metal-organic compounds
Di-μ-acetato-bis{[3-benzyl-1-(2,4,6-trimethylphenyl)imidazol-2-ylidene]silver(I)}
aDepartment of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
*Correspondence e-mail: kuppuswamy.arumugam@wright.edu
The title compound, [Ag2(C2H3O2)2(C19H20N2)2] (2), was readily synthesized by treatment of 3-benzyl-1-(2,4,6-trimethylphenyl)imidazolium chloride with silver acetate. The solution structure of the complex was analyzed by NMR spectroscopy, while the solid-state structure was confirmed by single-crystal X-ray diffraction studies. Compound 2 crystallizes in the triclinic P, with a silver-to-carbene bond length (Ag—CNHC) of 2.084 (3) Å. The molecule resides on an inversion center, so that only half of the molecule is crystallographically unique. The planes defined by the two imidazole rings are parallel to each other, but not coplanar [interplanar distance is 0.662 (19) Å]. The dihedral angles between the imidazole ring and the benzyl and mesityl rings are 77.87 (12) and 72.86 (11)°, respectively. The features π–π stacking interactions between the of inversion-related (−x + 1, −y + 1, −z + 1) molecules and C—H⋯π interactions.
Keywords: N-Heterocyclic carbene; silver acetate; binuclear; π-π stacking; inversion center; crystal structure.
CCDC reference: 1940243
Structure description
The quest for new antibacterial drugs with different modes of action is necessary, as evident from recent bacterial outbreaks (Brown & Wright, 2016). Silver-based drugs are promising alternatives to current β-lactam drugs because of their higher antibacterial activity with minimal bacterial resistance and non-toxicity in small doses (Morones-Ramirez et al., 2013; Clement & Jarrett, 1994). However, many silver-based antibacterial drugs release silver ions rapidly, limiting their bioavailability for a longer period of time (Johnson et al., 2017). Recently, silver complexes containing N-heterocyclic (NHC) have become a popular subject of research because of their versatility and they may release silver ions slowly under biological conditions. Moreover, NHCs are highly desired owing to their facile synthetic modifications and strong affinity for transition-metal centers, which ensures the delayed release of silver to the biological system over longer periods of time (Herrmann, 2002; Jafarpour et al., 1999; Garrison & Youngs, 2005; Meng et al., 2019). Several silver–NHC complexes have been synthesized and tested against several bacterial strains (gram-positive and gram-negative). In most instances, these complexes displayed outstanding antibacterial activity (Johnson et al., 2017; Liang et al., 2018; Patil et al., 2011; Sim et al., 2018). Recently, our group reported several dual-targeting redox-active N-heterocyclic carbene ligated gold(I) complexes as cancer therapeutic agents (Arambula et al., 2016; McCall et al., 2017). In a continuation of this effort, we are currently focusing on the development of dual-targeting redox-active N-heterocyclic carbene-ligated silver(I) complexes to combat drug-resistant bacteria strains. In relevance to this context, we prepared the title compound di-μ-acetato-bis[[3-benzyl-1-(2,4,6-trimethylphenyl)imidazol-2-yl]silver(I)] and studied its solid-state structural features. The results related to the synthesis and solid-state structural characterization are presented here.
The title compound was obtained as colorless crystalline needles by diffusing Et2O into a saturated CH2Cl2 solution. The molecular structure of compound 2 is presented in Fig. 1. Compound 2 forms triclinic crystals, P. The Ag—CNHC bond distance was found to be 2.084 (3) Å, which falls within the range reported for other AgI–NHC complexes (2.056 to 2.094 Å; Patil et al., 2011). The solid-state structure of complex 2 reveals that the molecule resides on an inversion center (½, 1, ½), so that only half of the molecule is crystallographically unique. This arrangement results in a four-membered centrosymmetric ring (two AgI and two O atoms) representing each corner of a parallelogram with Ag—O distances of 2.165 (2) and 2.525 (3) Å and O1—Ag—O1i and Ag—O1—Agi [symmetry code: (i) 1 − x, 2 − y, 1 − z] bond angles of 70.65 (11) and 109.35 (11)°, respectively. The geometry at the silver atom is trigonal planar, but with significant deviation from idealized geometry because of the non-identical nature of the three groups attached to the silver atom. The O1—Ag—C1 bond angle is 127.22 (11)°, while the C1—Ag—O1i bond angle is 161.35 (12)°. The dihedral angle between the plane of the imidazole ring (C2–N1–C1–N2–C3) and the parallelogram Ag1–O1–Ag1i–O1i is 69.71 (12)°. Similarly, the dihedral angles between the plane of the imidazole ring and the planes of the benzyl (C4–C10) and mesityl (C11–C16) rings are 77.87 (12) and 72.86 (11)°, respectively.
The solid-state structure of compound 2 features C—H⋯π and π–π interactions, the parameters related to these interactions are presented in Table 1. Pictorial representations of the C—H⋯π and π–π interactions are presented in Fig. 2. As viewed along the c axis, molecules are interconnected via C—H⋯π interactions to give uni-directional strands, Fig. 2. These strands are held together by intermolecular π–π stacking interactions of inversion-related benzyl groups parallel to the b axis to yield two-dimensional sheets, Fig. 2. These two-dimensional sheets are stacked one over the other and are held in place by weak intersheet C—H⋯O interactions, Fig. 3. Short interactions of mesityl aryl H atoms with carbonyl oxygen, C—H⋯O, and short interactions of mesityl methyl H atoms with carbonyl carbon, C—H⋯C(O), are represented in Fig. 3.
|
A CSD (Groom et al., 2016) structure search for the core NHC–Ag–O revealed 35 hits. A few of those results are summarized here. For more information regarding symmetrically and unsymmetrically substituted silver–NHC acetate complexes such as 1-methyl-3-(4-cyanobenzyl)imidazole-2-silver(I)acetate and 1,3-dibenzyl-4,5-diphenylimidazole-2-silver(I) acetate, see: Patil et al., (2011). For silver(I)–N-heterocyclic carbene complexes derived from caffeine, see: Mohamed et al. (2015); Kascatan-Nebioglu et al. (2006). Bis(thiophene)-substituted silver acetate complexes have been prepared and used as monomers to make electroconducting polymers, for more information, see: Powell et al. (2010). For NHC–Ag acetate complexes bearing benzyl groups, see: Patil et al. (2010). In scanning the literature, the CNHC—Ag, Ag—O(Ac), C—N and N—C—N, bond lengths and N—CNHC—N bond angles were comparable to those of compound 2.
Synthesis and crystallization
A 20 ml scintillation vial with a stir bar was charged with 33 mg (0.1 mmol) of 1–1-(2,4,6-trimethylphenyl)-3-(benzyl)imidazolium chloride (Samantaray et al., 2011), compound (1), NaN(SiCH3)2 (20 mg, 0.11 mmol) and 5 ml of dry toluene. The resulting mixture was stirred at 298 K for 1 h, which resulted in a yellow solution and a suspended white precipitate. The heterogeneous mixture was filtered through a plug of Celite into a clean 20 ml scintillation vial containing AgOAc (17 mg, 0.1 mmol) in 5 ml of THF. The resulting mixture was stirred at 298 K for 12 h in the dark. The resulting dark-yellow solution was filtered through a plug of Celite and the volatiles were removed under vacuum. The obtained yellow residue was dissolved in a minimum amount of dichloromethane (1 ml) and triturated with 25 ml of hexanes, resulting in a colorless precipitate. The supernatant liquid was decanted and the precipitate was washed with 5 ml of hexane and dried under vacuum for 24 h to yield the title compound, 30.6 mg, 69% yield, IR, 1562 cm−1.
1H NMR (300 MHz, CDCl3): δ 7.39–7.30 (m, 5H), 7.08 (s, 1H), 6.95 (s, 2H), 6.93 (s, 1H), 5.43 (s, 2H), 2.32 (s, 3H), 1.99 (s, 9H). 13C-NMR (75 MHz, CDCl3): δ 178.45, 139.43, 135.70, 135.42, 134.73, 129.37, 129.11, 128.58, 127.73, 123.12, 120.89, 55.88, 23.16, 21.04, 17.67. X-ray diffraction quality single crystals were obtained by diffusing diethyl ether into a of 2 in CH2Cl2.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1940243
https://doi.org/10.1107/S2414314619010034/pk4026sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619010034/pk4026Isup4.hkl
Scheme 2. DOI: https://doi.org/10.1107/S2414314619010034/pk4026sup5.tif
Data collection: APEX2 (Bruker, 2014); cell
APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).[Ag2(C2H3O2)2(C19H20N2)2] | Z = 1 |
Mr = 886.57 | F(000) = 452 |
Triclinic, P1 | Dx = 1.539 Mg m−3 |
a = 9.078 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.473 (2) Å | Cell parameters from 3884 reflections |
c = 12.236 (3) Å | θ = 2.5–22.8° |
α = 65.065 (6)° | µ = 1.07 mm−1 |
β = 77.420 (7)° | T = 183 K |
γ = 65.229 (7)° | Needle, colorless |
V = 956.7 (4) Å3 | 0.64 × 0.26 × 0.2 mm |
Bruker SMART X2S benchtop diffractometer | 3354 independent reflections |
Radiation source: XOS X-beam microfocus source | 2837 reflections with I > 2σ(I) |
Doubly curved silicon crystal monochromator | Rint = 0.056 |
ω scans | θmax = 25.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.783, Tmax = 1.000 | k = −12→12 |
15885 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0318P)2 + 0.9398P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3354 reflections | Δρmax = 0.78 e Å−3 |
239 parameters | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.67227 (4) | 0.80738 (3) | 0.56178 (3) | 0.03206 (12) | |
O1 | 0.3866 (3) | 0.9810 (3) | 0.5928 (2) | 0.0339 (6) | |
O2 | 0.1564 (3) | 1.0757 (3) | 0.6868 (3) | 0.0416 (7) | |
N1 | 0.8628 (3) | 0.4584 (3) | 0.6776 (3) | 0.0238 (6) | |
N2 | 0.8626 (3) | 0.5700 (3) | 0.7896 (3) | 0.0240 (7) | |
C1 | 0.8045 (4) | 0.5972 (4) | 0.6853 (3) | 0.0236 (8) | |
C4 | 0.8287 (4) | 0.4281 (4) | 0.5811 (3) | 0.0288 (8) | |
H4A | 0.9266 | 0.3556 | 0.5593 | 0.035* | |
H4B | 0.7985 | 0.5212 | 0.5105 | 0.035* | |
C5 | 0.6935 (4) | 0.3665 (4) | 0.6172 (3) | 0.0256 (8) | |
C6 | 0.7160 (5) | 0.2350 (4) | 0.6026 (3) | 0.0324 (9) | |
H6 | 0.8166 | 0.1818 | 0.5741 | 0.039* | |
C7 | 0.5909 (5) | 0.1818 (4) | 0.6298 (4) | 0.0376 (10) | |
H7 | 0.6080 | 0.0943 | 0.6182 | 0.045* | |
C8 | 0.4421 (5) | 0.2568 (4) | 0.6736 (3) | 0.0354 (9) | |
H8 | 0.3585 | 0.2205 | 0.6925 | 0.042* | |
C9 | 0.4189 (5) | 0.3870 (4) | 0.6892 (4) | 0.0358 (9) | |
H9 | 0.3186 | 0.4383 | 0.7194 | 0.043* | |
C10 | 0.5421 (4) | 0.4429 (4) | 0.6607 (3) | 0.0320 (9) | |
H10 | 0.5234 | 0.5318 | 0.6707 | 0.038* | |
C2 | 0.9553 (4) | 0.3484 (4) | 0.7744 (3) | 0.0308 (9) | |
H2 | 1.0077 | 0.2458 | 0.7880 | 0.037* | |
C3 | 0.9553 (4) | 0.4173 (4) | 0.8454 (3) | 0.0317 (9) | |
H3 | 1.0071 | 0.3719 | 0.9175 | 0.038* | |
C11 | 0.8354 (4) | 0.6847 (4) | 0.8361 (3) | 0.0239 (8) | |
C12 | 0.9159 (4) | 0.7872 (4) | 0.7781 (3) | 0.0253 (8) | |
C17 | 1.0252 (5) | 0.7852 (5) | 0.6671 (4) | 0.0416 (10) | |
H17A | 0.9612 | 0.8202 | 0.6000 | 0.062* | |
H17B | 1.1011 | 0.6837 | 0.6802 | 0.062* | |
H17C | 1.0833 | 0.8503 | 0.6502 | 0.062* | |
C13 | 0.8878 (4) | 0.8938 (4) | 0.8275 (3) | 0.0290 (8) | |
H13 | 0.9419 | 0.9610 | 0.7924 | 0.035* | |
C14 | 0.7822 (4) | 0.9036 (4) | 0.9272 (3) | 0.0277 (8) | |
C15 | 0.7065 (4) | 0.7999 (4) | 0.9809 (3) | 0.0292 (8) | |
H15 | 0.6363 | 0.8050 | 1.0481 | 0.035* | |
C16 | 0.7312 (4) | 0.6879 (4) | 0.9383 (3) | 0.0265 (8) | |
C19 | 0.6529 (5) | 0.5716 (5) | 1.0031 (4) | 0.0409 (10) | |
H19A | 0.7295 | 0.4801 | 1.0545 | 0.061* | |
H19B | 0.6200 | 0.5507 | 0.9450 | 0.061* | |
H19C | 0.5596 | 0.6103 | 1.0510 | 0.061* | |
C18 | 0.7545 (5) | 1.0233 (5) | 0.9749 (4) | 0.0432 (11) | |
H18A | 0.8551 | 1.0086 | 1.0004 | 0.065* | |
H18B | 0.6768 | 1.0159 | 1.0423 | 0.065* | |
H18C | 0.7138 | 1.1216 | 0.9125 | 0.065* | |
C20 | 0.2867 (4) | 0.9732 (4) | 0.6823 (3) | 0.0239 (8) | |
C21 | 0.3356 (5) | 0.8255 (4) | 0.7907 (4) | 0.0387 (10) | |
H21A | 0.4238 | 0.8174 | 0.8277 | 0.058* | |
H21B | 0.3692 | 0.7421 | 0.7651 | 0.058* | |
H21C | 0.2447 | 0.8237 | 0.8479 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0419 (2) | 0.01798 (16) | 0.03125 (18) | −0.00692 (13) | −0.01203 (13) | −0.00377 (12) |
O1 | 0.0329 (15) | 0.0224 (13) | 0.0305 (15) | −0.0037 (12) | −0.0004 (13) | −0.0024 (11) |
O2 | 0.0340 (17) | 0.0239 (15) | 0.0545 (19) | −0.0078 (13) | 0.0107 (14) | −0.0124 (14) |
N1 | 0.0225 (16) | 0.0170 (15) | 0.0297 (17) | −0.0057 (12) | −0.0006 (13) | −0.0088 (13) |
N2 | 0.0244 (16) | 0.0179 (15) | 0.0290 (17) | −0.0068 (13) | −0.0062 (13) | −0.0067 (13) |
C1 | 0.0231 (19) | 0.0199 (18) | 0.0257 (19) | −0.0100 (15) | −0.0027 (15) | −0.0040 (15) |
C4 | 0.032 (2) | 0.027 (2) | 0.031 (2) | −0.0120 (17) | 0.0036 (17) | −0.0157 (17) |
C5 | 0.031 (2) | 0.0229 (19) | 0.0235 (19) | −0.0097 (16) | −0.0057 (16) | −0.0069 (16) |
C6 | 0.041 (2) | 0.025 (2) | 0.030 (2) | −0.0099 (18) | −0.0005 (18) | −0.0113 (17) |
C7 | 0.049 (3) | 0.028 (2) | 0.042 (2) | −0.016 (2) | −0.012 (2) | −0.0131 (19) |
C8 | 0.040 (3) | 0.036 (2) | 0.032 (2) | −0.020 (2) | −0.0085 (19) | −0.0066 (19) |
C9 | 0.028 (2) | 0.037 (2) | 0.039 (2) | −0.0090 (18) | −0.0012 (18) | −0.0144 (19) |
C10 | 0.031 (2) | 0.027 (2) | 0.040 (2) | −0.0072 (18) | −0.0014 (18) | −0.0188 (18) |
C2 | 0.026 (2) | 0.0164 (18) | 0.043 (2) | −0.0017 (16) | −0.0081 (17) | −0.0081 (17) |
C3 | 0.031 (2) | 0.0168 (18) | 0.039 (2) | −0.0038 (16) | −0.0178 (18) | −0.0008 (17) |
C11 | 0.0218 (19) | 0.0195 (18) | 0.029 (2) | −0.0038 (15) | −0.0111 (16) | −0.0071 (15) |
C12 | 0.0222 (19) | 0.0215 (18) | 0.030 (2) | −0.0077 (15) | −0.0031 (16) | −0.0071 (16) |
C17 | 0.045 (3) | 0.041 (2) | 0.048 (3) | −0.026 (2) | 0.012 (2) | −0.022 (2) |
C13 | 0.030 (2) | 0.0222 (19) | 0.037 (2) | −0.0132 (16) | −0.0048 (17) | −0.0079 (17) |
C14 | 0.023 (2) | 0.0252 (19) | 0.032 (2) | −0.0050 (16) | −0.0059 (16) | −0.0093 (17) |
C15 | 0.030 (2) | 0.034 (2) | 0.0240 (19) | −0.0141 (17) | −0.0051 (16) | −0.0074 (17) |
C16 | 0.026 (2) | 0.0251 (19) | 0.026 (2) | −0.0101 (16) | −0.0092 (16) | −0.0019 (16) |
C19 | 0.051 (3) | 0.042 (2) | 0.037 (2) | −0.031 (2) | 0.000 (2) | −0.008 (2) |
C18 | 0.044 (3) | 0.044 (3) | 0.052 (3) | −0.018 (2) | −0.002 (2) | −0.026 (2) |
C20 | 0.029 (2) | 0.0200 (19) | 0.028 (2) | −0.0118 (17) | 0.0016 (17) | −0.0122 (16) |
C21 | 0.045 (3) | 0.029 (2) | 0.033 (2) | −0.0116 (19) | 0.0011 (19) | −0.0067 (18) |
Ag1—O1i | 2.165 (2) | C2—C3 | 1.343 (5) |
Ag1—O1 | 2.525 (3) | C3—H3 | 0.9300 |
Ag1—C1 | 2.084 (3) | C11—C12 | 1.407 (5) |
O1—Ag1i | 2.165 (2) | C11—C16 | 1.398 (5) |
O1—C20 | 1.258 (4) | C12—C17 | 1.500 (5) |
O2—C20 | 1.230 (4) | C12—C13 | 1.392 (5) |
N1—C1 | 1.360 (4) | C17—H17A | 0.9600 |
N1—C4 | 1.467 (4) | C17—H17B | 0.9600 |
N1—C2 | 1.381 (4) | C17—H17C | 0.9600 |
N2—C1 | 1.360 (4) | C13—H13 | 0.9300 |
N2—C3 | 1.390 (4) | C13—C14 | 1.390 (5) |
N2—C11 | 1.446 (4) | C14—C15 | 1.382 (5) |
C4—H4A | 0.9700 | C14—C18 | 1.505 (5) |
C4—H4B | 0.9700 | C15—H15 | 0.9300 |
C4—C5 | 1.518 (5) | C15—C16 | 1.393 (5) |
C5—C6 | 1.387 (5) | C16—C19 | 1.511 (5) |
C5—C10 | 1.390 (5) | C19—H19A | 0.9600 |
C6—H6 | 0.9300 | C19—H19B | 0.9600 |
C6—C7 | 1.386 (5) | C19—H19C | 0.9600 |
C7—H7 | 0.9300 | C18—H18A | 0.9600 |
C7—C8 | 1.371 (6) | C18—H18B | 0.9600 |
C8—H8 | 0.9300 | C18—H18C | 0.9600 |
C8—C9 | 1.379 (5) | C20—C21 | 1.516 (5) |
C9—H9 | 0.9300 | C21—H21A | 0.9600 |
C9—C10 | 1.387 (5) | C21—H21B | 0.9600 |
C10—H10 | 0.9300 | C21—H21C | 0.9600 |
C2—H2 | 0.9300 | ||
Ag1···C1 | 2.084 (3) | C20···O2 | 1.230 (4) |
Ag1···O1 | 2.165 (2) | C1···N1 | 1.360 (4) |
O1···C20 | 1.258 (4) | C2···C3 | 1.343 (5) |
O1i—Ag1—O1 | 70.65 (11) | C12—C11—N2 | 119.1 (3) |
C1—Ag1—O1 | 127.22 (11) | C16—C11—N2 | 118.4 (3) |
C1—Ag1—O1i | 161.35 (12) | C16—C11—C12 | 122.5 (3) |
Ag1i—O1—Ag1 | 109.35 (11) | C11—C12—C17 | 122.3 (3) |
C20—O1—Ag1i | 117.5 (2) | C13—C12—C11 | 116.9 (3) |
C20—O1—Ag1 | 132.6 (2) | C13—C12—C17 | 120.8 (3) |
C1—N1—C4 | 124.6 (3) | C12—C17—H17A | 109.5 |
C1—N1—C2 | 111.2 (3) | C12—C17—H17B | 109.5 |
C2—N1—C4 | 124.1 (3) | C12—C17—H17C | 109.5 |
C1—N2—C3 | 111.3 (3) | H17A—C17—H17B | 109.5 |
C1—N2—C11 | 124.8 (3) | H17A—C17—H17C | 109.5 |
C3—N2—C11 | 123.9 (3) | H17B—C17—H17C | 109.5 |
N1—C1—Ag1 | 129.0 (2) | C12—C13—H13 | 118.7 |
N2—C1—Ag1 | 126.9 (2) | C14—C13—C12 | 122.6 (3) |
N2—C1—N1 | 104.0 (3) | C14—C13—H13 | 118.7 |
N1—C4—H4A | 109.0 | C13—C14—C18 | 120.1 (3) |
N1—C4—H4B | 109.0 | C15—C14—C13 | 118.1 (3) |
N1—C4—C5 | 112.7 (3) | C15—C14—C18 | 121.8 (4) |
H4A—C4—H4B | 107.8 | C14—C15—H15 | 118.7 |
C5—C4—H4A | 109.0 | C14—C15—C16 | 122.6 (4) |
C5—C4—H4B | 109.0 | C16—C15—H15 | 118.7 |
C6—C5—C4 | 120.6 (3) | C11—C16—C19 | 121.7 (3) |
C6—C5—C10 | 118.1 (3) | C15—C16—C11 | 117.3 (3) |
C10—C5—C4 | 121.2 (3) | C15—C16—C19 | 121.0 (3) |
C5—C6—H6 | 119.5 | C16—C19—H19A | 109.5 |
C7—C6—C5 | 121.0 (4) | C16—C19—H19B | 109.5 |
C7—C6—H6 | 119.5 | C16—C19—H19C | 109.5 |
C6—C7—H7 | 119.6 | H19A—C19—H19B | 109.5 |
C8—C7—C6 | 120.7 (3) | H19A—C19—H19C | 109.5 |
C8—C7—H7 | 119.6 | H19B—C19—H19C | 109.5 |
C7—C8—H8 | 120.7 | C14—C18—H18A | 109.5 |
C7—C8—C9 | 118.7 (4) | C14—C18—H18B | 109.5 |
C9—C8—H8 | 120.7 | C14—C18—H18C | 109.5 |
C8—C9—H9 | 119.4 | H18A—C18—H18B | 109.5 |
C8—C9—C10 | 121.3 (4) | H18A—C18—H18C | 109.5 |
C10—C9—H9 | 119.4 | H18B—C18—H18C | 109.5 |
C5—C10—H10 | 119.9 | O1—C20—C21 | 115.9 (3) |
C9—C10—C5 | 120.2 (3) | O2—C20—O1 | 124.6 (3) |
C9—C10—H10 | 119.9 | O2—C20—C21 | 119.5 (3) |
N1—C2—H2 | 126.4 | C20—C21—H21A | 109.5 |
C3—C2—N1 | 107.2 (3) | C20—C21—H21B | 109.5 |
C3—C2—H2 | 126.4 | C20—C21—H21C | 109.5 |
N2—C3—H3 | 126.8 | H21A—C21—H21B | 109.5 |
C2—C3—N2 | 106.4 (3) | H21A—C21—H21C | 109.5 |
C2—C3—H3 | 126.8 | H21B—C21—H21C | 109.5 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
H3···πmesityl(2 - x, 1 - y, 2 - z) | 2.642 |
H13···O2(x - 1, 1 + y, z) | 2.542 |
O2···H2(x - 1, 1 + y, z) | 2.376 |
O2···C2(x - 1, 1 + y, z) | 3.162 (5) |
H17C···C20(1 + x, y, z) | 2.820 |
πbenzyl···πbenzyl(1 - x, 1 - y, 1 - z) | 3.968 (3) |
Acknowledgements
The authors thank Wright State University for instrument infrastructure and Dr David Grossie (Wright State University) for valuable crystallographic discussions.
Funding information
Funding for this research was provided by: National Institute of Health, National Cancer Institute (grant No. CA232765 to Kuppuswamy Arumugam).
References
Arambula, J. F., McCall, R., Sidoran, K. J., Magda, D., Mitchell, N. A., Bielawski, C. W., Lynch, V. M., Sessler, J. L. & Arumugam, K. (2016). Chem. Sci. 7, 1245–1256. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brown, E. D. & Wright, G. D. (2016). Nature, 529, 336–343. CrossRef CAS PubMed Google Scholar
Bruker (2014). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clement, J. L. & Jarrett, P. S. (1994). Met.-Based Drugs, 1, 467–482. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978–4008. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309. Web of Science CrossRef CAS Google Scholar
Jafarpour, L., Schanz, H. J., Stevens, E. D. & Nolan, S. P. (1999). Organometallics, 18, 5416–5419. CrossRef CAS Google Scholar
Johnson, N. A., Southerland, M. R. & Youngs, W. J. (2017). Molecules, 22, 1263–1283. CrossRef Google Scholar
Kascatan-Nebioglu, A., Melaiye, A., Hindi, K., Durmus, S., Panzner, M. J., Hogue, L. A., Mallett, R. J., Hovis, C. E., Coughenour, M., Crosby, S. D., Milsted, A., Ely, D. L., Tessier, C. A., Cannon, C. L. & Youngs, W. J. (2006). J. Med. Chem. 49, 6811–6818. PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liang, X., Luan, S., Yin, Z., He, M., He, C., Yin, L., Zou, Y., Yuan, Z., Li, L., Song, X., Lv, C. & Zhang, W. (2018). Eur. J. Med. Chem. 157, 62–80. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
McCall, R., Miles, M., Lascuna, P., Burney, B., Patel, Z., Sidoran, K. J., Sittaramane, V., Kocerha, J., Grossie, D. A., Sessler, J. L., Arumugam, K. & Arambula, J. F. (2017). Chem. Sci. 8, 5918–5929. Web of Science CSD CrossRef CAS PubMed Google Scholar
Meng, G., Kakalis, L., Nolan, S. P. & Szostak, M. (2019). Tetrahedron Lett. 60, 378–381. Web of Science CrossRef CAS Google Scholar
Mohamed, H. A., Lake, B. R. M., Laing, T., Phillips, R. M. & Willans, C. E. (2015). Dalton Trans. 44, 7563–7569. CrossRef CAS PubMed Google Scholar
Morones-Ramirez, J. R., Winkler, J. A., Spina, C. S. & Collins, J. J. (2013). Sci. Transl. Med. 5(190), 190r, a181. Google Scholar
Patil, S., Claffey, J., Deally, A., Hogan, M., Gleeson, B., Menéndez Méndez, L. M., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2010). Eur. J. Inorg. Chem. pp. 1020–1031. Web of Science CSD CrossRef Google Scholar
Patil, S., Deally, A., Gleeson, B., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2011). Metallomics, 3, 74–88. CrossRef PubMed Google Scholar
Powell, A. B., Bielawski, C. W. & Cowley, A. H. (2010). J. Am. Chem. Soc. 132, 10184–10194. CrossRef CAS PubMed Google Scholar
Samantaray, M. K., Dash, C., Shaikh, M. M., Pang, K., Butcher, R. J. & Ghosh, P. (2011). Inorg. Chem. 50, 1840–1848. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sim, W. B., Barnard, R. T., Blaskovich, R. T. & Ziora, Z. M. (2018). Antibiotics 7, 93–108. CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.