organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

S-Di­ethyl­amino-S-(3-methyl­benzoyl­imino)-S,S-di­phenyl­sulfonium tetra­fluoro­borate

aDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
*Correspondence e-mail: by4ut6@bma.biglobe.ne.jp

Edited by H. Ishida, Okayama University, Japan (Received 9 July 2019; accepted 22 July 2019; online 30 July 2019)

The title salt, C24H27N2OS+·BF4, was prepared by an alkyl­ation at the amino N atom attached to the sulfur atom of the corresponding sulfodi­imide. The configuration around the sulfur atom is a slightly distorted tetra­hedral geometry with two S—N bonds and two S—C bonds. The lengths of the S—N(di­ethyl­amine) and S=N(m-methyl­benzoyl­imine) bonds are 1.619 (2) and 1.551 (2) Å, respectively. The two N—S—N—C(eth­yl) and the N—S—N—C(m-methyl­benzoyl­imine) torsion angles are −85.43 (3), 58.94 (17) and 62.03 (16)°, respectively. The dihedral angle between the two phenyl rings is 84.03 (14)°. In the crystal, C—H⋯F hydrogen bonds link the cation and anion, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The chemistry of sulfur(VI) sulfonium compounds such as oxo­sulfonium salts is very inter­esting because of their anomalous reactivity (Mori et al., 1990[Mori, M., Takeuchi, H., Minato, H., Kobayashi, M., Yoshida, M., Matsuyama, H. & Kamigata, N. (1990). Phosphorus Sulfur Silicon, 47, 157-164.]; Kennewell & Taylor, 1975[Kennewell, P. D. & Taylor, J. B. (1975). Chem. Soc. Rev. 4, 189-209.]). However, only a few imino­sulfonium salts, which are isoelectronic with the oxo­sulfonium salts, have been reported (Glemser & Mews, 1980[Glemser, O. & Mews, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 883-899.]; Labbow et al., 2016[Labbow, R., Michalik, D., Reiss, F., Schulz, A. & Villinger, A. (2016). Angew. Chem. Int. Ed. 55, 7680-7684.]). In view of the anomalous reactivity of these salts, we report herein on the synthesis and crystal structure of the title compound.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The S1=N1 (m-methyl­benzoyl­imine) and S1—N2 (di­ethyl­amine) bond lengths are 1.551 (2) and 1.619 (2) Å, respectively. These bonds are significantly longer than the S≡N triple bond of tri­phenyl­sulfane­nitrile (1.462 Å; Yoshimura et al., 1997[Yoshimura, T., Hamada, K., Imado, M., Hamata, K., Tomoda, T., Fujii, T., Morita, H., Shimasaki, S., Ono, S., Tsukurimichi, E., Furukawa, N. & Kimura, T. (1997). J. Org. Chem. 62, 3802-3803.]), and close to the S=N double bonds of S,S-di­methyl­sulfonedi­imine (1.533 Å, electron diffraction study; Oberhammer et al., 1970[Oberhammer, H. & Zeil, W. (1970). Z. Naturforsch. Teil A, 25, 845-849.]), S,S-diphenyl-S-pyrrolidino­imino­sulfonium perchlorate [1.503 (2) Å for S—N (NH), X-ray; Sheikh et al., 2017[Sheikh, M. C., Yoshimura, T., Takata, E., Fujii, T. & Miyatake, R. (2017). IUCrData, 2, x171251.]], sulfonedi­imino­sulfonium salt [1.599 (3) Å for S—N; Ohkubo et al., 1997[Ohkubo, M., Fujii, T., Ono, S., Morita, H., Yoshimura, T., Horn, E. & Sato, S. (1997). Chem. Lett. 26, 153-154.]], S,S-diphenyl-S-tosyl sulfone di­imine [1.515 (18) Å for S—N (NH) and 1.5785 (15) Å for S—N (p-toluene­sulfon­yl), X-ray; Sheikh et al., 2019b[Sheikh, M. C., Yoshimura, T. & Miyatake, R. (2019b). IUCrData, 4, x119523.]] and N-ethyl-N-(3-methyl­benzo­yl)-S,S-di­phenyl­sulfodi­imide [1.528 (2) Å for S—N (NEt) and 1.584 (3) Å for S—N (m-methyl­benzo­yl), X-ray; Sheikh et al., 2019a[Sheikh, M. C., Yoshimura, Miyatake, R, Hanawa, S. & Hayashi, N. (2019a). IUCrData, 4, x191040.]], and shorter than that of S,S-diphenyl-N-tosyl­sulfilimine (1.628 Å, X-ray; Kálmán et al., 1971[Kálmán, A., Duffin, B. & Kucsman, Á. (1971). Acta Cryst. B27, 586-594.]). In the crystal, the cation and the anion are linked through weak C—H⋯F hydrogen bonds (Table 1[link]), forming a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H6⋯F3i 0.98 2.50 3.446 (4) 163
C10—H8⋯F4 0.95 2.48 3.202 (5) 133
C14—H12⋯F3ii 0.95 2.51 3.433 (3) 165
C16—H13⋯F2ii 0.95 2.61 3.367 (4) 137
C16—H13⋯F3ii 0.95 2.55 3.450 (4) 158
C18—H15⋯F1iii 0.95 2.33 3.200 (5) 150
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A packing view of the title compound, showing C—H⋯F hydrogen bonds (blue dashed lines).

Synthesis and crystallization

The compound precursor, N-ethyl-N-(3-methyl­benzo­yl)-S,S-di­phenyl­sulfodi­imide (363 mg, 1.0 mmol) was allowed to react with tri­ethyl­oxonium tetra­fluoro­borate (209 mg, 1.1 mmol) in dry CH2Cl2 (30 ml) under argon atmosphere at a temperature of 0°C for 4 h. The reaction mixture was poured into water, and extracted with CHCl3 (3 × 15 ml). The combined organic extracts were washed with water, dried over anhydrous MgSO4. The solution was concentrated under reduced pressure afforded the desired product (yield: 316 mg, 66%) as a colourless solid. Single crystals were obtained from an acetone/ether (2:1 v/v) solution (m.p. 169.5–170.5°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H27N2OS+·BF4
Mr 478.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 11.9291 (3), 12.6437 (3), 16.3467 (3)
β (°) 103.5043 (7)
V3) 2397.36 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.64
Crystal size (mm) 0.67 × 0.54 × 0.52
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.256, 0.426
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 26225, 4382, 3856
Rint 0.082
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.168, 1.05
No. of reflections 4382
No. of parameters 301
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.48
Computer programs: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Cell refinement: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

S-Diethylamino-S-(3-methylbenzoylimino)-S,S-diphenylsulfonium tetrafluoroborate top
Crystal data top
C24H27N2OS+·BF4F(000) = 1000.00
Mr = 478.35Dx = 1.325 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 22845 reflections
a = 11.9291 (3) Åθ = 3.5–68.3°
b = 12.6437 (3) ŵ = 1.64 mm1
c = 16.3467 (3) ÅT = 173 K
β = 103.5043 (7)°Prism, colorless
V = 2397.36 (8) Å30.67 × 0.54 × 0.52 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3856 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.082
ω scansθmax = 68.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.256, Tmax = 0.426k = 1515
26225 measured reflectionsl = 1919
4382 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0927P)2 + 1.2365P]
where P = (Fo2 + 2Fc2)/3
4382 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.48 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75784 (4)0.11353 (4)0.51723 (3)0.03166 (19)
F10.7005 (3)0.0580 (3)0.8507 (3)0.1658 (15)
F20.6448 (3)0.1055 (3)0.80659 (19)0.1504 (14)
F30.8184 (3)0.0744 (2)0.88636 (13)0.1083 (8)
F40.7734 (3)0.0159 (3)0.75575 (14)0.1263 (10)
O10.86944 (15)0.07847 (13)0.50778 (12)0.0504 (5)
N10.72177 (16)0.00692 (14)0.55045 (11)0.0375 (5)
N20.75769 (16)0.13263 (15)0.41929 (11)0.0365 (5)
C10.75160 (19)0.18041 (17)0.57664 (13)0.0371 (5)
C20.8086 (2)0.27349 (18)0.56551 (14)0.0417 (6)
C30.7792 (3)0.36964 (18)0.59583 (15)0.0439 (6)
C40.6909 (3)0.37093 (19)0.63708 (16)0.0470 (6)
C50.6343 (3)0.2791 (2)0.64957 (16)0.0506 (6)
C60.6642 (2)0.18277 (19)0.61995 (15)0.0433 (6)
C70.8447 (3)0.4689 (2)0.58432 (18)0.0607 (8)
C80.7884 (2)0.08128 (17)0.54186 (14)0.0386 (5)
C90.89235 (18)0.16430 (17)0.57434 (13)0.0346 (5)
C100.9420 (3)0.11372 (19)0.64906 (15)0.0450 (6)
C111.0408 (3)0.1582 (3)0.69911 (16)0.0571 (7)
C121.0854 (3)0.2507 (3)0.67599 (17)0.0551 (7)
C131.0326 (3)0.3013 (2)0.60202 (17)0.0501 (6)
C140.9348 (2)0.25843 (19)0.54964 (15)0.0422 (6)
C150.65558 (19)0.20356 (16)0.53852 (13)0.0340 (5)
C160.6462 (2)0.30164 (19)0.49989 (15)0.0441 (6)
C170.5733 (3)0.3747 (2)0.52257 (19)0.0568 (7)
C180.5112 (3)0.3506 (3)0.58164 (18)0.0561 (7)
C190.5241 (3)0.2537 (3)0.62010 (19)0.0583 (7)
C200.5974 (3)0.1782 (2)0.59955 (16)0.0486 (6)
C210.8615 (2)0.1007 (2)0.38780 (15)0.0442 (6)
C220.8773 (3)0.1727 (3)0.31817 (19)0.0669 (9)
C230.6442 (3)0.1176 (3)0.35908 (16)0.0513 (7)
C240.6170 (3)0.0048 (3)0.3314 (3)0.0791 (11)
B10.7324 (3)0.0342 (3)0.82280 (18)0.0553 (8)
H10.86890.27120.53650.0500*
H20.66850.43620.65730.0564*
H30.57420.28200.67880.0607*
H40.62560.11970.62910.0520*
H50.92760.45390.59800.0729*
H60.82060.49270.52580.0729*
H70.82830.52450.62170.0729*
H80.90960.05080.66550.0540*
H91.07820.12420.75000.0685*
H101.15290.28020.71110.0661*
H111.06350.36580.58700.0601*
H120.89810.29230.49850.0506*
H130.68870.31810.45910.0529*
H140.56560.44270.49720.0682*
H150.45960.40110.59550.0674*
H160.48230.23800.66140.0699*
H170.60720.11120.62660.0583*
H180.85190.02700.36690.0530*
H190.93100.10360.43470.0530*
H200.81030.16690.27050.0803*
H210.94700.15220.30010.0803*
H220.88490.24590.33840.0803*
H230.64240.16150.30860.0616*
H240.58290.14390.38560.0616*
H250.62260.04030.38100.0949*
H260.67200.01960.29940.0949*
H270.53860.00100.29590.0949*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0269 (4)0.0320 (3)0.0363 (3)0.00407 (18)0.0077 (3)0.00063 (17)
F10.136 (3)0.150 (3)0.239 (4)0.025 (3)0.099 (3)0.069 (3)
F20.137 (3)0.164 (3)0.117 (2)0.079 (3)0.0370 (18)0.0409 (18)
F30.1131 (19)0.1178 (19)0.0745 (13)0.0108 (15)0.0176 (13)0.0239 (13)
F40.169 (3)0.155 (3)0.0724 (14)0.023 (2)0.0645 (16)0.0245 (14)
O10.0398 (10)0.0411 (9)0.0768 (12)0.0064 (8)0.0267 (9)0.0050 (8)
N10.0344 (11)0.0334 (9)0.0460 (10)0.0037 (8)0.0119 (8)0.0034 (8)
N20.0300 (11)0.0442 (10)0.0358 (10)0.0043 (8)0.0084 (8)0.0016 (8)
C10.0322 (13)0.0346 (11)0.0416 (12)0.0019 (9)0.0028 (9)0.0009 (9)
C20.0403 (14)0.0384 (12)0.0449 (12)0.0039 (10)0.0071 (10)0.0019 (9)
C30.0493 (16)0.0352 (11)0.0411 (12)0.0009 (10)0.0015 (11)0.0018 (9)
C40.0498 (16)0.0385 (12)0.0468 (13)0.0060 (11)0.0007 (11)0.0071 (10)
C50.0427 (15)0.0540 (15)0.0554 (15)0.0018 (12)0.0119 (12)0.0100 (12)
C60.0366 (14)0.0422 (12)0.0502 (13)0.0039 (10)0.0083 (10)0.0051 (10)
C70.082 (3)0.0374 (13)0.0606 (16)0.0068 (13)0.0114 (15)0.0022 (11)
C80.0308 (13)0.0363 (11)0.0479 (12)0.0037 (10)0.0076 (10)0.0005 (10)
C90.0270 (12)0.0387 (11)0.0375 (11)0.0049 (9)0.0062 (9)0.0046 (9)
C100.0457 (15)0.0469 (13)0.0393 (12)0.0078 (11)0.0037 (11)0.0011 (10)
C110.0537 (17)0.0652 (17)0.0438 (13)0.0101 (14)0.0059 (12)0.0045 (12)
C120.0353 (15)0.0698 (17)0.0541 (15)0.0023 (13)0.0022 (11)0.0213 (13)
C130.0371 (14)0.0526 (14)0.0613 (15)0.0059 (12)0.0133 (12)0.0128 (12)
C140.0338 (13)0.0449 (12)0.0474 (13)0.0001 (10)0.0084 (10)0.0007 (10)
C150.0274 (12)0.0348 (11)0.0391 (11)0.0064 (9)0.0063 (9)0.0020 (8)
C160.0416 (14)0.0417 (12)0.0502 (13)0.0111 (11)0.0135 (11)0.0063 (10)
C170.0575 (18)0.0437 (14)0.0709 (18)0.0203 (12)0.0184 (14)0.0080 (12)
C180.0508 (17)0.0512 (15)0.0692 (17)0.0179 (13)0.0196 (14)0.0075 (13)
C190.0566 (18)0.0604 (16)0.0676 (17)0.0101 (14)0.0343 (14)0.0019 (13)
C200.0500 (16)0.0442 (13)0.0577 (14)0.0097 (12)0.0251 (12)0.0051 (11)
C210.0356 (14)0.0551 (14)0.0459 (13)0.0042 (11)0.0177 (11)0.0033 (10)
C220.066 (2)0.084 (2)0.0606 (17)0.0052 (17)0.0341 (16)0.0114 (15)
C230.0342 (15)0.0780 (19)0.0399 (13)0.0003 (12)0.0050 (10)0.0072 (11)
C240.064 (2)0.099 (3)0.0704 (19)0.0223 (19)0.0087 (16)0.0359 (18)
B10.067 (3)0.0594 (18)0.0407 (14)0.0017 (16)0.0144 (14)0.0027 (13)
Geometric parameters (Å, º) top
S1—N11.551 (2)C19—C201.388 (5)
S1—N21.619 (2)C21—C221.503 (5)
S1—C91.777 (2)C23—C241.509 (5)
S1—C151.762 (3)C2—H10.950
F1—B11.339 (6)C4—H20.950
F2—B11.358 (5)C5—H30.950
F3—B11.375 (4)C6—H40.950
F4—B11.320 (5)C7—H50.980
O1—C81.224 (4)C7—H60.980
N1—C81.395 (3)C7—H70.980
N2—C211.503 (4)C10—H80.950
N2—C231.488 (3)C11—H90.950
C1—C21.392 (4)C12—H100.950
C1—C61.391 (4)C13—H110.950
C1—C81.484 (4)C14—H120.950
C2—C31.388 (4)C16—H130.950
C3—C41.377 (5)C17—H140.950
C3—C71.513 (4)C18—H150.950
C4—C51.382 (4)C19—H160.950
C5—C61.388 (4)C20—H170.950
C9—C101.383 (3)C21—H180.990
C9—C141.390 (4)C21—H190.990
C10—C111.387 (4)C22—H200.980
C11—C121.374 (5)C22—H210.980
C12—C131.383 (4)C22—H220.980
C13—C141.386 (4)C23—H230.990
C15—C161.384 (4)C23—H240.990
C15—C201.380 (4)C24—H250.980
C16—C171.378 (4)C24—H260.980
C17—C181.382 (5)C24—H270.980
C18—C191.368 (4)
N1—S1—N2122.65 (10)C6—C5—H3119.615
N1—S1—C9114.85 (10)C1—C6—H4120.640
N1—S1—C15103.35 (11)C5—C6—H4120.642
N2—S1—C9104.95 (11)C3—C7—H5109.464
N2—S1—C15104.96 (10)C3—C7—H6109.466
C9—S1—C15104.17 (10)C3—C7—H7109.465
S1—N1—C8116.62 (17)H5—C7—H6109.487
S1—N2—C21119.21 (14)H5—C7—H7109.474
S1—N2—C23115.20 (17)H6—C7—H7109.470
C21—N2—C23115.73 (19)C9—C10—H8121.216
C2—C1—C6119.7 (3)C11—C10—H8121.202
C2—C1—C8117.8 (3)C10—C11—H9119.576
C6—C1—C8122.5 (2)C12—C11—H9119.586
C1—C2—C3121.5 (3)C11—C12—H10119.725
C2—C3—C4118.1 (3)C13—C12—H10119.724
C2—C3—C7120.1 (3)C12—C13—H11119.844
C4—C3—C7121.8 (3)C14—C13—H11119.836
C3—C4—C5121.2 (3)C9—C14—H12121.085
C4—C5—C6120.8 (3)C13—C14—H12121.089
C1—C6—C5118.7 (3)C15—C16—H13121.107
O1—C8—N1123.5 (2)C17—C16—H13121.105
O1—C8—C1122.3 (2)C16—C17—H14119.482
N1—C8—C1114.2 (3)C18—C17—H14119.470
S1—C9—C10116.40 (18)C17—C18—H15120.093
S1—C9—C14120.16 (16)C19—C18—H15120.090
C10—C9—C14122.8 (2)C18—C19—H16119.526
C9—C10—C11117.6 (3)C20—C19—H16119.523
C10—C11—C12120.8 (3)C15—C20—H17121.092
C11—C12—C13120.6 (3)C19—C20—H17121.089
C12—C13—C14120.3 (3)N2—C21—H18109.466
C9—C14—C13117.8 (2)N2—C21—H19109.463
S1—C15—C16118.3 (2)C22—C21—H18109.463
S1—C15—C20118.76 (17)C22—C21—H19109.464
C16—C15—C20122.5 (3)H18—C21—H19108.058
C15—C16—C17117.8 (3)C21—C22—H20109.479
C16—C17—C18121.0 (3)C21—C22—H21109.469
C17—C18—C19119.8 (3)C21—C22—H22109.477
C18—C19—C20121.0 (3)H20—C22—H21109.466
C15—C20—C19117.8 (3)H20—C22—H22109.469
N2—C21—C22110.9 (3)H21—C22—H22109.467
N2—C23—C24114.7 (3)N2—C23—H23108.586
F1—B1—F2112.1 (4)N2—C23—H24108.588
F1—B1—F3106.6 (3)C24—C23—H23108.594
F1—B1—F4108.6 (4)C24—C23—H24108.588
F2—B1—F3107.8 (3)H23—C23—H24107.553
F2—B1—F4111.8 (3)C23—C24—H25109.471
F3—B1—F4109.7 (4)C23—C24—H26109.469
C1—C2—H1119.276C23—C24—H27109.466
C3—C2—H1119.262H25—C24—H26109.476
C3—C4—H2119.372H25—C24—H27109.474
C5—C4—H2119.381H26—C24—H27109.471
C4—C5—H3119.624
N1—S1—N2—C2185.43 (16)C2—C1—C8—O13.4 (3)
N1—S1—N2—C2358.94 (17)C2—C1—C8—N1175.71 (17)
N2—S1—N1—C862.03 (16)C8—C1—C2—C3179.78 (16)
N1—S1—C9—C109.7 (2)C6—C1—C8—O1175.96 (19)
N1—S1—C9—C14178.86 (15)C6—C1—C8—N14.9 (3)
C9—S1—N1—C867.35 (15)C8—C1—C6—C5179.28 (17)
N1—S1—C15—C16165.52 (13)C1—C2—C3—C40.5 (3)
N1—S1—C15—C2021.46 (16)C1—C2—C3—C7178.65 (17)
C15—S1—N1—C8179.88 (12)C2—C3—C4—C51.2 (4)
N2—S1—C9—C10147.38 (15)C7—C3—C4—C5177.9 (2)
N2—S1—C9—C1441.21 (19)C3—C4—C5—C60.7 (4)
C9—S1—N2—C2148.02 (16)C4—C5—C6—C10.6 (4)
C9—S1—N2—C23167.61 (12)S1—C9—C10—C11173.55 (16)
N2—S1—C15—C1635.93 (16)S1—C9—C14—C13172.18 (16)
N2—S1—C15—C20151.06 (14)C10—C9—C14—C131.3 (4)
C15—S1—N2—C21157.51 (13)C14—C9—C10—C112.4 (4)
C15—S1—N2—C2358.13 (15)C9—C10—C11—C121.8 (4)
C9—S1—C15—C1674.12 (15)C10—C11—C12—C130.2 (5)
C9—S1—C15—C2098.89 (15)C11—C12—C13—C140.9 (5)
C15—S1—C9—C10102.56 (16)C12—C13—C14—C90.3 (4)
C15—S1—C9—C1468.85 (18)S1—C15—C16—C17174.46 (13)
S1—N1—C8—O12.3 (3)S1—C15—C20—C19174.92 (14)
S1—N1—C8—C1178.56 (11)C16—C15—C20—C192.2 (4)
S1—N2—C21—C22148.33 (13)C20—C15—C16—C171.7 (3)
S1—N2—C23—C2485.0 (3)C15—C16—C17—C180.3 (4)
C21—N2—C23—C2460.7 (3)C16—C17—C18—C191.7 (4)
C23—N2—C21—C2267.5 (3)C17—C18—C19—C201.2 (4)
C2—C1—C6—C51.4 (3)C18—C19—C20—C150.7 (4)
C6—C1—C2—C30.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H6···F3i0.982.503.446 (4)163
C10—H8···F40.952.483.202 (5)133
C14—H12···F3ii0.952.513.433 (3)165
C16—H13···F2ii0.952.613.367 (4)137
C16—H13···F3ii0.952.553.450 (4)158
C18—H15···F1iii0.952.333.200 (5)150
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Department of Applied Chemistry, Faculty of Engineering, University of Toyama for the provision of laboratory facilities and to the Center for Environmental Conservation and Research Safety, University of Toyama, Japan, for providing facilities for single-crystal X-ray analysis.

Funding information

This work was supported in part by the Japan Society for the Promotion of Science, JSPS (award No. P11336).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGlemser, O. & Mews, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 883–899.  CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKálmán, A., Duffin, B. & Kucsman, Á. (1971). Acta Cryst. B27, 586–594.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKennewell, P. D. & Taylor, J. B. (1975). Chem. Soc. Rev. 4, 189–209.  CrossRef CAS Web of Science Google Scholar
First citationLabbow, R., Michalik, D., Reiss, F., Schulz, A. & Villinger, A. (2016). Angew. Chem. Int. Ed. 55, 7680–7684.  CrossRef CAS Google Scholar
First citationMori, M., Takeuchi, H., Minato, H., Kobayashi, M., Yoshida, M., Matsuyama, H. & Kamigata, N. (1990). Phosphorus Sulfur Silicon, 47, 157–164.  CrossRef CAS Web of Science Google Scholar
First citationOberhammer, H. & Zeil, W. (1970). Z. Naturforsch. Teil A, 25, 845–849.  CAS Google Scholar
First citationOhkubo, M., Fujii, T., Ono, S., Morita, H., Yoshimura, T., Horn, E. & Sato, S. (1997). Chem. Lett. 26, 153–154.  CrossRef Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheikh, M. C., Yoshimura, Miyatake, R, Hanawa, S. & Hayashi, N. (2019a). IUCrData, 4, x191040.  Google Scholar
First citationSheikh, M. C., Yoshimura, T. & Miyatake, R. (2019b). IUCrData, 4, x119523.  Google Scholar
First citationSheikh, M. C., Yoshimura, T., Takata, E., Fujii, T. & Miyatake, R. (2017). IUCrData, 2, x171251.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshimura, T., Hamada, K., Imado, M., Hamata, K., Tomoda, T., Fujii, T., Morita, H., Shimasaki, S., Ono, S., Tsukurimichi, E., Furukawa, N. & Kimura, T. (1997). J. Org. Chem. 62, 3802–3803.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds