metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-acetato-bis­­{[3-benzyl-1-(2,4,6-tri­methyl­phen­yl)imidazol-2-yl­idene]silver(I)}

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
*Correspondence e-mail: kuppuswamy.arumugam@wright.edu

Edited by S. Parkin, University of Kentucky, USA (Received 20 May 2019; accepted 12 July 2019; online 30 July 2019)

The title compound, [Ag2(C2H3O2)2(C19H20N2)2] (2), was readily synthesized by treatment of 3-benzyl-1-(2,4,6-tri­methyl­phen­yl)imidazolium chloride with silver acetate. The solution structure of the complex was analyzed by NMR spectroscopy, while the solid-state structure was confirmed by single-crystal X-ray diffraction studies. Compound 2 crystallizes in the triclinic space group P[\overline{1}], with a silver-to-carbene bond length (Ag—CNHC) of 2.084 (3) Å. The mol­ecule resides on an inversion center, so that only half of the mol­ecule is crystallographically unique. The planes defined by the two imidazole rings are parallel to each other, but not coplanar [inter­planar distance is 0.662 (19) Å]. The dihedral angles between the imidazole ring and the benzyl and mesityl rings are 77.87 (12) and 72.86 (11)°, respectively. The crystal structure features ππ stacking inter­actions between the benzylic groups of inversion-related (−x + 1, −y + 1, −z + 1) mol­ecules and C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The quest for new anti­bacterial drugs with different modes of action is necessary, as evident from recent bacterial outbreaks (Brown & Wright, 2016[Brown, E. D. & Wright, G. D. (2016). Nature, 529, 336-343.]). Silver-based drugs are promising alternatives to current β-lactam drugs because of their higher anti­bacterial activity with minimal bacterial resistance and non-toxicity in small doses (Morones-Ramirez et al., 2013[Morones-Ramirez, J. R., Winkler, J. A., Spina, C. S. & Collins, J. J. (2013). Sci. Transl. Med. 5(190), 190r, a181.]; Clement & Jarrett, 1994[Clement, J. L. & Jarrett, P. S. (1994). Met.-Based Drugs, 1, 467-482.]). However, many silver-based anti­bacterial drugs release silver ions rapidly, limiting their bioavailability for a longer period of time (Johnson et al., 2017[Johnson, N. A., Southerland, M. R. & Youngs, W. J. (2017). Molecules, 22, 1263-1283.]). Recently, silver complexes containing N-heterocyclic carbenes (NHC) have become a popular subject of research because of their versatility and they may release silver ions slowly under biological conditions. Moreover, NHCs are highly desired owing to their facile synthetic modifications and strong affinity for transition-metal centers, which ensures the delayed release of silver to the biological system over longer periods of time (Herrmann, 2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]; Jafarpour et al., 1999[Jafarpour, L., Schanz, H. J., Stevens, E. D. & Nolan, S. P. (1999). Organometallics, 18, 5416-5419.]; Garrison & Youngs, 2005[Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978-4008.]; Meng et al., 2019[Meng, G., Kakalis, L., Nolan, S. P. & Szostak, M. (2019). Tetrahedron Lett. 60, 378-381.]). Several silver–NHC complexes have been synthesized and tested against several bacterial strains (gram-positive and gram-negative). In most instances, these complexes displayed outstanding anti­bacterial activity (Johnson et al., 2017[Johnson, N. A., Southerland, M. R. & Youngs, W. J. (2017). Molecules, 22, 1263-1283.]; Liang et al., 2018[Liang, X., Luan, S., Yin, Z., He, M., He, C., Yin, L., Zou, Y., Yuan, Z., Li, L., Song, X., Lv, C. & Zhang, W. (2018). Eur. J. Med. Chem. 157, 62-80.]; Patil et al., 2011[Patil, S., Deally, A., Gleeson, B., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2011). Metallomics, 3, 74-88.]; Sim et al., 2018[Sim, W. B., Barnard, R. T., Blaskovich, R. T. & Ziora, Z. M. (2018). Antibiotics 7, 93-108.]). Recently, our group reported several dual-targeting redox-active N-heterocyclic carbene ligated gold(I) complexes as cancer therapeutic agents (Arambula et al., 2016[Arambula, J. F., McCall, R., Sidoran, K. J., Magda, D., Mitchell, N. A., Bielawski, C. W., Lynch, V. M., Sessler, J. L. & Arumugam, K. (2016). Chem. Sci. 7, 1245-1256.]; McCall et al., 2017[McCall, R., Miles, M., Lascuna, P., Burney, B., Patel, Z., Sidoran, K. J., Sittaramane, V., Kocerha, J., Grossie, D. A., Sessler, J. L., Arumugam, K. & Arambula, J. F. (2017). Chem. Sci. 8, 5918-5929.]). In a continuation of this effort, we are currently focusing on the development of dual-targeting redox-active N-heterocyclic carbene-ligated silver(I) complexes to combat drug-resistant bacteria strains. In relevance to this context, we prepared the title compound di-μ-acetato-bis­[[3-benzyl-1-(2,4,6-tri­methyl­phen­yl)imidazol-2-yl]silver(I)] and studied its solid-state structural features. The results related to the synthesis and solid-state structural characterization are presented here.

The title compound was obtained as colorless crystalline needles by diffusing Et2O into a saturated CH2Cl2 solution. The mol­ecular structure of compound 2 is presented in Fig. 1[link]. Compound 2 forms triclinic crystals, space group P[\overline{1}]. The Ag—CNHC bond distance was found to be 2.084 (3) Å, which falls within the range reported for other AgI–NHC complexes (2.056 to 2.094 Å; Patil et al., 2011[Patil, S., Deally, A., Gleeson, B., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2011). Metallomics, 3, 74-88.]). The solid-state structure of complex 2 reveals that the mol­ecule resides on an inversion center (½, 1, ½), so that only half of the mol­ecule is crystallographically unique. This arrangement results in a four-membered centrosymmetric ring (two AgI and two O atoms) representing each corner of a parallelogram with Ag—O distances of 2.165 (2) and 2.525 (3) Å and O1—Ag—O1i and Ag—O1—Agi [symmetry code: (i) 1 − x, 2 − y, 1 − z] bond angles of 70.65 (11) and 109.35 (11)°, respectively. The geometry at the silver atom is trigonal planar, but with significant deviation from idealized geometry because of the non-identical nature of the three groups attached to the silver atom. The O1—Ag—C1 bond angle is 127.22 (11)°, while the C1—Ag—O1i bond angle is 161.35 (12)°. The dihedral angle between the plane of the imidazole ring (C2–N1–C1–N2–C3) and the parallelogram Ag1–O1–Ag1i–O1i is 69.71 (12)°. Similarly, the dihedral angles between the plane of the imidazole ring and the planes of the benzyl (C4–C10) and mesityl (C11–C16) rings are 77.87 (12) and 72.86 (11)°, respectively.

[Figure 1]
Figure 1
Mol­ecular structure of 2, with displacement ellipsoids drawn at the 50% probability level.

The solid-state structure of compound 2 features C—H⋯π and ππ inter­actions, the parameters related to these inter­actions are presented in Table 1[link]. Pictorial representations of the C—H⋯π and ππ inter­actions are presented in Fig. 2[link]. As viewed along the c axis, mol­ecules are inter­connected via C—H⋯π inter­actions to give uni-directional strands, Fig. 2[link]. These strands are held together by inter­molecular ππ stacking inter­actions of inversion-related benzyl groups parallel to the b axis to yield two-dimensional sheets, Fig. 2[link]. These two-dimensional sheets are stacked one over the other and are held in place by weak inter­sheet C—H⋯O inter­actions, Fig. 3[link]. Short inter­actions of mesityl aryl H atoms with carbonyl oxygen, C—H⋯O, and short inter­actions of mesityl methyl H atoms with carbonyl carbon, C—H⋯C(O), are represented in Fig. 3[link].

Table 1
Selected short inter­actions (Å)

H3⋯πmesit­yl(2 − x, 1 − y, 2 − z) 2.642
H13⋯O2(x − 1, 1 + y, z) 2.542
O2⋯H2(x − 1, 1 + y, z) 2.376
O2⋯C2(x − 1, 1 + y, z) 3.162 (5)
H17C⋯C20(1 + x, y, z) 2.820
πbenz­ylπbenz­yl(1 − x, 1 − y, 1 − z) 3.968 (3)
[Figure 2]
Figure 2
Inter­molecular C—H⋯.π inter­actions and ππ stacking inter­actions (shown as dotted lines) for compound 2.
[Figure 3]
Figure 3
Inter­calation of two-dimensional sheets via C—H⋯O and C—H⋯C short inter­actions in complex 2.

A CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) structure search for the core NHC–Ag–O revealed 35 hits. A few of those results are summarized here. For more information regarding symmetrically and unsymmetrically substituted silver–NHC acetate complexes such as 1-methyl-3-(4-cyano­benz­yl)imidazole-2-silver(I)acetate and 1,3-dibenzyl-4,5-di­phenyl­imidazole-2-silver(I) acetate, see: Patil et al., (2011[Patil, S., Deally, A., Gleeson, B., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2011). Metallomics, 3, 74-88.]). For silver(I)–N-heterocyclic carbene complexes derived from caffeine, see: Mohamed et al. (2015[Mohamed, H. A., Lake, B. R. M., Laing, T., Phillips, R. M. & Willans, C. E. (2015). Dalton Trans. 44, 7563-7569.]); Kascatan-Nebioglu et al. (2006[Kascatan-Nebioglu, A., Melaiye, A., Hindi, K., Durmus, S., Panzner, M. J., Hogue, L. A., Mallett, R. J., Hovis, C. E., Coughenour, M., Crosby, S. D., Milsted, A., Ely, D. L., Tessier, C. A., Cannon, C. L. & Youngs, W. J. (2006). J. Med. Chem. 49, 6811-6818.]). Bis(thio­phene)-substituted silver acetate complexes have been prepared and used as monomers to make electroconducting polymers, for more information, see: Powell et al. (2010[Powell, A. B., Bielawski, C. W. & Cowley, A. H. (2010). J. Am. Chem. Soc. 132, 10184-10194.]). For NHC–Ag acetate complexes bearing benzyl groups, see: Patil et al. (2010[Patil, S., Claffey, J., Deally, A., Hogan, M., Gleeson, B., Menéndez Méndez, L. M., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2010). Eur. J. Inorg. Chem. pp. 1020-1031.]). In scanning the literature, the CNHC—Ag, Ag—O(Ac), C—N and N—C—N, bond lengths and N—CNHC—N bond angles were comparable to those of compound 2.

Synthesis and crystallization

A 20 ml scintillation vial with a stir bar was charged with 33 mg (0.1 mmol) of 1–1-(2,4,6-tri­methyl­phen­yl)-3-(benz­yl)imidazolium chloride (Samantaray et al., 2011[Samantaray, M. K., Dash, C., Shaikh, M. M., Pang, K., Butcher, R. J. & Ghosh, P. (2011). Inorg. Chem. 50, 1840-1848.]), compound (1), NaN(SiCH3)2 (20 mg, 0.11 mmol) and 5 ml of dry toluene. The resulting mixture was stirred at 298 K for 1 h, which resulted in a yellow solution and a suspended white precipitate. The heterogeneous mixture was filtered through a plug of Celite into a clean 20 ml scintillation vial containing AgOAc (17 mg, 0.1 mmol) in 5 ml of THF. The resulting mixture was stirred at 298 K for 12 h in the dark. The resulting dark-yellow solution was filtered through a plug of Celite and the volatiles were removed under vacuum. The obtained yellow residue was dissolved in a minimum amount of di­chloro­methane (1 ml) and triturated with 25 ml of hexa­nes, resulting in a colorless precipitate. The supernatant liquid was deca­nted and the precipitate was washed with 5 ml of hexane and dried under vacuum for 24 h to yield the title compound, 30.6 mg, 69% yield, IR, 1562 cm−1.

1H NMR (300 MHz, CDCl3): δ 7.39–7.30 (m, 5H), 7.08 (s, 1H), 6.95 (s, 2H), 6.93 (s, 1H), 5.43 (s, 2H), 2.32 (s, 3H), 1.99 (s, 9H). 13C-NMR (75 MHz, CDCl3): δ 178.45, 139.43, 135.70, 135.42, 134.73, 129.37, 129.11, 128.58, 127.73, 123.12, 120.89, 55.88, 23.16, 21.04, 17.67. X-ray diffraction quality single crystals were obtained by diffusing diethyl ether into a saturated solution of 2 in CH2Cl2.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ag2(C2H3O2)2(C19H20N2)2]
Mr 886.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 183
a, b, c (Å) 9.078 (2), 10.473 (2), 12.236 (3)
α, β, γ (°) 65.065 (6), 77.420 (7), 65.229 (7)
V3) 956.7 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.64 × 0.26 × 0.2
 
Data collection
Diffractometer Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.783, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15885, 3354, 2837
Rint 0.056
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.080, 1.05
No. of reflections 3354
No. of parameters 239
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −0.43
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Di-µ-acetato-bis{[3-benzyl-1-(2,4,6-trimethylphenyl)imidazol-2-\ ylidene]silver(I)} top
Crystal data top
[Ag2(C2H3O2)2(C19H20N2)2]Z = 1
Mr = 886.57F(000) = 452
Triclinic, P1Dx = 1.539 Mg m3
a = 9.078 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.473 (2) ÅCell parameters from 3884 reflections
c = 12.236 (3) Åθ = 2.5–22.8°
α = 65.065 (6)°µ = 1.07 mm1
β = 77.420 (7)°T = 183 K
γ = 65.229 (7)°Needle, colorless
V = 956.7 (4) Å30.64 × 0.26 × 0.2 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
3354 independent reflections
Radiation source: XOS X-beam microfocus source2837 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.056
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.783, Tmax = 1.000k = 1212
15885 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.9398P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3354 reflectionsΔρmax = 0.78 e Å3
239 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.67227 (4)0.80738 (3)0.56178 (3)0.03206 (12)
O10.3866 (3)0.9810 (3)0.5928 (2)0.0339 (6)
O20.1564 (3)1.0757 (3)0.6868 (3)0.0416 (7)
N10.8628 (3)0.4584 (3)0.6776 (3)0.0238 (6)
N20.8626 (3)0.5700 (3)0.7896 (3)0.0240 (7)
C10.8045 (4)0.5972 (4)0.6853 (3)0.0236 (8)
C40.8287 (4)0.4281 (4)0.5811 (3)0.0288 (8)
H4A0.92660.35560.55930.035*
H4B0.79850.52120.51050.035*
C50.6935 (4)0.3665 (4)0.6172 (3)0.0256 (8)
C60.7160 (5)0.2350 (4)0.6026 (3)0.0324 (9)
H60.81660.18180.57410.039*
C70.5909 (5)0.1818 (4)0.6298 (4)0.0376 (10)
H70.60800.09430.61820.045*
C80.4421 (5)0.2568 (4)0.6736 (3)0.0354 (9)
H80.35850.22050.69250.042*
C90.4189 (5)0.3870 (4)0.6892 (4)0.0358 (9)
H90.31860.43830.71940.043*
C100.5421 (4)0.4429 (4)0.6607 (3)0.0320 (9)
H100.52340.53180.67070.038*
C20.9553 (4)0.3484 (4)0.7744 (3)0.0308 (9)
H21.00770.24580.78800.037*
C30.9553 (4)0.4173 (4)0.8454 (3)0.0317 (9)
H31.00710.37190.91750.038*
C110.8354 (4)0.6847 (4)0.8361 (3)0.0239 (8)
C120.9159 (4)0.7872 (4)0.7781 (3)0.0253 (8)
C171.0252 (5)0.7852 (5)0.6671 (4)0.0416 (10)
H17A0.96120.82020.60000.062*
H17B1.10110.68370.68020.062*
H17C1.08330.85030.65020.062*
C130.8878 (4)0.8938 (4)0.8275 (3)0.0290 (8)
H130.94190.96100.79240.035*
C140.7822 (4)0.9036 (4)0.9272 (3)0.0277 (8)
C150.7065 (4)0.7999 (4)0.9809 (3)0.0292 (8)
H150.63630.80501.04810.035*
C160.7312 (4)0.6879 (4)0.9383 (3)0.0265 (8)
C190.6529 (5)0.5716 (5)1.0031 (4)0.0409 (10)
H19A0.72950.48011.05450.061*
H19B0.62000.55070.94500.061*
H19C0.55960.61031.05100.061*
C180.7545 (5)1.0233 (5)0.9749 (4)0.0432 (11)
H18A0.85511.00861.00040.065*
H18B0.67681.01591.04230.065*
H18C0.71381.12160.91250.065*
C200.2867 (4)0.9732 (4)0.6823 (3)0.0239 (8)
C210.3356 (5)0.8255 (4)0.7907 (4)0.0387 (10)
H21A0.42380.81740.82770.058*
H21B0.36920.74210.76510.058*
H21C0.24470.82370.84790.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0419 (2)0.01798 (16)0.03125 (18)0.00692 (13)0.01203 (13)0.00377 (12)
O10.0329 (15)0.0224 (13)0.0305 (15)0.0037 (12)0.0004 (13)0.0024 (11)
O20.0340 (17)0.0239 (15)0.0545 (19)0.0078 (13)0.0107 (14)0.0124 (14)
N10.0225 (16)0.0170 (15)0.0297 (17)0.0057 (12)0.0006 (13)0.0088 (13)
N20.0244 (16)0.0179 (15)0.0290 (17)0.0068 (13)0.0062 (13)0.0067 (13)
C10.0231 (19)0.0199 (18)0.0257 (19)0.0100 (15)0.0027 (15)0.0040 (15)
C40.032 (2)0.027 (2)0.031 (2)0.0120 (17)0.0036 (17)0.0157 (17)
C50.031 (2)0.0229 (19)0.0235 (19)0.0097 (16)0.0057 (16)0.0069 (16)
C60.041 (2)0.025 (2)0.030 (2)0.0099 (18)0.0005 (18)0.0113 (17)
C70.049 (3)0.028 (2)0.042 (2)0.016 (2)0.012 (2)0.0131 (19)
C80.040 (3)0.036 (2)0.032 (2)0.020 (2)0.0085 (19)0.0066 (19)
C90.028 (2)0.037 (2)0.039 (2)0.0090 (18)0.0012 (18)0.0144 (19)
C100.031 (2)0.027 (2)0.040 (2)0.0072 (18)0.0014 (18)0.0188 (18)
C20.026 (2)0.0164 (18)0.043 (2)0.0017 (16)0.0081 (17)0.0081 (17)
C30.031 (2)0.0168 (18)0.039 (2)0.0038 (16)0.0178 (18)0.0008 (17)
C110.0218 (19)0.0195 (18)0.029 (2)0.0038 (15)0.0111 (16)0.0071 (15)
C120.0222 (19)0.0215 (18)0.030 (2)0.0077 (15)0.0031 (16)0.0071 (16)
C170.045 (3)0.041 (2)0.048 (3)0.026 (2)0.012 (2)0.022 (2)
C130.030 (2)0.0222 (19)0.037 (2)0.0132 (16)0.0048 (17)0.0079 (17)
C140.023 (2)0.0252 (19)0.032 (2)0.0050 (16)0.0059 (16)0.0093 (17)
C150.030 (2)0.034 (2)0.0240 (19)0.0141 (17)0.0051 (16)0.0074 (17)
C160.026 (2)0.0251 (19)0.026 (2)0.0101 (16)0.0092 (16)0.0019 (16)
C190.051 (3)0.042 (2)0.037 (2)0.031 (2)0.000 (2)0.008 (2)
C180.044 (3)0.044 (3)0.052 (3)0.018 (2)0.002 (2)0.026 (2)
C200.029 (2)0.0200 (19)0.028 (2)0.0118 (17)0.0016 (17)0.0122 (16)
C210.045 (3)0.029 (2)0.033 (2)0.0116 (19)0.0011 (19)0.0067 (18)
Geometric parameters (Å, º) top
Ag1—O1i2.165 (2)C2—C31.343 (5)
Ag1—O12.525 (3)C3—H30.9300
Ag1—C12.084 (3)C11—C121.407 (5)
O1—Ag1i2.165 (2)C11—C161.398 (5)
O1—C201.258 (4)C12—C171.500 (5)
O2—C201.230 (4)C12—C131.392 (5)
N1—C11.360 (4)C17—H17A0.9600
N1—C41.467 (4)C17—H17B0.9600
N1—C21.381 (4)C17—H17C0.9600
N2—C11.360 (4)C13—H130.9300
N2—C31.390 (4)C13—C141.390 (5)
N2—C111.446 (4)C14—C151.382 (5)
C4—H4A0.9700C14—C181.505 (5)
C4—H4B0.9700C15—H150.9300
C4—C51.518 (5)C15—C161.393 (5)
C5—C61.387 (5)C16—C191.511 (5)
C5—C101.390 (5)C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C6—C71.386 (5)C19—H19C0.9600
C7—H70.9300C18—H18A0.9600
C7—C81.371 (6)C18—H18B0.9600
C8—H80.9300C18—H18C0.9600
C8—C91.379 (5)C20—C211.516 (5)
C9—H90.9300C21—H21A0.9600
C9—C101.387 (5)C21—H21B0.9600
C10—H100.9300C21—H21C0.9600
C2—H20.9300
Ag1···C12.084 (3)C20···O21.230 (4)
Ag1···O12.165 (2)C1···N11.360 (4)
O1···C201.258 (4)C2···C31.343 (5)
O1i—Ag1—O170.65 (11)C12—C11—N2119.1 (3)
C1—Ag1—O1127.22 (11)C16—C11—N2118.4 (3)
C1—Ag1—O1i161.35 (12)C16—C11—C12122.5 (3)
Ag1i—O1—Ag1109.35 (11)C11—C12—C17122.3 (3)
C20—O1—Ag1i117.5 (2)C13—C12—C11116.9 (3)
C20—O1—Ag1132.6 (2)C13—C12—C17120.8 (3)
C1—N1—C4124.6 (3)C12—C17—H17A109.5
C1—N1—C2111.2 (3)C12—C17—H17B109.5
C2—N1—C4124.1 (3)C12—C17—H17C109.5
C1—N2—C3111.3 (3)H17A—C17—H17B109.5
C1—N2—C11124.8 (3)H17A—C17—H17C109.5
C3—N2—C11123.9 (3)H17B—C17—H17C109.5
N1—C1—Ag1129.0 (2)C12—C13—H13118.7
N2—C1—Ag1126.9 (2)C14—C13—C12122.6 (3)
N2—C1—N1104.0 (3)C14—C13—H13118.7
N1—C4—H4A109.0C13—C14—C18120.1 (3)
N1—C4—H4B109.0C15—C14—C13118.1 (3)
N1—C4—C5112.7 (3)C15—C14—C18121.8 (4)
H4A—C4—H4B107.8C14—C15—H15118.7
C5—C4—H4A109.0C14—C15—C16122.6 (4)
C5—C4—H4B109.0C16—C15—H15118.7
C6—C5—C4120.6 (3)C11—C16—C19121.7 (3)
C6—C5—C10118.1 (3)C15—C16—C11117.3 (3)
C10—C5—C4121.2 (3)C15—C16—C19121.0 (3)
C5—C6—H6119.5C16—C19—H19A109.5
C7—C6—C5121.0 (4)C16—C19—H19B109.5
C7—C6—H6119.5C16—C19—H19C109.5
C6—C7—H7119.6H19A—C19—H19B109.5
C8—C7—C6120.7 (3)H19A—C19—H19C109.5
C8—C7—H7119.6H19B—C19—H19C109.5
C7—C8—H8120.7C14—C18—H18A109.5
C7—C8—C9118.7 (4)C14—C18—H18B109.5
C9—C8—H8120.7C14—C18—H18C109.5
C8—C9—H9119.4H18A—C18—H18B109.5
C8—C9—C10121.3 (4)H18A—C18—H18C109.5
C10—C9—H9119.4H18B—C18—H18C109.5
C5—C10—H10119.9O1—C20—C21115.9 (3)
C9—C10—C5120.2 (3)O2—C20—O1124.6 (3)
C9—C10—H10119.9O2—C20—C21119.5 (3)
N1—C2—H2126.4C20—C21—H21A109.5
C3—C2—N1107.2 (3)C20—C21—H21B109.5
C3—C2—H2126.4C20—C21—H21C109.5
N2—C3—H3126.8H21A—C21—H21B109.5
C2—C3—N2106.4 (3)H21A—C21—H21C109.5
C2—C3—H3126.8H21B—C21—H21C109.5
Symmetry code: (i) x+1, y+2, z+1.
Selected short interactions (Å) top
H3···πmesityl(2 - x, 1 - y, 2 - z)2.642
H13···O2(x - 1, 1 + y, z)2.542
O2···H2(x - 1, 1 + y, z)2.376
O2···C2(x - 1, 1 + y, z)3.162 (5)
H17C···C20(1 + x, y, z)2.820
πbenzyl···πbenzyl(1 - x, 1 - y, 1 - z)3.968 (3)
 

Acknowledgements

The authors thank Wright State University for instrument infrastructure and Dr David Grossie (Wright State University) for valuable crystallographic discussions.

Funding information

Funding for this research was provided by: National Institute of Health, National Cancer Institute (grant No. CA232765 to Kuppuswamy Arumugam).

References

First citationArambula, J. F., McCall, R., Sidoran, K. J., Magda, D., Mitchell, N. A., Bielawski, C. W., Lynch, V. M., Sessler, J. L. & Arumugam, K. (2016). Chem. Sci. 7, 1245–1256.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrown, E. D. & Wright, G. D. (2016). Nature, 529, 336–343.  CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClement, J. L. & Jarrett, P. S. (1994). Met.-Based Drugs, 1, 467–482.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  Web of Science CrossRef CAS Google Scholar
First citationJafarpour, L., Schanz, H. J., Stevens, E. D. & Nolan, S. P. (1999). Organometallics, 18, 5416–5419.  CrossRef CAS Google Scholar
First citationJohnson, N. A., Southerland, M. R. & Youngs, W. J. (2017). Molecules, 22, 1263–1283.  CrossRef Google Scholar
First citationKascatan-Nebioglu, A., Melaiye, A., Hindi, K., Durmus, S., Panzner, M. J., Hogue, L. A., Mallett, R. J., Hovis, C. E., Coughenour, M., Crosby, S. D., Milsted, A., Ely, D. L., Tessier, C. A., Cannon, C. L. & Youngs, W. J. (2006). J. Med. Chem. 49, 6811–6818.  PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiang, X., Luan, S., Yin, Z., He, M., He, C., Yin, L., Zou, Y., Yuan, Z., Li, L., Song, X., Lv, C. & Zhang, W. (2018). Eur. J. Med. Chem. 157, 62–80.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcCall, R., Miles, M., Lascuna, P., Burney, B., Patel, Z., Sidoran, K. J., Sittaramane, V., Kocerha, J., Grossie, D. A., Sessler, J. L., Arumugam, K. & Arambula, J. F. (2017). Chem. Sci. 8, 5918–5929.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMeng, G., Kakalis, L., Nolan, S. P. & Szostak, M. (2019). Tetrahedron Lett. 60, 378–381.  Web of Science CrossRef CAS Google Scholar
First citationMohamed, H. A., Lake, B. R. M., Laing, T., Phillips, R. M. & Willans, C. E. (2015). Dalton Trans. 44, 7563–7569.  CrossRef CAS PubMed Google Scholar
First citationMorones-Ramirez, J. R., Winkler, J. A., Spina, C. S. & Collins, J. J. (2013). Sci. Transl. Med. 5(190), 190r, a181.  Google Scholar
First citationPatil, S., Claffey, J., Deally, A., Hogan, M., Gleeson, B., Menéndez Méndez, L. M., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2010). Eur. J. Inorg. Chem. pp. 1020–1031.  Web of Science CSD CrossRef Google Scholar
First citationPatil, S., Deally, A., Gleeson, B., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2011). Metallomics, 3, 74–88.  CrossRef PubMed Google Scholar
First citationPowell, A. B., Bielawski, C. W. & Cowley, A. H. (2010). J. Am. Chem. Soc. 132, 10184–10194.  CrossRef CAS PubMed Google Scholar
First citationSamantaray, M. K., Dash, C., Shaikh, M. M., Pang, K., Butcher, R. J. & Ghosh, P. (2011). Inorg. Chem. 50, 1840–1848.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSim, W. B., Barnard, R. T., Blaskovich, R. T. & Ziora, Z. M. (2018). Antibiotics 7, 93–108.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds