metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Pyridine-2,6-di­carboxyl­ato-κ3O,N,O′)(2,2′:6′,2′′- terpyridine-κ3N,N′,N′′)nickel(II) di­methyl­formamide monosolvate monohydrate

aChonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 17 July 2019; accepted 20 July 2019; online 26 July 2019)

In the title complex, [Ni(C7H3NO4)(C15H11N3)]·C3H7NO·H2O, the NiII ion is six-coordinated within an octa­hedral geometry defined by three N atoms of the 2,2′:6′,2′′-terpyridine ligand, and two O atoms and the N atom of the pyridine-2,6-di­carboxyl­ate di-anion. In the crystal, the complex mol­ecules are stacked in columns parallel to the a axis being connected by ππ stacking [closest inter-centroid separation between pyridyl rings = 3.669 (3) Å]. The connections between columns and solvent mol­ecules to sustain a three-dimensional architecture are of the type water-O—H⋯O(carbon­yl) and pyridyl-, methyl-C—H⋯O(carbon­yl).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

With reference to the title complex, [Ni(dipic)(terpy)]·C3H7NO·H2O (dipic = pyridine-2,6-di­carboxyl­ate; terpy = 2,2′:6′,2"-terpyridine), the crystal structures of related NiII complexes [Ni(dipic)(H2O)2] (Liu et al., 2006[Liu, Y., Dou, J.-M., Wang, D., Zhang, X.-X. & Zhou, L. (2006). Acta Cryst. E62, m2208-m2209.]), [Ni(dipic)(1,10-phenanthroline)(H2O)]·H2O (Ramadevi et al., 2006[Ramadevi, P., Kumaresan, S. & Sharma, N. (2006). Acta Cryst. E62, m2957-m2959.]) and [NiCl(terpy)(H2O)2]Cl·H2O (Cortés et al., 1985[Cortés, R., Arriortua, M. I., Rojo, T., Solans, X., Miravitlles, C. & Beltran, D. (1985). Acta Cryst. C41, 1733-1736.]) have been determined previously.

In the title complex, the central NiII ion is six-coordinated in a distorted octa­hedral coordination geometry defined by three N atoms from the tridentate terpy ligand, and two O atoms and the N atom from the dipic di-anion (Fig. 1[link]). The tight O—Ni—N and N—Ni—N chelating angles of O—Ni1—N1 = 78.07 (10) and 78.18 (11)°, and N—Ni1—N = 78.25 (11) and 78.67 (11)° contribute to the distortion of the octa­hedron. The apical N1—Ni1—N3, N2—Ni1—N4 and O1—Ni1—O3 bond angles are 177.95 (12), 156.92 (10) and 156.26 (9)°, respectively. The Ni—N bonds [1.963 (2)-2.091 (3) Å] are slightly shorter than the Ni—O bonds [2.126 (2) and 2.131 (2) Å]. The two outer pyridyl rings of the terpy ligand are located approximately parallel to the central pyridyl ring, making dihedral angles of 4.7 (3) and 2.3 (3)°. The dihedral angle between the least-squares planes of dipic and terpy ligands is 83.23 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom labelling and displacement ellipsoids drawn at the 50% probability level for non-H atoms.

In the crystal, the complex mol­ecules are stacked in columns parallel to the a axis. Within the columns, numerous inter­molecular ππ inter­actions between adjacent six-membered rings are present. For Cg1 (the centroid of ring N2/C8–C12) and Cg2i [the centroid of ring N3/C13–C17; symmetry code: (i) x, [{1\over 2}] − y, −[{1\over 2}] + z], the centroid-centroid distance is 3.669 (3) Å and the dihedral angle between the ring planes is 9.6 (2)° (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). The complex and solvent mol­ecules display inter­molecular O—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) to stabilize the three-dimensional packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O2i 0.71 (5) 2.21 (5) 2.907 (5) 172 (5)
O6—H6B⋯O4 0.74 (6) 2.14 (6) 2.881 (5) 175 (7)
C2—H2⋯O2ii 0.94 2.49 3.254 (4) 138
C8—H8⋯O5iii 0.94 2.47 3.133 (5) 128
C9—H9⋯O2iv 0.94 2.55 3.465 (5) 163
C25—H25C⋯O4v 0.97 2.45 3.361 (6) 157
Symmetry codes: (i) x+1, y, z+1; (ii) -x, -y, -z; (iii) x, y, z-1; (iv) x+1, y, z; (v) x-1, y, z.

Synthesis and crystallization

To a solution of Ni(CH3CO2)2·4H2O (0.2605 g, 1.047 mmol) in MeOH (20 ml) were added pyridine-2,6-di­carb­oxy­lic acid (0.1750 g, 1.047 mmol) and 2,2′:6′,2"-terpyridine (0.2444 g, 1.048 mmol), followed by stirring for 1 h at room temperature. The formed precipitate was separated by filtration, washed with MeOH and acetone, and dried at 323 K, to give a pale-green powder (0.3580 g). Green crystals suitable for X-ray analysis were obtained by the slow evaporation of its N,N-di­methyl­formamide solution at 333 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The highest peak (0.42 e Å−3) and the deepest hole (−0.39 e Å−3) in the final difference Fourier map are located 0.88 Å and 0.29 Å, respectively, from the C20 atom.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C7H3NO4)(C15H11N3)]·C3H7NO·H2O
Mr 548.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 8.6188 (4), 27.5899 (13), 10.7559 (5)
β (°) 111.3813 (11)
V3) 2381.62 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.87
Crystal size (mm) 0.16 × 0.13 × 0.09
 
Data collection
Diffractometer PHOTON 100 CMOS detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.683, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 66113, 4729, 3085
Rint 0.176
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.105, 1.04
No. of reflections 4729
No. of parameters 344
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXL2014 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(Pyridine-2,6-dicarboxylato-κ3O,N,O')(2,2':6',2''-terpyridine-κ3N,N',N'')nickel(II) dimethylformamide monosolvate monohydrate top
Crystal data top
[Ni(C7H3NO4)(C15H11N3)]·C3H7NO·H2OF(000) = 1136
Mr = 548.19Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.6188 (4) ÅCell parameters from 7834 reflections
b = 27.5899 (13) Åθ = 2.5–25.4°
c = 10.7559 (5) ŵ = 0.87 mm1
β = 111.3813 (11)°T = 223 K
V = 2381.62 (19) Å3Block, green
Z = 40.16 × 0.13 × 0.09 mm
Data collection top
PHOTON 100 CMOS detector
diffractometer
3085 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.176
φ and ω scansθmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.683, Tmax = 0.745k = 3434
66113 measured reflectionsl = 1313
4729 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0327P)2 + 2.9447P]
where P = (Fo2 + 2Fc2)/3
4729 reflections(Δ/σ)max < 0.001
344 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.94 Å (CH) or 0.97 Å (CH3), and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The H atoms of the solvent water molecule were localized from Fourier difference maps and refined with isotropic thermal parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.36206 (5)0.16002 (2)0.23583 (4)0.02137 (13)
O10.1553 (3)0.14429 (8)0.0586 (2)0.0267 (6)
O20.0024 (3)0.08186 (9)0.0495 (2)0.0378 (6)
O30.5679 (3)0.14403 (9)0.4142 (2)0.0309 (6)
O40.7196 (3)0.08116 (10)0.5247 (3)0.0467 (7)
N10.3587 (3)0.08889 (9)0.2374 (3)0.0203 (6)
N20.5267 (3)0.17374 (10)0.1390 (3)0.0260 (7)
N30.3713 (3)0.23164 (9)0.2408 (3)0.0233 (6)
N40.2007 (3)0.17652 (10)0.3353 (3)0.0259 (7)
C10.2379 (4)0.06562 (12)0.1423 (3)0.0224 (8)
C20.2282 (5)0.01548 (13)0.1436 (4)0.0304 (9)
H20.14130.00110.07800.037*
C30.3494 (5)0.00932 (12)0.2437 (4)0.0347 (9)
H30.34570.04330.24670.042*
C40.4770 (5)0.01570 (13)0.3402 (4)0.0313 (9)
H40.56140.00110.40760.038*
C50.4770 (4)0.06553 (12)0.3350 (3)0.0239 (8)
C60.1188 (4)0.09963 (13)0.0402 (3)0.0262 (8)
C70.6005 (4)0.09928 (14)0.4347 (4)0.0295 (8)
C80.6049 (5)0.14092 (14)0.0920 (4)0.0349 (9)
H80.57530.10810.09230.042*
C90.7263 (6)0.15281 (16)0.0435 (5)0.0611 (14)
H90.78040.12880.01210.073*
C100.7662 (7)0.20063 (18)0.0422 (7)0.099 (2)
H100.85020.20990.01060.119*
C110.6846 (6)0.23548 (16)0.0869 (6)0.0767 (18)
H110.70970.26850.08370.092*
C120.5658 (4)0.22089 (13)0.1361 (4)0.0328 (9)
C130.4719 (4)0.25468 (12)0.1902 (4)0.0303 (9)
C140.4840 (5)0.30440 (14)0.1940 (4)0.0451 (11)
H140.55300.32060.15710.054*
C150.3911 (5)0.33003 (13)0.2541 (5)0.0506 (12)
H150.39920.36400.25990.061*
C160.2876 (5)0.30606 (14)0.3051 (4)0.0423 (10)
H160.22300.32330.34410.051*
C170.2804 (4)0.25613 (12)0.2978 (3)0.0273 (8)
C180.1788 (5)0.22411 (13)0.3493 (4)0.0311 (9)
C190.0730 (7)0.24084 (16)0.4088 (6)0.0727 (17)
H190.05930.27420.41880.087*
C200.0130 (8)0.20715 (19)0.4536 (7)0.100 (2)
H200.08470.21770.49620.120*
C210.0047 (6)0.15893 (17)0.4370 (5)0.0616 (14)
H210.05640.13590.46470.074*
C220.1139 (5)0.14506 (14)0.3787 (4)0.0364 (10)
H220.12900.11180.36850.044*
O50.4038 (4)0.05868 (11)0.8998 (3)0.0635 (9)
N50.1913 (4)0.01358 (12)0.7603 (3)0.0400 (8)
C230.3260 (6)0.02115 (17)0.8683 (4)0.0503 (11)
H230.36510.00530.92650.060*
C240.1119 (6)0.03242 (17)0.7291 (5)0.0701 (15)
H24A0.00720.02840.70540.105*
H24B0.15530.05360.80600.105*
H24C0.13360.04660.65440.105*
C250.1256 (7)0.05288 (19)0.6690 (6)0.0858 (18)
H25A0.16720.05070.59670.129*
H25B0.16020.08340.71560.129*
H25C0.00490.05110.63310.129*
O60.8679 (5)0.15110 (13)0.7334 (5)0.0590 (10)
H6A0.896 (6)0.1358 (18)0.790 (5)0.052 (19)*
H6B0.825 (8)0.133 (2)0.681 (6)0.10 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0231 (2)0.0176 (2)0.0246 (2)0.0026 (2)0.01005 (17)0.0023 (2)
O10.0277 (13)0.0196 (13)0.0297 (14)0.0020 (10)0.0067 (11)0.0014 (10)
O20.0318 (15)0.0330 (16)0.0351 (15)0.0064 (12)0.0038 (13)0.0066 (12)
O30.0301 (14)0.0295 (15)0.0282 (14)0.0047 (11)0.0048 (12)0.0050 (11)
O40.0410 (17)0.0473 (18)0.0350 (16)0.0014 (14)0.0061 (14)0.0063 (14)
N10.0212 (14)0.0200 (14)0.0211 (14)0.0003 (13)0.0096 (12)0.0015 (13)
N20.0278 (16)0.0220 (17)0.0313 (17)0.0016 (12)0.0145 (14)0.0019 (13)
N30.0244 (15)0.0189 (14)0.0280 (15)0.0009 (13)0.0112 (13)0.0031 (13)
N40.0280 (16)0.0218 (16)0.0306 (17)0.0042 (13)0.0141 (14)0.0042 (13)
C10.0236 (18)0.0212 (19)0.0246 (19)0.0027 (15)0.0113 (16)0.0056 (15)
C20.033 (2)0.024 (2)0.035 (2)0.0027 (17)0.0129 (18)0.0049 (17)
C30.047 (2)0.0163 (18)0.046 (2)0.0005 (19)0.023 (2)0.0017 (19)
C40.034 (2)0.028 (2)0.032 (2)0.0094 (17)0.0125 (18)0.0100 (17)
C50.0254 (19)0.027 (2)0.0228 (19)0.0034 (15)0.0130 (16)0.0051 (15)
C60.027 (2)0.026 (2)0.028 (2)0.0055 (16)0.0120 (17)0.0041 (16)
C70.029 (2)0.034 (2)0.026 (2)0.0038 (18)0.0104 (18)0.0014 (18)
C80.039 (2)0.028 (2)0.045 (2)0.0015 (18)0.024 (2)0.0037 (18)
C90.074 (3)0.039 (3)0.104 (4)0.003 (2)0.072 (3)0.006 (3)
C100.120 (5)0.043 (3)0.205 (7)0.008 (3)0.143 (5)0.007 (4)
C110.095 (4)0.028 (3)0.157 (5)0.010 (3)0.106 (4)0.006 (3)
C120.034 (2)0.024 (2)0.048 (2)0.0033 (17)0.026 (2)0.0026 (18)
C130.031 (2)0.0197 (19)0.043 (2)0.0033 (16)0.0162 (19)0.0010 (17)
C140.050 (3)0.026 (2)0.073 (3)0.0043 (19)0.039 (3)0.005 (2)
C150.062 (3)0.018 (2)0.084 (4)0.005 (2)0.041 (3)0.003 (2)
C160.050 (3)0.024 (2)0.064 (3)0.0024 (19)0.033 (2)0.008 (2)
C170.027 (2)0.023 (2)0.032 (2)0.0006 (15)0.0116 (17)0.0040 (16)
C180.040 (2)0.025 (2)0.036 (2)0.0011 (17)0.0229 (19)0.0053 (17)
C190.103 (4)0.031 (3)0.132 (5)0.002 (3)0.100 (4)0.005 (3)
C200.141 (5)0.049 (3)0.184 (7)0.005 (3)0.146 (6)0.002 (4)
C210.081 (3)0.038 (3)0.101 (4)0.007 (3)0.075 (3)0.003 (3)
C220.047 (2)0.025 (2)0.048 (3)0.0044 (18)0.030 (2)0.0031 (17)
O50.068 (2)0.046 (2)0.068 (2)0.0134 (17)0.0142 (18)0.0164 (17)
N50.041 (2)0.0323 (19)0.045 (2)0.0012 (16)0.0135 (18)0.0004 (16)
C230.061 (3)0.052 (3)0.041 (3)0.003 (2)0.022 (2)0.003 (2)
C240.071 (4)0.057 (3)0.090 (4)0.021 (3)0.039 (3)0.014 (3)
C250.067 (4)0.065 (4)0.099 (5)0.012 (3)0.000 (3)0.017 (3)
O60.063 (2)0.046 (2)0.053 (2)0.009 (2)0.0028 (18)0.003 (2)
Geometric parameters (Å, º) top
Ni1—N11.963 (2)C11—C121.373 (5)
Ni1—N31.978 (3)C11—H110.9400
Ni1—N22.078 (3)C12—C131.486 (5)
Ni1—N42.091 (3)C13—C141.375 (5)
Ni1—O12.126 (2)C14—C151.391 (5)
Ni1—O32.131 (2)C14—H140.9400
O1—C61.269 (4)C15—C161.375 (5)
O2—C61.236 (4)C15—H150.9400
O3—C71.268 (4)C16—C171.380 (5)
O4—C71.232 (4)C16—H160.9400
N1—C11.329 (4)C17—C181.485 (5)
N1—C51.333 (4)C18—C191.372 (5)
N2—C81.333 (4)C19—C201.380 (6)
N2—C121.347 (4)C19—H190.9400
N3—C171.340 (4)C20—C211.358 (6)
N3—C131.340 (4)C20—H200.9400
N4—C221.336 (4)C21—C221.362 (5)
N4—C181.343 (4)C21—H210.9400
C1—C21.386 (5)C22—H220.9400
C1—C61.523 (5)O5—C231.213 (5)
C2—C31.377 (5)N5—C231.326 (5)
C2—H20.9400N5—C241.423 (5)
C3—C41.390 (5)N5—C251.433 (6)
C3—H30.9400C23—H230.9400
C4—C51.376 (5)C24—H24A0.9700
C4—H40.9400C24—H24B0.9700
C5—C71.523 (5)C24—H24C0.9700
C8—C91.369 (5)C25—H25A0.9700
C8—H80.9400C25—H25B0.9700
C9—C101.365 (6)C25—H25C0.9700
C9—H90.9400O6—H6A0.71 (5)
C10—C111.377 (6)O6—H6B0.74 (6)
C10—H100.9400
N1—Ni1—N3177.95 (12)C9—C10—H10119.7
N1—Ni1—N2101.62 (11)C11—C10—H10119.7
N3—Ni1—N278.67 (11)C12—C11—C10118.5 (4)
N1—Ni1—N4101.44 (11)C12—C11—H11120.7
N3—Ni1—N478.25 (11)C10—C11—H11120.7
N2—Ni1—N4156.92 (10)N2—C12—C11121.4 (3)
N1—Ni1—O178.07 (10)N2—C12—C13114.8 (3)
N3—Ni1—O1103.93 (10)C11—C12—C13123.8 (3)
N2—Ni1—O195.16 (10)N3—C13—C14120.9 (3)
N4—Ni1—O190.40 (10)N3—C13—C12112.8 (3)
N1—Ni1—O378.18 (11)C14—C13—C12126.3 (3)
N3—Ni1—O399.81 (11)C13—C14—C15118.1 (3)
N2—Ni1—O389.59 (10)C13—C14—H14121.0
N4—Ni1—O394.29 (10)C15—C14—H14121.0
O1—Ni1—O3156.26 (9)C16—C15—C14120.5 (3)
C6—O1—Ni1114.7 (2)C16—C15—H15119.7
C7—O3—Ni1114.7 (2)C14—C15—H15119.7
C1—N1—C5122.2 (3)C15—C16—C17118.7 (3)
C1—N1—Ni1119.1 (2)C15—C16—H16120.7
C5—N1—Ni1118.7 (2)C17—C16—H16120.7
C8—N2—C12118.8 (3)N3—C17—C16120.5 (3)
C8—N2—Ni1126.7 (2)N3—C17—C18113.1 (3)
C12—N2—Ni1114.2 (2)C16—C17—C18126.4 (3)
C17—N3—C13121.3 (3)N4—C18—C19121.7 (3)
C17—N3—Ni1119.4 (2)N4—C18—C17114.4 (3)
C13—N3—Ni1119.2 (2)C19—C18—C17123.8 (3)
C22—N4—C18118.5 (3)C18—C19—C20118.0 (4)
C22—N4—Ni1126.8 (2)C18—C19—H19121.0
C18—N4—Ni1114.6 (2)C20—C19—H19121.0
N1—C1—C2120.5 (3)C21—C20—C19120.9 (4)
N1—C1—C6113.0 (3)C21—C20—H20119.5
C2—C1—C6126.5 (3)C19—C20—H20119.5
C3—C2—C1118.2 (3)C20—C21—C22117.7 (4)
C3—C2—H2120.9C20—C21—H21121.1
C1—C2—H2120.9C22—C21—H21121.1
C2—C3—C4120.3 (3)N4—C22—C21123.2 (4)
C2—C3—H3119.8N4—C22—H22118.4
C4—C3—H3119.8C21—C22—H22118.4
C5—C4—C3118.5 (3)C23—N5—C24122.6 (4)
C5—C4—H4120.7C23—N5—C25118.8 (4)
C3—C4—H4120.7C24—N5—C25118.5 (4)
N1—C5—C4120.3 (3)O5—C23—N5126.7 (5)
N1—C5—C7113.4 (3)O5—C23—H23116.7
C4—C5—C7126.4 (3)N5—C23—H23116.7
O2—C6—O1126.7 (3)N5—C24—H24A109.5
O2—C6—C1118.3 (3)N5—C24—H24B109.5
O1—C6—C1115.0 (3)H24A—C24—H24B109.5
O4—C7—O3126.9 (3)N5—C24—H24C109.5
O4—C7—C5118.3 (3)H24A—C24—H24C109.5
O3—C7—C5114.8 (3)H24B—C24—H24C109.5
N2—C8—C9122.9 (4)N5—C25—H25A109.5
N2—C8—H8118.5N5—C25—H25B109.5
C9—C8—H8118.5H25A—C25—H25B109.5
C10—C9—C8117.8 (4)N5—C25—H25C109.5
C10—C9—H9121.1H25A—C25—H25C109.5
C8—C9—H9121.1H25B—C25—H25C109.5
C9—C10—C11120.6 (4)H6A—O6—H6B100 (6)
C5—N1—C1—C21.9 (5)C10—C11—C12—C13178.5 (5)
Ni1—N1—C1—C2177.4 (2)C17—N3—C13—C140.6 (6)
C5—N1—C1—C6179.0 (3)Ni1—N3—C13—C14178.8 (3)
Ni1—N1—C1—C61.7 (3)C17—N3—C13—C12178.0 (3)
N1—C1—C2—C31.8 (5)Ni1—N3—C13—C120.3 (4)
C6—C1—C2—C3179.2 (3)N2—C12—C13—N34.1 (5)
C1—C2—C3—C40.1 (5)C11—C12—C13—N3175.6 (4)
C2—C3—C4—C51.5 (5)N2—C12—C13—C14177.4 (4)
C1—N1—C5—C40.2 (5)C11—C12—C13—C142.9 (7)
Ni1—N1—C5—C4179.1 (2)N3—C13—C14—C151.1 (6)
C1—N1—C5—C7178.8 (3)C12—C13—C14—C15177.2 (4)
Ni1—N1—C5—C70.5 (3)C13—C14—C15—C161.5 (7)
C3—C4—C5—N11.5 (5)C14—C15—C16—C171.3 (7)
C3—C4—C5—C7176.9 (3)C13—N3—C17—C160.4 (5)
Ni1—O1—C6—O2174.4 (3)Ni1—N3—C17—C16178.6 (3)
Ni1—O1—C6—C14.7 (3)C13—N3—C17—C18179.3 (3)
N1—C1—C6—O2177.0 (3)Ni1—N3—C17—C181.0 (4)
C2—C1—C6—O22.1 (5)C15—C16—C17—N30.7 (6)
N1—C1—C6—O12.2 (4)C15—C16—C17—C18178.9 (4)
C2—C1—C6—O1178.7 (3)C22—N4—C18—C191.3 (6)
Ni1—O3—C7—O4174.3 (3)Ni1—N4—C18—C19178.0 (4)
Ni1—O3—C7—C55.4 (3)C22—N4—C18—C17179.9 (3)
N1—C5—C7—O4176.2 (3)Ni1—N4—C18—C173.1 (4)
C4—C5—C7—O45.3 (5)N3—C17—C18—N42.7 (5)
N1—C5—C7—O33.4 (4)C16—C17—C18—N4176.9 (4)
C4—C5—C7—O3175.0 (3)N3—C17—C18—C19178.4 (4)
C12—N2—C8—C91.5 (6)C16—C17—C18—C192.0 (7)
Ni1—N2—C8—C9172.1 (3)N4—C18—C19—C200.6 (8)
N2—C8—C9—C100.8 (8)C17—C18—C19—C20179.3 (5)
C8—C9—C10—C110.9 (9)C18—C19—C20—C211.2 (10)
C9—C10—C11—C121.8 (10)C19—C20—C21—C222.1 (10)
C8—N2—C12—C110.4 (6)C18—N4—C22—C210.3 (6)
Ni1—N2—C12—C11173.9 (4)Ni1—N4—C22—C21176.6 (3)
C8—N2—C12—C13179.8 (3)C20—C21—C22—N41.4 (8)
Ni1—N2—C12—C135.8 (4)C24—N5—C23—O5177.5 (4)
C10—C11—C12—N21.2 (8)C25—N5—C23—O50.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O2i0.71 (5)2.21 (5)2.907 (5)172 (5)
O6—H6B···O40.74 (6)2.14 (6)2.881 (5)175 (7)
C2—H2···O2ii0.942.493.254 (4)138
C8—H8···O5iii0.942.473.133 (5)128
C9—H9···O2iv0.942.553.465 (5)163
C25—H25C···O4v0.972.453.361 (6)157
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x, y, z1; (iv) x+1, y, z; (v) x1, y, z.
 

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This study was supported financially by Chonnam National University (grant No. 2018–3317).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCortés, R., Arriortua, M. I., Rojo, T., Solans, X., Miravitlles, C. & Beltran, D. (1985). Acta Cryst. C41, 1733–1736.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Dou, J.-M., Wang, D., Zhang, X.-X. & Zhou, L. (2006). Acta Cryst. E62, m2208–m2209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamadevi, P., Kumaresan, S. & Sharma, N. (2006). Acta Cryst. E62, m2957–m2959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds