metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[di­aqua­[μ4-2-(carboxyl­atometh­­oxy)benzoato][μ2-2-(carboxyl­atometh­­oxy)benzoato]dicad­mium(II)]

CROSSMARK_Color_square_no_text.svg

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825
*Correspondence e-mail: laduca@msu.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 25 June 2019; accepted 2 July 2019; online 9 July 2019)

In the title compound, [Cd2(C9H6O5)2(H2O)2]n, the crystallographically distinct CdII cations are coordinated in penta­gonal–bipyramidal and octa­hedral fashions. The 2-(carb­oxy­meth­oxy)benzoate (cmb) ligands connect the Cd atoms into [Cd2(cmb)2(H2O)2)]n coordination polymer ribbons that are oriented along the a-axis direction. Supra­molecular layers are formed parallel to (01[\overline{1}]) by O—H⋯O hydrogen bonding between the ribbons. The supra­molecular three-dimensional crystal structure of the title compound is then constructed by ππ stacking inter­actions with a centroid–centroid distance of 3.622 (2) Å between cmb ligands in adjacent layer motifs.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was isolated during an exploratory synthetic effort aiming to produce a cadmium coordination polymer containing both 2-(carb­oxy­meth­oxy)benzoate (cmb) and 4-pyridyl­isonicotinamide (4-pina) ligands. Cadmium succinate coordination polymers containing the 4-pina ligands and their geometric isomers have shown intriguing self-penetrated or inter­penetrated topologies (Uebler et al., 2013[Uebler, J. W., Pochodylo, A. L., Staples, R. J. & LaDuca, R. L. (2013). Cryst. Growth Des. 13, 2220-2232.]).

The asymmetric unit of the title compound contains two crystallographically distinct Cd atoms (Cd1, Cd2), two crystallographically distinct cmb ligands (cmb-A, cmb-B) and two bound water mol­ecules. There are no co-crystallized species in the title compound. The Cd1 atoms display a {CdO7} distorted penta­gonal–bipyramidal geometry with one bound water mol­ecule in an axial position and another bound water mol­ecule in the equatorial plane. A cmb-A ligand provides three O atom donors, two in equatorial positions and one in the other axial position. A chelating carboxyl­ate group from a cmb-B ligand occupies the final two coordination positions at Cd1. The Cd2 atoms display a {CdO6} distorted coordination octa­hedron. The nominal axial positions are taken up by single carboxyl­ate O atom donors from two different cmb-B ligands. The nominal equatorial plane at Cd2 contains a chelating carboxyl­ate group from a third cmb-B ligand, a single carboxyl­ate O atom donor from a fourth cmb-B ligand, and a single carboxyl­ate O atom donor from a cmb-A ligand. A displacement ellipsoid plot of the ligand set and coordination environments is shown in Fig. 1[link].

[Figure 1]
Figure 1
The coordination environments of the title compound, showing the penta­gonal bipyramidal coordination at the Cd1 atom and the octa­hedral coordination at the Cd2 atom. Complete cmb-A and cmb-B ligands are shown. Displacement ellipsoids are drawn at the 50% probability level. Most H atoms have been omitted for clarity. Color code: Cd1, light violet; Cd2, deep purple, N, blue; O, red; C, black. H-atom positions are shown as sticks.

The cmb-A ligands have an exobidentate μ2-κ4-O:O′,O′′,O′′′ bridging mode, binding to one Cd1 atom with three donor O atoms, and binding to one Cd2 atom with only one O donor atom (Fig. 2[link]). The cmb-A ether O atoms bind to Cd1. The cmb-B ligands have an exo­tetra­dentate μ4-κ5-O,O′:O′:O′′,O′′′:O′′′ bringing mode, binding to one Cd1 atom with a chelating carboxyl­ate group, binding to two Cd2 atoms with single carboxyl­ate O atom donors, and binding to a third Cd2 through a chelating carboxyl­ate group (Fig. 3[link]). The ether O atoms of the cmb-B ligands do not bind to either Cd1 or Cd2.

[Figure 2]
Figure 2
Exobidentate bridging mode of the cmb-A ligand.
[Figure 3]
Figure 3
Exobidentate bridging mode of the cmb-B ligand.

The Cd2 atoms and cmb-B ligands form a [Cd(cmb-B)]n coordination polymer chain motif, in which spiro-fused {Cd2O2) rhomboid units construct the center of the chain (Fig. 4[link]). The through-space Cd⋯Cd distance across the rhomboid units measures 3.632 (2) Å. The chain submotifs are oriented parallel to the a axis. These are decorated on their periphery by [Cd(cmb-A)(H2O)2] coordination fragments, resulting in one-dimensional [Cd2(cmb)2(H2O)2)]n coordination polymer ribbons (Fig. 5[link]).

[Figure 4]
Figure 4
Inner [Cd(cmb)]n coordination polymer chain in the title compound, oriented parallel to the a axis. Spiro-fused {Cd2O2} rhomboid units make up the center of the chain, bracketed by cmb-B ligands
[Figure 5]
Figure 5
[Cd2(cmb)2(H2O)2)]n coordination polymer ribbon in the title compound, oriented parallel to the a axis. The inner chain sub-motif is shown in purple.

Supra­molecular inter­actions

Adjacent [Cd2(cmb)2(H2O)2)]n coordination polymer ribbons inter­act by means of O–H⋯O hydrogen-bonding inter­actions (Table 1[link]) between the bound water mol­ecules and unligated cmb-A carboxyl­ate O atoms, thereby constructing supra­molecular layer motifs coincident with (01[\overline{1}]) (Fig. 6[link]). The O⋯O distance measures 2.788 (1) Å. In turn, the two-dimensional supra­molecular layer motifs form the three-dimensional crystal structure of the title compound (Fig. 7[link]) by means of ππ stacking mechanisms involving the aromatic rings of the cmb-A ligands on the ribbon periphery [centroid–centroid distance = 3.622 (2) Å]. The stacking occurs along the c-axis direction, in an AAA pattern.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11A⋯O9i 0.88 2.03 2.873 (3) 162
O11—H11B⋯O1i 0.88 1.91 2.782 (3) 178
O12—H12A⋯O2ii 0.90 1.94 2.788 (3) 158
O12—H12B⋯O2i 0.90 1.86 2.756 (3) 174
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z.
[Figure 6]
Figure 6
Supra­molecular layer in the title compound, oriented parallel to (01[\overline{1}]). O—H⋯O hydrogen-bonding inter­actions (Table 1[link]) between neighboring ribbons are shown as dashed lines.
[Figure 7]
Figure 7
AAA pattern stacking of supra­molecular layer motifs along the c-axis direction in the title compound, mediated by inter­layer ππ stacking inter­actions, which are shown as dashed lines. Ring centroids of the cmb ligands are shown as teal spheres.

Synthesis and crystallization

Cd(NO3)2.4H2O (115 mg, 0.37 mmol), 2-(carb­oxy­meth­oxy)benzoic acid (73 mg, 0.37 mmol), 4-pyridyl­isonicotinamide (79 mg, 0.37 mmol) and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 2 d, and then cooled slowly to 273 K. Colorless crystals of the title complex (75 mg, 62% yield based on Cd) were isolated after washing with distilled water and acetone, and drying in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cd2(C9H6O5)2(H2O)2]
Mr 649.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 6.3966 (9), 11.7504 (16), 13.3579 (19)
α, β, γ (°) 104.407 (1), 96.978 (1), 93.267 (1)
V3) 961.3 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.28
Crystal size (mm) 0.19 × 0.18 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014/5)
Tmin, Tmax 0.663, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 10335, 3536, 3172
Rint 0.028
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.06
No. of reflections 3536
No. of parameters 291
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.96, −0.46
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[diaqua[µ4-2-(carboxylatomethoxy)benzoato][µ2-2-(carboxylatomethoxy)benzoato]dicadmium(II)] top
Crystal data top
[Cd2(C9H6O5)2(H2O)2]Z = 2
Mr = 649.11F(000) = 632
Triclinic, P1Dx = 2.243 Mg m3
a = 6.3966 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7504 (16) ÅCell parameters from 7284 reflections
c = 13.3579 (19) Åθ = 3.2–25.4°
α = 104.407 (1)°µ = 2.28 mm1
β = 96.978 (1)°T = 173 K
γ = 93.267 (1)°Block, colourless
V = 961.3 (2) Å30.19 × 0.18 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
3536 independent reflections
Radiation source: sealed tube3172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.36 pixels mm-1θmax = 25.4°, θmin = 1.6°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2014/5)
k = 1413
Tmin = 0.663, Tmax = 0.745l = 1616
10335 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0194P)2 + 1.6836P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3536 reflectionsΔρmax = 0.96 e Å3
291 parametersΔρmin = 0.46 e Å3
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.30111 (3)0.18731 (2)0.26320 (2)0.01372 (8)
Cd20.26261 (3)0.56335 (2)0.45843 (2)0.01311 (7)
O10.6054 (4)0.1503 (2)0.19000 (17)0.0199 (5)
O20.7503 (4)0.0924 (2)0.04417 (18)0.0223 (5)
O30.3239 (4)0.2625 (2)0.10350 (17)0.0192 (5)
O40.2524 (3)0.37691 (19)0.29797 (17)0.0174 (5)
O50.1116 (4)0.54112 (19)0.29333 (17)0.0206 (5)
O60.4298 (3)0.08315 (19)0.37674 (17)0.0178 (5)
O70.5650 (3)0.26916 (19)0.42704 (17)0.0165 (5)
O80.8603 (3)0.22913 (18)0.56197 (17)0.0171 (5)
O91.0690 (3)0.38854 (19)0.49607 (16)0.0154 (5)
O101.3856 (3)0.45670 (19)0.57865 (17)0.0171 (5)
O110.0206 (4)0.1786 (2)0.32737 (18)0.0202 (5)
H11A0.02070.23810.38200.030*
H11B0.13870.17140.28450.030*
O120.1160 (4)0.0302 (2)0.14044 (17)0.0215 (5)
H12A0.19200.00210.08870.032*
H12B0.00200.05330.10710.032*
C10.6117 (5)0.1404 (3)0.0939 (2)0.0169 (7)
C20.4371 (5)0.1873 (3)0.0318 (2)0.0173 (7)
H2A0.49890.23210.01290.021*
H2B0.34000.12090.01370.021*
C30.1492 (5)0.3093 (3)0.0643 (2)0.0146 (7)
C40.0711 (5)0.2810 (3)0.0415 (3)0.0197 (7)
H40.14050.22890.09050.024*
C50.1080 (5)0.3293 (3)0.0751 (3)0.0223 (8)
H50.16060.31050.14750.027*
C60.2112 (6)0.4042 (3)0.0051 (3)0.0224 (8)
H60.33740.43430.02860.027*
C70.1298 (5)0.4356 (3)0.1002 (3)0.0210 (7)
H70.19950.48860.14830.025*
C80.0528 (5)0.3903 (3)0.1362 (2)0.0149 (7)
C90.1449 (5)0.4362 (3)0.2489 (2)0.0152 (7)
C100.5591 (5)0.1631 (3)0.4348 (2)0.0140 (7)
C110.7138 (5)0.1291 (3)0.5142 (2)0.0153 (7)
H11C0.63860.10520.56730.018*
H11D0.78890.06190.47980.018*
C121.0460 (5)0.2124 (3)0.6169 (2)0.0130 (6)
C131.0573 (5)0.1223 (3)0.6671 (2)0.0154 (7)
H130.93650.06910.66170.018*
C141.2463 (5)0.1105 (3)0.7252 (2)0.0172 (7)
H141.25630.04730.75770.021*
C151.4200 (5)0.1906 (3)0.7360 (3)0.0189 (7)
H151.54810.18350.77720.023*
C161.4071 (5)0.2806 (3)0.6867 (2)0.0172 (7)
H161.52620.33620.69600.021*
C171.2230 (5)0.2919 (3)0.6235 (2)0.0140 (7)
C181.2237 (5)0.3837 (3)0.5635 (2)0.0132 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01275 (13)0.01489 (13)0.01405 (12)0.00280 (9)0.00192 (9)0.00434 (9)
Cd20.01108 (13)0.01325 (12)0.01568 (12)0.00162 (9)0.00207 (9)0.00483 (9)
O10.0175 (12)0.0270 (13)0.0167 (12)0.0076 (10)0.0049 (9)0.0059 (10)
O20.0186 (12)0.0241 (13)0.0225 (12)0.0048 (10)0.0077 (10)0.0004 (10)
O30.0222 (13)0.0228 (12)0.0136 (11)0.0109 (10)0.0050 (9)0.0036 (9)
O40.0178 (12)0.0172 (11)0.0167 (11)0.0041 (9)0.0005 (9)0.0041 (9)
O50.0260 (13)0.0169 (12)0.0182 (12)0.0067 (10)0.0034 (10)0.0018 (9)
O60.0166 (12)0.0152 (11)0.0203 (12)0.0024 (9)0.0036 (9)0.0058 (9)
O70.0176 (12)0.0155 (11)0.0172 (11)0.0037 (9)0.0002 (9)0.0060 (9)
O80.0125 (11)0.0141 (11)0.0242 (12)0.0011 (9)0.0044 (9)0.0079 (9)
O90.0139 (11)0.0163 (11)0.0170 (11)0.0024 (9)0.0021 (9)0.0061 (9)
O100.0150 (12)0.0136 (11)0.0242 (12)0.0002 (9)0.0069 (9)0.0059 (9)
O110.0151 (12)0.0232 (12)0.0201 (12)0.0011 (10)0.0050 (9)0.0002 (10)
O120.0172 (12)0.0246 (13)0.0185 (12)0.0015 (10)0.0036 (10)0.0025 (10)
C10.0169 (17)0.0137 (15)0.0183 (16)0.0014 (13)0.0027 (13)0.0016 (12)
C20.0165 (17)0.0186 (16)0.0176 (16)0.0035 (13)0.0076 (13)0.0030 (13)
C30.0171 (17)0.0115 (15)0.0170 (16)0.0006 (12)0.0034 (13)0.0069 (12)
C40.0237 (19)0.0148 (16)0.0192 (17)0.0005 (14)0.0040 (14)0.0019 (13)
C50.0231 (19)0.0214 (18)0.0213 (17)0.0045 (14)0.0070 (14)0.0098 (14)
C60.0183 (18)0.0228 (18)0.0267 (18)0.0002 (14)0.0034 (14)0.0110 (15)
C70.0176 (18)0.0199 (17)0.0273 (18)0.0023 (14)0.0026 (14)0.0098 (14)
C80.0143 (16)0.0128 (15)0.0184 (16)0.0013 (12)0.0015 (13)0.0068 (12)
C90.0123 (16)0.0181 (16)0.0158 (15)0.0009 (13)0.0031 (13)0.0057 (13)
C100.0142 (16)0.0139 (16)0.0157 (15)0.0036 (13)0.0076 (13)0.0039 (12)
C110.0136 (16)0.0125 (15)0.0193 (16)0.0012 (13)0.0001 (13)0.0049 (12)
C120.0102 (15)0.0135 (15)0.0143 (15)0.0024 (12)0.0010 (12)0.0018 (12)
C130.0136 (16)0.0155 (16)0.0175 (16)0.0006 (13)0.0019 (13)0.0055 (12)
C140.0255 (18)0.0144 (16)0.0142 (15)0.0062 (13)0.0022 (13)0.0078 (12)
C150.0172 (17)0.0220 (17)0.0189 (16)0.0046 (14)0.0019 (13)0.0090 (13)
C160.0115 (16)0.0203 (17)0.0185 (16)0.0013 (13)0.0012 (13)0.0036 (13)
C170.0164 (17)0.0118 (15)0.0143 (15)0.0025 (12)0.0022 (13)0.0037 (12)
C180.0134 (16)0.0113 (15)0.0147 (15)0.0041 (12)0.0065 (13)0.0001 (12)
Geometric parameters (Å, º) top
Cd1—O12.298 (2)O11—H11A0.8766
Cd1—O32.520 (2)O11—H11B0.8772
Cd1—O42.208 (2)O12—H12A0.8993
Cd1—O62.283 (2)O12—H12B0.8991
Cd1—O72.537 (2)C1—C21.520 (5)
Cd1—O112.330 (2)C2—H2A0.9900
Cd1—O122.296 (2)C2—H2B0.9900
Cd1—C102.742 (3)C3—C41.391 (4)
Cd2—O42.648 (2)C3—C81.401 (4)
Cd2—O52.243 (2)C4—H40.9500
Cd2—O7i2.297 (2)C4—C51.383 (5)
Cd2—O9ii2.526 (2)C5—H50.9500
Cd2—O9i2.338 (2)C5—C61.375 (5)
Cd2—O10ii2.361 (2)C6—H60.9500
Cd2—O10iii2.374 (2)C6—C71.388 (5)
O1—C11.266 (4)C7—H70.9500
O2—C11.248 (4)C7—C81.393 (5)
O3—C21.429 (4)C8—C91.500 (4)
O3—C31.377 (4)C10—C111.505 (4)
O4—C91.249 (4)C11—H11C0.9900
O5—C91.270 (4)C11—H11D0.9900
O6—C101.249 (4)C12—C131.387 (4)
O7—Cd2i2.297 (2)C12—C171.405 (4)
O7—C101.275 (4)C13—H130.9500
O8—C111.422 (3)C13—C141.388 (5)
O8—C121.370 (4)C14—H140.9500
O9—Cd2iv2.526 (2)C14—C151.385 (5)
O9—Cd2i2.338 (2)C15—H150.9500
O9—C181.268 (4)C15—C161.378 (5)
O10—Cd2iii2.374 (2)C16—H160.9500
O10—Cd2iv2.361 (2)C16—C171.397 (4)
O10—C181.269 (4)C17—C181.496 (4)
O1—Cd1—O365.56 (8)Cd1—O11—H11B119.2
O1—Cd1—O781.95 (8)H11A—O11—H11B110.1
O1—Cd1—O11167.04 (8)Cd1—O12—H12A111.1
O1—Cd1—C1080.86 (8)Cd1—O12—H12B110.7
O3—Cd1—O7120.43 (7)H12A—O12—H12B103.0
O3—Cd1—C10139.43 (9)O1—C1—C2118.9 (3)
O4—Cd1—O1111.25 (8)O2—C1—O1124.9 (3)
O4—Cd1—O369.81 (8)O2—C1—C2116.3 (3)
O4—Cd1—O6127.85 (8)O3—C2—C1108.5 (3)
O4—Cd1—O778.68 (7)O3—C2—H2A110.0
O4—Cd1—O1181.56 (8)O3—C2—H2B110.0
O4—Cd1—O12130.05 (8)C1—C2—H2A110.0
O4—Cd1—C10104.76 (8)C1—C2—H2B110.0
O6—Cd1—O185.47 (8)H2A—C2—H2B108.4
O6—Cd1—O3150.85 (8)O3—C3—C4122.7 (3)
O6—Cd1—O754.31 (7)O3—C3—C8117.0 (3)
O6—Cd1—O1188.00 (8)C4—C3—C8120.3 (3)
O6—Cd1—O1296.77 (8)C3—C4—H4120.2
O6—Cd1—C1026.85 (8)C5—C4—C3119.6 (3)
O7—Cd1—C1027.60 (8)C5—C4—H4120.2
O11—Cd1—O3119.67 (8)C4—C5—H5119.6
O11—Cd1—O7103.23 (8)C6—C5—C4120.8 (3)
O11—Cd1—C1098.15 (9)C6—C5—H5119.6
O12—Cd1—O191.10 (8)C5—C6—H6120.2
O12—Cd1—O381.33 (8)C5—C6—C7119.6 (3)
O12—Cd1—O7150.54 (8)C7—C6—H6120.2
O12—Cd1—O1178.55 (8)C6—C7—H7119.6
O12—Cd1—C10123.09 (9)C6—C7—C8120.8 (3)
O5—Cd2—O452.32 (7)C8—C7—H7119.6
O5—Cd2—O7i128.03 (8)C3—C8—C9122.9 (3)
O5—Cd2—O9i85.48 (8)C7—C8—C3118.6 (3)
O5—Cd2—O9ii98.88 (8)C7—C8—C9118.4 (3)
O5—Cd2—O10iii96.64 (8)O4—C9—O5120.5 (3)
O5—Cd2—O10ii142.74 (8)O4—C9—C8122.9 (3)
O7i—Cd2—O4151.33 (8)O5—C9—C8116.6 (3)
O7i—Cd2—O9i93.14 (8)O6—C10—Cd155.65 (16)
O7i—Cd2—O9ii129.27 (7)O6—C10—O7122.3 (3)
O7i—Cd2—O10ii88.12 (8)O6—C10—C11117.2 (3)
O7i—Cd2—O10iii79.41 (8)O7—C10—Cd167.22 (17)
O9ii—Cd2—O470.79 (7)O7—C10—C11120.4 (3)
O9i—Cd2—O4114.63 (7)C11—C10—Cd1168.7 (2)
O9i—Cd2—O9ii69.96 (8)O8—C11—C10107.5 (2)
O9i—Cd2—O10iii171.93 (7)O8—C11—H11C110.2
O9i—Cd2—O10ii103.18 (8)O8—C11—H11D110.2
O10ii—Cd2—O492.11 (7)C10—C11—H11C110.2
O10iii—Cd2—O472.43 (7)C10—C11—H11D110.2
O10ii—Cd2—O9ii53.09 (7)H11C—C11—H11D108.5
O10iii—Cd2—O9ii117.19 (7)O8—C12—C13121.1 (3)
O10ii—Cd2—O10iii79.83 (8)O8—C12—C17117.7 (3)
C1—O1—Cd1121.9 (2)C13—C12—C17121.2 (3)
C2—O3—Cd1110.90 (18)C12—C13—H13120.2
C3—O3—Cd1117.78 (18)C12—C13—C14119.6 (3)
C3—O3—C2118.6 (2)C14—C13—H13120.2
Cd1—O4—Cd2140.68 (10)C13—C14—H14119.9
C9—O4—Cd1132.37 (19)C15—C14—C13120.1 (3)
C9—O4—Cd284.27 (17)C15—C14—H14119.9
C9—O5—Cd2102.8 (2)C14—C15—H15120.0
C10—O6—Cd197.50 (19)C16—C15—C14120.0 (3)
Cd2i—O7—Cd1145.62 (10)C16—C15—H15120.0
C10—O7—Cd185.18 (17)C15—C16—H16119.2
C10—O7—Cd2i128.9 (2)C15—C16—C17121.5 (3)
C12—O8—C11118.3 (2)C17—C16—H16119.2
Cd2i—O9—Cd2iv110.04 (8)C12—C17—C18123.0 (3)
C18—O9—Cd2iv89.97 (18)C16—C17—C12117.5 (3)
C18—O9—Cd2i122.20 (19)C16—C17—C18119.4 (3)
Cd2iv—O10—Cd2iii100.17 (8)O9—C18—O10119.3 (3)
C18—O10—Cd2iii133.07 (19)O9—C18—C17121.7 (3)
C18—O10—Cd2iv97.67 (19)O10—C18—C17119.0 (3)
Cd1—O11—H11A109.7
Cd1—O1—C1—O2161.2 (2)O8—C12—C13—C14177.7 (3)
Cd1—O1—C1—C217.5 (4)O8—C12—C17—C16174.8 (3)
Cd1—O3—C2—C135.1 (3)O8—C12—C17—C187.4 (4)
Cd1—O3—C3—C4134.4 (3)C2—O3—C3—C43.9 (4)
Cd1—O3—C3—C847.0 (3)C2—O3—C3—C8174.8 (3)
Cd1—O4—C9—O5167.2 (2)C3—O3—C2—C1176.0 (3)
Cd1—O4—C9—C814.0 (5)C3—C4—C5—C60.5 (5)
Cd1—O6—C10—O78.9 (3)C3—C8—C9—O431.0 (5)
Cd1—O6—C10—C11169.8 (2)C3—C8—C9—O5147.8 (3)
Cd1—O7—C10—O68.0 (3)C4—C3—C8—C74.2 (5)
Cd1—O7—C10—C11170.7 (3)C4—C3—C8—C9172.0 (3)
Cd1—C10—C11—O8124.5 (10)C4—C5—C6—C72.6 (5)
Cd2—O4—C9—O53.3 (3)C5—C6—C7—C81.3 (5)
Cd2—O4—C9—C8177.9 (3)C6—C7—C8—C32.1 (5)
Cd2—O5—C9—O44.0 (3)C6—C7—C8—C9174.2 (3)
Cd2—O5—C9—C8177.1 (2)C7—C8—C9—O4152.9 (3)
Cd2i—O7—C10—Cd1174.7 (2)C7—C8—C9—O528.3 (4)
Cd2i—O7—C10—O6166.7 (2)C8—C3—C4—C52.9 (5)
Cd2i—O7—C10—C1114.6 (4)C11—O8—C12—C1330.0 (4)
Cd2i—O9—C18—O10115.1 (3)C11—O8—C12—C17152.0 (3)
Cd2iv—O9—C18—O101.2 (3)C12—O8—C11—C10163.6 (3)
Cd2iv—O9—C18—C17179.4 (2)C12—C13—C14—C152.2 (5)
Cd2i—O9—C18—C1766.8 (3)C12—C17—C18—O96.1 (5)
Cd2iv—O10—C18—O91.3 (3)C12—C17—C18—O10175.8 (3)
Cd2iii—O10—C18—O9110.4 (3)C13—C12—C17—C163.2 (4)
Cd2iii—O10—C18—C1767.8 (4)C13—C12—C17—C18174.6 (3)
Cd2iv—O10—C18—C17179.5 (2)C13—C14—C15—C161.6 (5)
O1—C1—C2—O314.8 (4)C14—C15—C16—C171.5 (5)
O2—C1—C2—O3166.4 (3)C15—C16—C17—C123.9 (5)
O3—C3—C4—C5178.5 (3)C15—C16—C17—C18174.0 (3)
O3—C3—C8—C7177.2 (3)C16—C17—C18—O9171.7 (3)
O3—C3—C8—C96.7 (4)C16—C17—C18—O106.4 (4)
O6—C10—C11—O8173.0 (3)C17—C12—C13—C140.2 (5)
O7—C10—C11—O85.7 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O9ii0.882.032.873 (3)162
O11—H11B···O1ii0.881.912.782 (3)178
O12—H12A···O2v0.901.942.788 (3)158
O12—H12B···O2ii0.901.862.756 (3)174
Symmetry codes: (ii) x1, y, z; (v) x+1, y, z.
 

Acknowledgements

GJG thanks her mother for serving as a constant, unconditional positive influence in her life.

Funding information

Funding for this work was provided by the Honors College of Michigan State University.

References

First citationBruker (2009). COSMO. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUebler, J. W., Pochodylo, A. L., Staples, R. J. & LaDuca, R. L. (2013). Cryst. Growth Des. 13, 2220–2232.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds