trigonal–prismatic coordination. Displacement ellipsoids are drawn at the 50% probability level. H atom positions are shown as sticks. [Symmetry code: (i) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]].
[Figure 2]
Figure 2
[Cd(cpp)(H2O)2]n coordination polymer chain in the title compound, oriented parallel [101].

The [Cd(cpp)(H2O)2]n zigzag chains construct supra­molecular layers oriented parallel (10[\overline{1}]) by means of O—H⋯O hydrogen bonding (Table 1[link]) between bound water mol­ecules and ligating cpp carboxyl­ate oxygen atoms (Fig. 3[link]) The O⋯O distance across these hydrogen bonds measure 2.67 (2) and 2.735 (18) Å. The supra­molecular layers in turn stack in an ABAB pattern along the a-axis direction (Fig. 4[link]), mediated by O—H⋯O hydrogen bonding between bound water mol­ecules and other ligated cpp carboxyl­ate oxygen atoms with a O⋯O distance of 2.692 (16) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O4i 0.97 2.28 2.653 (15) 102
O6—H6B⋯O3ii 0.98 1.76 2.735 (18) 176
O5—H5A⋯O1iii 0.90 1.87 2.692 (16) 151
O5—H5B⋯O2iv 0.90 2.46 2.67 (2) 94
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) x, y+1, z.
[Figure 3]
Figure 3
Supra­molecular layer in the title compound, oriented parallel (10[\overline{1}]). The O—H⋯O hydrogen-bonding inter­actions between adjacent chain submotifs are shown as dashed lines
[Figure 4]
Figure 4
ABA parallel stacking of supra­molecular layer motifs in the title compound along [100], mediated by inter­layer O—H⋯O inter­actions, which are shown as dashed lines.

Synthesis and crystallization

Cd(NO3)2.4H2O (114 mg, 0.37 mmol), 3-(4-carb­oxy­phen­yl)propionic acid (72 mg, 0.37 mmol), butane-(1,4-di­yl)dinicotinamide (110 mg, 0.37 mmol) and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 2 d, and then cooled slowly to 273 K. Colourless crystals of the title complex (51 mg, 41% yield based on Cd) were isolated after washing with distilled water and acetone, and drying in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal studied was an inversion twin with a refined Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) of 0.45 (3); the structure was best solved and refined in the non-centrosymmetric space group Cc. Attempts at refinement of the structure in the centrosymmetric space group C2/c resulted in disorder and an inability to refine the anisotropic displacement parameters properly.

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C10H8O4)(H2O)2)]
Mr 340.60
Crystal system, space group Monoclinic, Cc
Temperature (K) 173
a, b, c (Å) 11.91424 (16), 5.27697 (7), 18.0006 (3)
β (°) 100.2906 (7)
V3) 1113.51 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 15.89
Crystal size (mm) 0.17 × 0.15 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.497, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 7603, 2127, 2032
Rint 0.034
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.09
No. of reflections 2127
No. of parameters 139
No. of restraints 63
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.49
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.45 (3)
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[diaquacadmium(II)]-µ2-3-(4-carboxylatophenyl)propionato] top
Crystal data top
[Cd(C10H8O4)(H2O)2)]F(000) = 672
Mr = 340.60Dx = 2.032 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54178 Å
a = 11.91424 (16) ÅCell parameters from 6487 reflections
b = 5.27697 (7) Åθ = 5.0–72.1°
c = 18.0006 (3) ŵ = 15.89 mm1
β = 100.2906 (7)°T = 173 K
V = 1113.51 (3) Å3Plate, colourless
Z = 40.17 × 0.15 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2127 independent reflections
Radiation source: sealed tube2032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.36 pixels mm-1θmax = 72.2°, θmin = 5.0°
ω and φ scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 66
Tmin = 0.497, Tmax = 0.754l = 2221
7603 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0313P)2 + 4.2565P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.63 e Å3
2127 reflectionsΔρmin = 0.48 e Å3
139 parametersAbsolute structure: Refined as an inversion twin
63 restraintsAbsolute structure parameter: 0.45 (3)
Primary atom site location: dual
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega and phi scans of 1.0° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2014/6 of XL (Sheldrick, 2008) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.5908 (3)1.12031 (6)0.6165 (2)0.01947 (14)
O10.7708 (10)0.943 (3)0.6755 (7)0.036 (3)
O20.6147 (12)0.830 (3)0.7140 (9)0.029 (3)
O40.9084 (8)0.445 (3)1.0590 (7)0.030 (2)
O60.6909 (9)1.4162 (19)0.5733 (6)0.0289 (8)
H6A0.7488621.4951090.6106320.043*
H6B0.6495661.5694030.5544350.043*
O31.0656 (11)0.334 (2)1.0209 (8)0.022 (3)
O50.4894 (8)1.433 (2)0.6558 (6)0.0289 (8)
H5A0.4162421.3874590.6529290.043*
H5B0.4847771.5665490.6242440.043*
C90.8830 (8)0.1225 (14)0.9731 (5)0.0245 (13)
H9A0.8477940.0102971.0065760.029*
H9B0.8209390.2125170.9393400.029*
C10.7208 (13)0.799 (3)0.7186 (8)0.0320 (17)
C20.7729 (5)0.5954 (12)0.7742 (4)0.0319 (13)
C70.7093 (4)0.4494 (14)0.8159 (4)0.0339 (13)
H70.6293280.4751080.8105360.041*
C60.7627 (5)0.2659 (14)0.8653 (4)0.0316 (12)
H60.7192340.1661730.8937510.038*
C50.8797 (5)0.2284 (12)0.8731 (4)0.0285 (11)
C40.9433 (4)0.3743 (10)0.8314 (4)0.0290 (11)
H41.0232380.3486440.8367460.035*
C30.8899 (5)0.5578 (10)0.7820 (3)0.0305 (11)
H30.9333350.6575800.7535310.037*
C80.9502 (7)0.0358 (18)0.9261 (5)0.0270 (12)
H8A0.9887630.0797260.8953920.032*
H8B1.0102050.1286520.9607050.032*
C100.9590 (12)0.313 (2)1.0202 (7)0.0218 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01434 (19)0.01525 (19)0.0281 (2)0.0000 (4)0.00181 (13)0.0005 (4)
O10.026 (5)0.037 (6)0.041 (7)0.013 (6)0.008 (4)0.010 (7)
O20.029 (7)0.020 (5)0.038 (7)0.011 (5)0.008 (5)0.002 (6)
O40.007 (4)0.032 (6)0.052 (7)0.007 (5)0.005 (4)0.006 (7)
O60.0179 (13)0.0186 (17)0.052 (2)0.003 (3)0.0123 (13)0.016 (4)
O30.019 (6)0.021 (5)0.021 (6)0.003 (4)0.009 (4)0.007 (5)
O50.0179 (13)0.0186 (17)0.052 (2)0.003 (3)0.0123 (13)0.016 (4)
C90.025 (3)0.017 (2)0.026 (3)0.009 (2)0.010 (2)0.002 (2)
C10.033 (3)0.029 (3)0.030 (3)0.005 (3)0.006 (3)0.006 (3)
C20.033 (2)0.029 (2)0.030 (2)0.007 (2)0.004 (2)0.002 (2)
C70.036 (3)0.030 (2)0.032 (2)0.005 (2)0.005 (2)0.001 (2)
C60.035 (3)0.026 (2)0.029 (2)0.006 (2)0.007 (2)0.0025 (19)
C50.032 (2)0.0232 (19)0.0263 (19)0.007 (2)0.006 (2)0.0050 (17)
C40.029 (2)0.028 (2)0.028 (2)0.006 (2)0.000 (2)0.0090 (19)
C30.030 (2)0.031 (2)0.029 (2)0.006 (2)0.002 (2)0.008 (2)
C80.028 (2)0.021 (2)0.027 (2)0.008 (2)0.008 (2)0.004 (2)
C100.021 (3)0.014 (3)0.026 (3)0.008 (3)0.010 (3)0.009 (3)
Geometric parameters (Å, º) top
Cd1—O12.405 (13)C9—C81.515 (12)
Cd1—O22.309 (16)C9—C101.509 (12)
Cd1—O4i2.418 (12)C1—C21.525 (11)
Cd1—O62.190 (11)C2—C71.3900
Cd1—O3i2.269 (13)C2—C31.3900
Cd1—O52.235 (12)C7—H70.9500
Cd1—C10i2.670 (11)C7—C61.3900
O1—C11.30 (2)C6—H60.9500
O2—C11.26 (2)C6—C51.3900
O4—C101.22 (2)C5—C41.3900
O6—H6A0.9673C5—C81.537 (7)
O6—H6B0.9755C4—H40.9500
O3—C101.27 (2)C4—C31.3900
O5—H5A0.8979C3—H30.9500
O5—H5B0.8986C8—H8A0.9900
C9—H9A0.9900C8—H8B0.9900
C9—H9B0.9900
O1—Cd1—O4i134.65 (17)C10—C9—H9B109.5
O1—Cd1—C10i115.2 (5)C10—C9—C8110.9 (8)
O2—Cd1—O155.1 (6)O1—C1—C2128.8 (13)
O2—Cd1—O4i92.9 (5)O2—C1—O1116.4 (13)
O2—Cd1—C10i94.0 (5)O2—C1—C2114.8 (14)
O4i—Cd1—C10i27.2 (5)C7—C2—C1123.2 (8)
O6—Cd1—O186.2 (5)C7—C2—C3120.0
O6—Cd1—O2137.9 (5)C3—C2—C1116.8 (8)
O6—Cd1—O4i128.7 (5)C2—C7—H7120.0
O6—Cd1—O3i102.2 (5)C6—C7—C2120.0
O6—Cd1—O586.83 (15)C6—C7—H7120.0
O6—Cd1—C10i119.8 (4)C7—C6—H6120.0
O3i—Cd1—O193.6 (5)C7—C6—C5120.0
O3i—Cd1—O296.73 (15)C5—C6—H6120.0
O3i—Cd1—O4i55.5 (5)C6—C5—C8125.7 (4)
O3i—Cd1—C10i28.4 (5)C4—C5—C6120.0
O5—Cd1—O1129.6 (5)C4—C5—C8114.3 (4)
O5—Cd1—O2104.5 (4)C5—C4—H4120.0
O5—Cd1—O4i85.6 (4)C5—C4—C3120.0
O5—Cd1—O3i136.6 (4)C3—C4—H4120.0
O5—Cd1—C10i111.5 (5)C2—C3—H3120.0
C1—O1—Cd191.3 (9)C4—C3—C2120.0
C1—O2—Cd196.9 (11)C4—C3—H3120.0
C10—O4—Cd1ii88.0 (7)C9—C8—C5115.3 (6)
Cd1—O6—H6A115.2C9—C8—H8A108.5
Cd1—O6—H6B116.2C9—C8—H8B108.5
H6A—O6—H6B98.0C5—C8—H8A108.5
C10—O3—Cd1ii93.6 (10)C5—C8—H8B108.5
Cd1—O5—H5A110.9H8A—C8—H8B107.5
Cd1—O5—H5B110.7O4—C10—Cd1ii64.8 (7)
H5A—O5—H5B103.0O4—C10—O3122.6 (12)
H9A—C9—H9B108.0O4—C10—C9113.2 (12)
C8—C9—H9A109.5O3—C10—Cd1ii58.0 (8)
C8—C9—H9B109.5O3—C10—C9124.2 (13)
C10—C9—H9A109.5C9—C10—Cd1ii173.8 (9)
Cd1—O1—C1—O24.7 (16)C2—C7—C6—C50.0
Cd1—O1—C1—C2174.9 (14)C7—C2—C3—C40.0
Cd1—O2—C1—O14.9 (17)C7—C6—C5—C40.0
Cd1—O2—C1—C2174.7 (10)C7—C6—C5—C8179.1 (7)
Cd1ii—O4—C10—O35.6 (15)C6—C5—C4—C30.0
Cd1ii—O4—C10—C9173.6 (9)C6—C5—C8—C90.1 (10)
Cd1ii—O3—C10—O45.9 (16)C5—C4—C3—C20.0
Cd1ii—O3—C10—C9173.1 (11)C4—C5—C8—C9179.0 (6)
O1—C1—C2—C7178.3 (13)C3—C2—C7—C60.0
O1—C1—C2—C31 (2)C8—C9—C10—O4180.0 (11)
O2—C1—C2—C71.3 (18)C8—C9—C10—O30.9 (17)
O2—C1—C2—C3179.0 (12)C8—C5—C4—C3179.2 (7)
C1—C2—C7—C6179.7 (9)C10—C9—C8—C5177.3 (8)
C1—C2—C3—C4179.7 (9)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O4iii0.972.282.653 (15)102
O6—H6B···O3iv0.981.762.735 (18)176
O5—H5A···O1v0.901.872.692 (16)151
O5—H5B···O2vi0.902.462.67 (2)94
C3—H3···O1
Symmetry codes: (iii) x, y+1, z1/2; (iv) x1/2, y+3/2, z1/2; (v) x1/2, y+1/2, z; (vi) x, y+1, z.
 

Acknowledgements

We thank Dr G. Looks for helpful discussion.

Funding information

Funding for this research was provided by: Honors College of Michigan State University.

References

First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPrzybyla, J. J. & LaDuca, R. L. (2018). CrystEngComm, 20, 280–293.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds