organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2S,3S,4R,4a'R,5R,5a'R,11a'R,12′S,12a'R)-5-(Acet­­oxy­meth­yl)-2′,2′,10′,10′-tetra­methyl­octa­hydro-3H,8′H-spiro­[furan-2,7′-[1,3]dioxino[4′,5′:5,6]pyrano[3,2-d][1,3,6]trioxocine]-3,4,12′-triyl tri­acetate

aResearch School of Chemistry, Building 137, Sullivans Creek Road, The Australian National University, Canberra ACT 2601, Australia
*Correspondence e-mail: martin.banwell@anu.edu.au

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 July 2019; accepted 10 July 2019; online 12 July 2019)

While the crystal structure analysis of the title compound, C26H38O15, a synthetic derivative of sucrose, was originally reported 40 years ago [Drew et al. (1979[Drew, M. G. B., Lindseth, H. & Khan, R. (1979). Carbohydr. Res. 71, 35-42.]). Carbohydr. Res. 71, 35–42], the present work has allowed for the determination of its absolute configuration through the application of resonant scattering techniques.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Sucrose and certain derivatives are profoundly important commodity chemicals in, for example, the food, nutraceutical, cosmetic, dental and pharmaceutical industries (Farrán et al., 2015[Farrán, A., Cai, C., Sandoval, M., Xu, Y., Liu, J., Hernáiz, M. J. & Linhardt, R. J. (2015). Chem. Rev. 115, 6811-6853.]). However, selective manipulation of the eight distinct hydroxyl groups within the parent compound is challenging (Queneau et al., 2008[Queneau, Y., Jarosz, S., Lewandowski, B. & Fitremann, J. (2008). Adv. Carbohydr. Chem. Biochem. 61, 217-292.]). Accordingly, we were attracted to the title derivative, a previously reported compound (Fanton et al., 1981[Fanton, E., Gelas, J., Horton, D., Karl, H., Khan, R., Lee, C.-K. & Patel, G. (1981). J. Org. Chem. 46, 4057-4060.]; Khan & Mufti, 1975[Khan, R. & Mufti, K. S. (1975). Carbohydr. Res. 43, 247-253.]; Poschalko et al., 2003[Poschalko, A., Rohr, T., Gruber, H., Bianco, A., Guichard, G., Briand, J.-P., Weber, V. & Falkenhagen, D. J. (2003). J. Am. Chem. Soc. 125, 13415-13426.]), as a readily accessible one that could serve as the starting point for selective re-functionalization of the sucrose framework and so affording a range of single-compound derivatives. To such ends we required detailed structural information on the title compound, including its solid-state properties [so as to inform proposed mechanochemical studies (Achar et al., 2017[Achar, T. L., Bose, A. & Mal, P. (2017). Beilstein J. Org. Chem. 13, 1907-1931.])] and thus undertook the high-resolution single-crystal X-ray analysis reported here (Fig. 1[link]). The compound crystallized in the chiral monoclinic space group P21. The absolute configuration was determined by resonant scattering. Upon refinement of the Flack parameter, this calculated to the unambiguous value of 0.05 (8).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labelling [same as employed by Drew et al. (1979[Drew, M. G. B., Lindseth, H. & Khan, R. (1979). Carbohydr. Res. 71, 35-42.])]. Displacement ellipsoids are drawn at the 50% probability level.

A single-crystal, room-temperature X-ray analysis of the title compound was reported nearly forty years ago (Drew et al., 1979[Drew, M. G. B., Lindseth, H. & Khan, R. (1979). Carbohydr. Res. 71, 35-42.]) but its absolute configuration was not determined by that means. For the purposes of the present study, a sample of this sucrose derivative was prepared by the same means as used earlier (Drew et al., 1979[Drew, M. G. B., Lindseth, H. & Khan, R. (1979). Carbohydr. Res. 71, 35-42.]), involving initial diacetonide formation followed by acetyl­ation of the four remaining free hydroxyl groups (Khan & Mufti, 1975[Khan, R. & Mufti, K. S. (1975). Carbohydr. Res. 43, 247-253.]). Crystals suitable for analysis were grown, using vapour-diffusion techniques, from diethyl ether/40–60 petroleum spirits and the derived spectroscopic data matched those reported previously. The R factor arising from the present study at 150 K was superior to that obtained earlier (3.66% versus 5.5%) and this is mirrored through the more accurate unit-cell parameters. As noted in the earlier study (Drew et al., 1979[Drew, M. G. B., Lindseth, H. & Khan, R. (1979). Carbohydr. Res. 71, 35-42.]), the eight-membered and trioxygenated ring embedded within this sucrose derivative is an unusual structural feature, as is the conformation of the tetra­hydro­furanyl residue wherein the ring oxygen atom (O2′) is exo-related to C6′. There are a number of intra­molecular C—H⋯O contacts present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1′—H1′A⋯O17 0.97 2.40 3.154 (3) 134
C6′—H6′B⋯O1 0.97 2.57 3.189 (3) 122
C6—H6B⋯O23 0.97 2.41 3.318 (3) 156
C12—H12A⋯O20i 0.96 2.58 3.432 (4) 148
C21—H21A⋯O11ii 0.96 2.59 3.433 (4) 146
C24—H24C⋯O23iii 0.96 2.49 3.339 (4) 147
Symmetry codes: (i) x+1, y+1, z; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].

In the crystal, mol­ecules are linked by a number of C—H⋯O hydrogen bonds, forming slabs parallel to the ab plane (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds (Table 1[link]) are shown as dashed lines. For clarity, only the H atoms involved in the intra- and inter­molecular hydrogen bonds have been included.

Synthesis and crystallization

Following a literature procedure (Khan and Mufti), 2,2-di­meth­oxy­propane (25.0 ml, 204 mmol) was added, in one portion, to a magnetically stirred solution of sucrose (4.96 g, 14.5 mmol) and p-toluene­sulfonic acid (514 mg, 3.00 mmol) in di­methyl­formamide (DMF, 250 ml) maintained at 295 K. The ensuing mixture was left to stir for 24 h before being treated with sodium bicarbonate (5 ml of a saturated aqueous solution) and the DMF then removed by distillation under reduced pressure (323 K at 15 mm Hg). The yellow gum thus obtained was dissolved in pyridine (80 ml) and the solution so formed treated, in one portion, with acetic anhydride (35.0 ml, 317 mmol). The reaction mixture was stirred at 295 K for 24 h then concentrated by removal of the pyridine through co-distillation with toluene and so leaving a golden-coloured residue. This residue was subjected to flash chromatography (silica, 1:1 v/v ethyl acetate/40–60 petroleum spirits elution) and concentration of the relevant fractions (Rf = 0.3 in 2:3 v/v ethyl acetate/40–60 petroleum spirits) afforded the title compound (878 mg, 10%) as colourless needles. A small sample of this material was recrystallized by vapour diffusion (using diethyl ether and 40–60 petroleum spirits) to afford single crystals suitable for X-ray diffraction analysis, m.p. 406-408 K [lit. (Fanton et al., 1981[Fanton, E., Gelas, J., Horton, D., Karl, H., Khan, R., Lee, C.-K. & Patel, G. (1981). J. Org. Chem. 46, 4057-4060.]) m.p. 409–410 K], [α]D +10.3 (c = 1.0, chloro­form) {lit. (Fanton et al., 1981[Fanton, E., Gelas, J., Horton, D., Karl, H., Khan, R., Lee, C.-K. & Patel, G. (1981). J. Org. Chem. 46, 4057-4060.]) [α]D +13 (c = 1, chloro­form)}.

1H NMR (400 MHz, CDCl3) δ 6.10 (d, J = 3.5 Hz, 1H), 5.33–5.28 (complex m, 1H), 5.21 (t, J = 9.5 Hz, 1H), 5.15 (d, J = 6.1 Hz, 1H), 4.40 (q, J = 9.2 Hz, 1H), 4.31–4.21 (complex m, 2H), 4.03 (d, J = 12.5 Hz, 1H), 3.96 (m, 1H), 3.90–3.77 (complex m, 2H), 3.66 (m, 2H), 3.51 (d, J = 12.5 Hz, 1H), 2.23 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 1.46 (s, 3H), 1.45 (s, 3H), 1.40 (s, 3H), 1.26 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 173.0, 171.6, 171.2, 170.0, 105.2, 101.6, 92.5, 90.7, 80.2, 79.5, 78.4, 76.3, 73.6, 70.6, 69.7, 64.5, 64.3, 62.7, 25.6, 24.1, 21.3, 21.1, 20.9 (4), 20 (9), 20.8 (one signal obscured or overlapping); IR (film) νmax 2998, 2939, 1742, 1371, 1221, 1151, 1131, 1069, 1047, 1034, 1017, 945, 894, 856, 735 cm−1; LRMS (ESI, +ve) m/z 613 [(M + Na)+, 100%]; HRMS (ESI, +ve) calculated for C26H38O15Na [(M + Na)+] 613.2103, found [(M + Na)+] 613.2103.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H38O15
Mr 590.56
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 11.1629 (2), 8.7778 (1), 15.3748 (3)
β (°) 101.558 (2)
V3) 1475.96 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.94
Crystal size (mm) 0.26 × 0.2 × 0.15
 
Data collection
Diffractometer Rigaku Oxfird Diffraction SuperNova, Dual, Cu at home/near, EosS2
Absorption correction Integration (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.920, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10371, 5289, 5113
Rint 0.026
(sin θ/λ)max−1) 0.623
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.02
No. of reflections 5289
No. of parameters 378
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.29
Absolute structure Flack x determined using 2026 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.05 (8)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

(2S,3S,4R,4a'R,5R,5a'R,11a'R,12'S,12a'R)-5-(Acetoxymethyl)-2',2',10',10'-tetramethyloctahydro-3H,8'H-spiro[furan-2,7'-[1,3]dioxino[4',5':5,6]pyrano[3,2-d][1,3,6]trioxocine]-3,4,12'-triyl triacetate top
Crystal data top
C26H38O15F(000) = 628
Mr = 590.56Dx = 1.329 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 11.1629 (2) ÅCell parameters from 6926 reflections
b = 8.7778 (1) Åθ = 5.0–73.6°
c = 15.3748 (3) ŵ = 0.94 mm1
β = 101.558 (2)°T = 150 K
V = 1475.96 (4) Å3Block, colourless
Z = 20.26 × 0.2 × 0.15 mm
Data collection top
Rigaku Oxfird Diffraction SuperNova, Dual, Cu at home/near, EosS2
diffractometer
5289 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source5113 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 8.1297 pixels mm-1θmax = 73.7°, θmin = 4.0°
ω scansh = 1311
Absorption correction: integration
(CrysAlis PRO; Rigaku OD, 2018)
k = 1010
Tmin = 0.920, Tmax = 1.000l = 1817
10371 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.0718P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5289 reflectionsΔρmax = 0.19 e Å3
378 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack x determined using 2026 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.05 (8)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. The H atoms attached to the carbon atoms were introduced in calculated positions and treated as riding: C—H = 0.96–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66805 (13)0.44758 (16)0.23465 (9)0.0194 (4)
O1'0.59371 (14)0.76853 (18)0.21908 (10)0.0230 (4)
O20.79603 (14)0.70874 (17)0.21177 (10)0.0212 (4)
O2'0.46513 (13)0.48539 (18)0.24952 (10)0.0227 (4)
O31.03877 (13)0.61194 (18)0.27262 (10)0.0231 (4)
O3'0.60065 (13)0.29538 (19)0.09135 (10)0.0233 (4)
O41.05077 (13)0.29710 (18)0.32930 (10)0.0226 (4)
O4'0.30285 (14)0.2773 (2)0.09726 (11)0.0293 (5)
O50.76401 (13)0.42594 (17)0.38307 (10)0.0202 (4)
O60.98841 (14)0.11966 (18)0.42674 (11)0.0258 (4)
O6'0.47916 (15)0.2898 (2)0.40486 (11)0.0300 (5)
O111.0621 (2)0.5190 (3)0.14086 (14)0.0498 (7)
O170.6223 (2)0.4819 (3)0.00490 (13)0.0438 (6)
O200.2460 (2)0.0736 (3)0.16760 (14)0.0447 (6)
O230.61677 (18)0.1156 (2)0.46666 (14)0.0417 (6)
C10.72380 (18)0.5291 (2)0.31234 (13)0.0180 (5)
C1'0.5461 (2)0.6575 (2)0.15460 (14)0.0239 (6)
C20.83133 (18)0.6213 (2)0.29037 (13)0.0181 (5)
C2'0.54969 (17)0.4956 (2)0.19222 (13)0.0195 (5)
C30.93376 (17)0.5178 (2)0.27383 (13)0.0187 (5)
C3'0.50360 (18)0.3786 (2)0.11750 (14)0.0210 (5)
C40.96673 (18)0.4064 (2)0.34956 (13)0.0188 (5)
C4'0.42079 (18)0.2699 (3)0.15538 (14)0.0232 (6)
C50.85467 (18)0.3224 (2)0.36547 (14)0.0195 (5)
C5'0.41843 (19)0.3324 (3)0.24868 (14)0.0235 (6)
C60.8952 (2)0.2196 (3)0.44536 (15)0.0238 (6)
C6'0.4918 (2)0.2320 (3)0.31931 (15)0.0264 (6)
C71.0907 (2)0.1927 (3)0.40087 (14)0.0247 (6)
C81.1721 (2)0.2719 (3)0.47857 (16)0.0332 (7)
C91.1574 (3)0.0669 (3)0.36347 (19)0.0400 (8)
C101.0970 (2)0.5994 (3)0.20445 (16)0.0308 (7)
C121.2079 (3)0.6986 (4)0.2192 (2)0.0475 (10)
C130.71093 (19)0.8288 (2)0.21280 (15)0.0238 (6)
C140.7437 (2)0.9332 (3)0.29265 (19)0.0354 (7)
C150.7081 (2)0.9135 (3)0.12672 (18)0.0346 (7)
C160.6578 (2)0.3652 (3)0.03229 (16)0.0303 (7)
C180.7696 (3)0.2792 (4)0.0219 (2)0.0444 (9)
C190.2232 (2)0.1664 (3)0.10960 (19)0.0351 (8)
C210.1074 (3)0.1793 (4)0.0416 (3)0.0563 (10)
C220.5493 (2)0.2184 (3)0.47446 (16)0.0305 (7)
C240.5324 (3)0.2839 (4)0.56148 (17)0.0451 (9)
H10.664000.599300.329000.0220*
H1'A0.592700.659900.107700.0290*
H20.863200.689600.340000.0220*
H1'B0.462200.683500.128500.0290*
H30.909200.463600.217300.0220*
H3'0.455900.431400.065800.0250*
H6'A0.462100.128000.312000.0320*
H41.004300.461600.403600.0230*
H4'0.453200.165800.158700.0280*
H6'B0.577200.232600.314600.0320*
H50.820700.260500.313300.0230*
H5'0.333600.335900.256800.0280*
H6A0.927000.280400.497600.0290*
H6B0.826400.160800.456700.0290*
H8A1.234000.329000.457700.0500*
H8B1.210000.197200.520800.0500*
H8C1.123600.339700.506400.0500*
H9A1.103800.021400.313600.0600*
H9B1.183000.009000.408300.0600*
H9C1.227700.108200.344700.0600*
H12A1.184000.802000.204500.0710*
H12B1.262300.664700.182100.0710*
H12C1.248600.693000.280300.0710*
H14A0.732200.880100.345000.0530*
H14B0.692001.021600.283800.0530*
H14C0.827600.964100.299700.0530*
H15A0.783600.967600.130000.0520*
H15B0.641300.984500.117100.0520*
H15C0.697500.842200.078500.0520*
H18A0.829000.283500.076400.0670*
H18B0.803100.323900.024900.0670*
H18C0.748300.174900.007600.0670*
H21A0.073300.279100.044300.0840*
H21B0.050000.104300.053300.0840*
H21C0.124500.162600.016400.0840*
H24A0.603700.341400.587600.0680*
H24B0.520700.202700.600800.0680*
H24C0.462100.349300.551700.0680*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0172 (6)0.0165 (7)0.0227 (7)0.0008 (5)0.0002 (5)0.0012 (5)
O1'0.0229 (7)0.0158 (7)0.0291 (7)0.0017 (6)0.0022 (6)0.0014 (6)
O20.0232 (7)0.0156 (7)0.0239 (7)0.0026 (6)0.0023 (5)0.0035 (5)
O2'0.0216 (7)0.0198 (8)0.0273 (7)0.0001 (6)0.0061 (5)0.0025 (6)
O30.0203 (7)0.0241 (8)0.0251 (7)0.0018 (6)0.0053 (5)0.0021 (6)
O3'0.0244 (7)0.0231 (8)0.0236 (7)0.0032 (6)0.0076 (6)0.0003 (6)
O40.0247 (7)0.0219 (8)0.0216 (7)0.0079 (6)0.0053 (5)0.0048 (6)
O4'0.0220 (7)0.0296 (9)0.0348 (8)0.0077 (7)0.0024 (6)0.0061 (7)
O50.0198 (6)0.0190 (7)0.0217 (7)0.0031 (5)0.0039 (5)0.0031 (5)
O60.0242 (7)0.0188 (8)0.0347 (8)0.0043 (6)0.0067 (6)0.0072 (6)
O6'0.0287 (8)0.0359 (9)0.0256 (8)0.0057 (7)0.0056 (6)0.0014 (7)
O110.0547 (12)0.0615 (15)0.0396 (10)0.0008 (11)0.0250 (9)0.0083 (10)
O170.0611 (12)0.0369 (11)0.0387 (10)0.0029 (10)0.0230 (9)0.0094 (8)
O200.0497 (11)0.0409 (11)0.0503 (11)0.0190 (9)0.0264 (9)0.0098 (9)
O230.0404 (10)0.0386 (11)0.0480 (11)0.0102 (9)0.0137 (8)0.0165 (9)
C10.0197 (8)0.0137 (9)0.0194 (9)0.0002 (7)0.0009 (7)0.0001 (7)
C1'0.0241 (10)0.0187 (11)0.0260 (10)0.0000 (8)0.0017 (8)0.0017 (8)
C20.0203 (9)0.0137 (9)0.0191 (9)0.0008 (7)0.0010 (7)0.0006 (7)
C2'0.0172 (8)0.0171 (10)0.0230 (9)0.0004 (7)0.0010 (7)0.0005 (8)
C30.0196 (9)0.0163 (9)0.0197 (9)0.0009 (8)0.0030 (7)0.0002 (7)
C3'0.0201 (9)0.0200 (10)0.0218 (9)0.0027 (8)0.0014 (7)0.0004 (8)
C40.0187 (9)0.0181 (10)0.0188 (9)0.0009 (7)0.0021 (7)0.0005 (7)
C4'0.0206 (9)0.0219 (11)0.0270 (10)0.0024 (8)0.0046 (8)0.0011 (8)
C50.0200 (9)0.0149 (10)0.0224 (9)0.0007 (7)0.0016 (7)0.0007 (7)
C5'0.0216 (9)0.0218 (11)0.0280 (11)0.0032 (8)0.0073 (8)0.0023 (8)
C60.0210 (9)0.0214 (11)0.0291 (10)0.0026 (8)0.0055 (8)0.0066 (8)
C6'0.0289 (11)0.0233 (11)0.0293 (11)0.0011 (8)0.0111 (8)0.0008 (8)
C70.0228 (9)0.0256 (11)0.0263 (10)0.0066 (9)0.0061 (8)0.0095 (9)
C80.0250 (10)0.0414 (14)0.0302 (11)0.0009 (10)0.0016 (8)0.0134 (11)
C90.0433 (14)0.0352 (14)0.0456 (14)0.0212 (12)0.0189 (12)0.0131 (12)
C100.0282 (11)0.0326 (13)0.0342 (12)0.0082 (9)0.0128 (9)0.0089 (10)
C120.0312 (13)0.0523 (18)0.0643 (19)0.0029 (13)0.0224 (12)0.0116 (15)
C130.0222 (9)0.0144 (9)0.0328 (11)0.0012 (8)0.0008 (8)0.0017 (8)
C140.0350 (12)0.0178 (11)0.0483 (14)0.0034 (9)0.0040 (10)0.0093 (10)
C150.0332 (11)0.0249 (12)0.0439 (14)0.0042 (10)0.0034 (10)0.0152 (10)
C160.0367 (12)0.0307 (13)0.0261 (11)0.0106 (10)0.0126 (9)0.0043 (9)
C180.0444 (15)0.0461 (17)0.0505 (15)0.0060 (13)0.0285 (12)0.0051 (14)
C190.0281 (11)0.0363 (15)0.0447 (14)0.0138 (10)0.0164 (10)0.0206 (12)
C210.0255 (12)0.059 (2)0.082 (2)0.0139 (13)0.0054 (14)0.0300 (19)
C220.0220 (10)0.0339 (13)0.0348 (12)0.0023 (9)0.0040 (9)0.0080 (10)
C240.0412 (14)0.062 (2)0.0297 (12)0.0069 (14)0.0016 (10)0.0038 (13)
Geometric parameters (Å, º) top
O1—C11.424 (2)C16—C181.494 (4)
O1—C2'1.416 (2)C19—C211.495 (5)
O1'—C1'1.416 (2)C22—C241.502 (4)
O1'—C131.433 (3)C1—H10.9800
O2—C21.419 (2)C1'—H1'A0.9700
O2—C131.421 (2)C1'—H1'B0.9700
O2'—C2'1.417 (2)C2—H20.9800
O2'—C5'1.440 (3)C3—H30.9800
O3—C31.437 (2)C3'—H3'0.9800
O3—C101.344 (3)C4—H40.9800
O3'—C3'1.430 (3)C4'—H4'0.9800
O3'—C161.356 (3)C5—H50.9800
O4—C41.419 (2)C5'—H5'0.9800
O4—C71.433 (3)C6—H6A0.9700
O4'—C4'1.437 (3)C6—H6B0.9700
O4'—C191.357 (3)C6'—H6'A0.9700
O5—C11.417 (2)C6'—H6'B0.9700
O5—C51.426 (2)C8—H8A0.9600
O6—C61.433 (3)C8—H8B0.9600
O6—C71.434 (3)C8—H8C0.9600
O6'—C6'1.443 (3)C9—H9A0.9600
O6'—C221.347 (3)C9—H9B0.9600
O11—C101.205 (3)C9—H9C0.9600
O17—C161.201 (4)C12—H12A0.9600
O20—C191.197 (4)C12—H12B0.9600
O23—C221.197 (3)C12—H12C0.9600
C1—C21.540 (3)C14—H14A0.9600
C1'—C2'1.532 (3)C14—H14B0.9600
C2—C31.521 (3)C14—H14C0.9600
C2'—C3'1.550 (3)C15—H15A0.9600
C3—C41.509 (3)C15—H15B0.9600
C3'—C4'1.523 (3)C15—H15C0.9600
C4—C51.514 (3)C18—H18A0.9600
C4'—C5'1.541 (3)C18—H18B0.9600
C5—C61.518 (3)C18—H18C0.9600
C5'—C6'1.507 (3)C21—H21A0.9600
C7—C81.517 (3)C21—H21B0.9600
C7—C91.509 (4)C21—H21C0.9600
C10—C121.493 (4)C24—H24A0.9600
C13—C141.517 (3)C24—H24B0.9600
C13—C151.513 (3)C24—H24C0.9600
C1—O1—C2'116.59 (15)C3—C2—H2109.00
C1'—O1'—C13115.27 (16)O3—C3—H3111.00
C2—O2—C13117.63 (16)C2—C3—H3111.00
C2'—O2'—C5'109.79 (15)C4—C3—H3111.00
C3—O3—C10119.09 (17)O3'—C3'—H3'109.00
C3'—O3'—C16116.24 (17)C2'—C3'—H3'109.00
C4—O4—C7112.42 (16)C4'—C3'—H3'109.00
C4'—O4'—C19115.15 (19)O4—C4—H4109.00
C1—O5—C5112.92 (15)C3—C4—H4109.00
C6—O6—C7115.61 (18)C5—C4—H4109.00
C6'—O6'—C22114.40 (19)O4'—C4'—H4'111.00
O1—C1—O5109.91 (14)C3'—C4'—H4'111.00
O1—C1—C2107.99 (15)C5'—C4'—H4'111.00
O5—C1—C2111.29 (16)O5—C5—H5110.00
O1'—C1'—C2'113.36 (17)C4—C5—H5110.00
O2—C2—C1112.04 (16)C6—C5—H5110.00
O2—C2—C3105.69 (16)O2'—C5'—H5'109.00
C1—C2—C3111.58 (15)C4'—C5'—H5'109.00
O1—C2'—O2'111.79 (15)C6'—C5'—H5'109.00
O1—C2'—C1'113.68 (16)O6—C6—H6A110.00
O1—C2'—C3'106.55 (15)O6—C6—H6B110.00
O2'—C2'—C1'108.85 (16)C5—C6—H6A110.00
O2'—C2'—C3'104.79 (15)C5—C6—H6B110.00
C1'—C2'—C3'110.80 (16)H6A—C6—H6B108.00
O3—C3—C2107.52 (14)O6'—C6'—H6'A110.00
O3—C3—C4108.01 (16)O6'—C6'—H6'B110.00
C2—C3—C4109.48 (16)C5'—C6'—H6'A110.00
O3'—C3'—C2'112.91 (16)C5'—C6'—H6'B110.00
O3'—C3'—C4'109.86 (16)H6'A—C6'—H6'B108.00
C2'—C3'—C4'105.57 (17)C7—C8—H8A110.00
O4—C4—C3109.79 (16)C7—C8—H8B109.00
O4—C4—C5108.07 (15)C7—C8—H8C109.00
C3—C4—C5111.03 (16)H8A—C8—H8B110.00
O4'—C4'—C3'106.53 (18)H8A—C8—H8C109.00
O4'—C4'—C5'112.23 (17)H8B—C8—H8C109.00
C3'—C4'—C5'104.94 (19)C7—C9—H9A109.00
O5—C5—C4111.17 (15)C7—C9—H9B109.00
O5—C5—C6109.46 (17)C7—C9—H9C110.00
C4—C5—C6107.36 (17)H9A—C9—H9B109.00
O2'—C5'—C4'105.47 (18)H9A—C9—H9C109.00
O2'—C5'—C6'113.30 (18)H9B—C9—H9C110.00
C4'—C5'—C6'110.8 (2)C10—C12—H12A109.00
O6—C6—C5108.23 (17)C10—C12—H12B109.00
O6'—C6'—C5'108.24 (19)C10—C12—H12C110.00
O4—C7—O6110.89 (17)H12A—C12—H12B109.00
O4—C7—C8110.9 (2)H12A—C12—H12C109.00
O4—C7—C9106.07 (18)H12B—C12—H12C110.00
O6—C7—C8111.79 (18)C13—C14—H14A110.00
O6—C7—C9105.1 (2)C13—C14—H14B109.00
C8—C7—C9111.9 (2)C13—C14—H14C109.00
O3—C10—O11123.5 (2)H14A—C14—H14B109.00
O3—C10—C12110.5 (2)H14A—C14—H14C109.00
O11—C10—C12126.0 (2)H14B—C14—H14C109.00
O1'—C13—O2110.40 (15)C13—C15—H15A109.00
O1'—C13—C14104.12 (17)C13—C15—H15B109.00
O1'—C13—C15112.41 (18)C13—C15—H15C109.00
O2—C13—C14113.81 (18)H15A—C15—H15B109.00
O2—C13—C15104.57 (18)H15A—C15—H15C110.00
C14—C13—C15111.75 (18)H15B—C15—H15C109.00
O3'—C16—O17123.3 (2)C16—C18—H18A109.00
O3'—C16—C18111.0 (2)C16—C18—H18B109.00
O17—C16—C18125.7 (2)C16—C18—H18C109.00
O4'—C19—O20123.0 (2)H18A—C18—H18B110.00
O4'—C19—C21110.3 (2)H18A—C18—H18C109.00
O20—C19—C21126.7 (3)H18B—C18—H18C110.00
O6'—C22—O23123.3 (2)C19—C21—H21A110.00
O6'—C22—C24111.9 (2)C19—C21—H21B109.00
O23—C22—C24124.9 (2)C19—C21—H21C109.00
O1—C1—H1109.00H21A—C21—H21B109.00
O5—C1—H1109.00H21A—C21—H21C110.00
C2—C1—H1109.00H21B—C21—H21C109.00
O1'—C1'—H1'A109.00C22—C24—H24A109.00
O1'—C1'—H1'B109.00C22—C24—H24B109.00
C2'—C1'—H1'A109.00C22—C24—H24C110.00
C2'—C1'—H1'B109.00H24A—C24—H24B109.00
H1'A—C1'—H1'B108.00H24A—C24—H24C110.00
O2—C2—H2109.00H24B—C24—H24C109.00
C1—C2—H2109.00
C2'—O1—C1—O5127.72 (16)C6—O6—C7—C872.3 (2)
C2'—O1—C1—C2110.71 (17)C6—O6—C7—C9166.16 (19)
C1—O1—C2'—O2'59.4 (2)C22—O6'—C6'—C5'174.31 (19)
C1—O1—C2'—C1'64.3 (2)C6'—O6'—C22—O230.0 (3)
C1—O1—C2'—C3'173.37 (15)C6'—O6'—C22—C24179.8 (2)
C13—O1'—C1'—C2'107.1 (2)O1—C1—C2—O250.69 (19)
C1'—O1'—C13—O253.1 (2)O1—C1—C2—C367.60 (19)
C1'—O1'—C13—C14175.61 (17)O5—C1—C2—O2171.41 (15)
C1'—O1'—C13—C1563.3 (2)O5—C1—C2—C353.1 (2)
C13—O2—C2—C165.6 (2)O1'—C1'—C2'—O156.7 (2)
C13—O2—C2—C3172.65 (16)O1'—C1'—C2'—O2'68.6 (2)
C2—O2—C13—O1'67.5 (2)O1'—C1'—C2'—C3'176.64 (17)
C2—O2—C13—C1449.1 (2)O2—C2—C3—O369.91 (18)
C2—O2—C13—C15171.34 (17)O2—C2—C3—C4172.99 (15)
C5'—O2'—C2'—O183.67 (18)C1—C2—C3—O3168.07 (15)
C5'—O2'—C2'—C1'149.92 (16)C1—C2—C3—C451.0 (2)
C5'—O2'—C2'—C3'31.35 (19)O1—C2'—C3'—O3'21.2 (2)
C2'—O2'—C5'—C4'30.2 (2)O1—C2'—C3'—C4'98.89 (18)
C2'—O2'—C5'—C6'91.2 (2)O2'—C2'—C3'—O3'139.76 (16)
C10—O3—C3—C2129.51 (19)O2'—C2'—C3'—C4'19.7 (2)
C10—O3—C3—C4112.4 (2)C1'—C2'—C3'—O3'102.99 (19)
C3—O3—C10—O114.3 (4)C1'—C2'—C3'—C4'136.97 (17)
C3—O3—C10—C12176.0 (2)O3—C3—C4—O470.72 (19)
C16—O3'—C3'—C2'82.6 (2)O3—C3—C4—C5169.85 (15)
C16—O3'—C3'—C4'159.83 (18)C2—C3—C4—O4172.49 (15)
C3'—O3'—C16—O178.5 (3)C2—C3—C4—C553.1 (2)
C3'—O3'—C16—C18170.6 (2)O3'—C3'—C4'—O4'116.56 (19)
C7—O4—C4—C3176.87 (16)O3'—C3'—C4'—C5'124.25 (18)
C7—O4—C4—C561.9 (2)C2'—C3'—C4'—O4'121.41 (18)
C4—O4—C7—O655.2 (2)C2'—C3'—C4'—C5'2.2 (2)
C4—O4—C7—C869.6 (2)O4—C4—C5—O5177.86 (15)
C4—O4—C7—C9168.74 (19)O4—C4—C5—C662.5 (2)
C19—O4'—C4'—C3'167.35 (19)C3—C4—C5—O557.4 (2)
C19—O4'—C4'—C5'78.3 (3)C3—C4—C5—C6177.09 (16)
C4'—O4'—C19—O204.0 (4)O4'—C4'—C5'—O2'99.5 (2)
C4'—O4'—C19—C21176.1 (2)O4'—C4'—C5'—C6'137.5 (2)
C5—O5—C1—O162.2 (2)C3'—C4'—C5'—O2'15.8 (2)
C5—O5—C1—C257.4 (2)C3'—C4'—C5'—C6'107.2 (2)
C1—O5—C5—C459.9 (2)O5—C5—C6—O6178.50 (16)
C1—O5—C5—C6178.32 (16)C4—C5—C6—O657.7 (2)
C7—O6—C6—C554.2 (2)O2'—C5'—C6'—O6'65.7 (2)
C6—O6—C7—O452.0 (2)C4'—C5'—C6'—O6'175.99 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.982.272.783 (2)112
C1—H1···O20.982.522.881 (3)102
C1—H1A···O170.972.403.154 (3)134
C3—H3···O110.982.312.721 (3)104
C6—H6B···O10.972.573.189 (3)122
C6—H6B···O230.972.413.318 (3)156
C12—H12A···O20i0.962.583.432 (4)148
C21—H21A···O11ii0.962.593.433 (4)146
C24—H24C···O23iii0.962.493.339 (4)147
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1/2, z+1.
 

Acknowledgements

We thank Mr Han-Lin Huang and Mr Huai-Yi Xu (Guangzhou Cardlo Biochemical Technology Company Ltd) for useful comments and the facilitation of this research. We thank Dr Ping Lan and Professor Yong Wang (Jinan University, Guangzhou) for assistance in manifold ways.

Funding information

HEB is the grateful recipient of both a PhD scholarship and supplementary research support provided by the Guangzhou Cardlo Biochemical Technology Company Ltd. MGB thanks the Pearl River Scholar Program, the Famous Foreign Supervisor Program (grant 2018-HWMS001) of the Ministry of Education, People's Republic of China and the Program for Guangdong Pearl River Introducing Innovative and Entrepreneurial Teams (grant 2017ZT07C571) for financial support.

References

First citationAchar, T. L., Bose, A. & Mal, P. (2017). Beilstein J. Org. Chem. 13, 1907–1931.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Lindseth, H. & Khan, R. (1979). Carbohydr. Res. 71, 35–42.  CSD CrossRef CAS Google Scholar
First citationFanton, E., Gelas, J., Horton, D., Karl, H., Khan, R., Lee, C.-K. & Patel, G. (1981). J. Org. Chem. 46, 4057–4060.  CrossRef CAS Web of Science Google Scholar
First citationFarrán, A., Cai, C., Sandoval, M., Xu, Y., Liu, J., Hernáiz, M. J. & Linhardt, R. J. (2015). Chem. Rev. 115, 6811–6853.  Web of Science PubMed Google Scholar
First citationKhan, R. & Mufti, K. S. (1975). Carbohydr. Res. 43, 247–253.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPoschalko, A., Rohr, T., Gruber, H., Bianco, A., Guichard, G., Briand, J.-P., Weber, V. & Falkenhagen, D. J. (2003). J. Am. Chem. Soc. 125, 13415–13426.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQueneau, Y., Jarosz, S., Lewandowski, B. & Fitremann, J. (2008). Adv. Carbohydr. Chem. Biochem. 61, 217–292.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds