organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

8,13-Diiso­propyl-10,11-di­methyl-bis­([1,3]dioxolo[4′,5′:6,7]naphtho)­[1,2-d;2,1-f][1,3]dioxepine

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany, and bChiracon GmbH, Im Biotechnologiepark 9, 14943 Luckenwalde, Germany
*Correspondence e-mail: amely.taeufer@catalysis.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 July 2019; accepted 16 July 2019; online 30 July 2019)

The title compound, C31H30O6, was obtained by protecting the six hy­droxy groups of apogossypol by acetalization with di­chloro­methane. The mol­ecule has a bridging dioxepine unit which hinders the rotation around the 2,2′-inter­naphthyl bond. The dihedral angle between the naphthyl units is 55.73 (3)°. In the crystal, very weak C—H⋯O inter­actions may help to consolidate the packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The preparation of methyl­ene acetals is a common method to protect vicinal OH groups (Wuts & Greene, 2007[Wuts, P. G. M. & Greene, T. W. (2007). Greene's Protective Groups in Organic Synthesis. Hoboken, N. J.: Wiley-Interscience.], Bonthrone & Cornforth, 1969[Bonthrone, W. & Cornforth, J. W. (1969). J. Chem. Soc. C, pp. 1202-1204.]). In case of the title compound 2, called apogossypol tri­methyl­ene acetal, not only the hy­droxy groups in the 6,7 and 6′,7′ position of apogossypol 1 but, due to the sterically related vicinity of the 1,1′-hy­droxy groups to each other, these groups were also protected (Fig. 1[link]). As a result of the formation of this seven-membered ring, the rotation around the 2,2′-inter­naphthyl bond is restricted and the angle between the planes defined by C1–C10 and C11–C20 is 55.73 (3)° (Fig. 2[link]). The five-membered rings derived from the catechol-like diols show envelope conformations with the methyl­ene carbon atoms (C21 and C23) as the flaps [fold angles between the OCmO and OCaCaO (m = methyl­ene, a = aromatic) fragments = 155.7 (2) and 161.4 (2)°, respectively]. In the crystal, two very weak C—H⋯O contacts from the C23 methyl­ene group (Table 1[link]) may help to consolidate the packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O5i 0.99 2.58 3.3956 (18) 140
C23—H23B⋯O4ii 0.99 2.58 3.2442 (18) 124
Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
Reaction path for acetalization of apogossypol 1 with CH2Cl2 to apogossypol tri­methyl­ene acetal 2.
[Figure 2]
Figure 2
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Synthesis and crystallization

25 mL dry DMSO and 0.42 mL (6.8 mmol) dry CH2Cl2 were placed under argon in a 100 mL quartz tube sealed with a Teflon screw cap with gas inlet port. The atmosphere was cautiously removed by stirring under vacuum and purging with argon (repeated three times). Then the mixture was heated to 130°C in an oil bath with stirring. When this temperature was reached, a solid mixture of 464 mg of apogossypol (1 mmol) and 655 mg of NaOtBu (6.8 mmol) was added in small portions under argon. The dark-brown mixture was allowed to stir for 16 h at 130°C. After cooling down to room temperature, it was poured into a tenfold volume of H2O, whereupon a greyish brown solid precipitated. Isolation via preparative HPLC yielded 98 mg of an off-white solid (0.2 mmol, 20%). Crystals suitable for X-ray analysis were obtained from diethyl ether solution at room temperature.

m.p. 273°C.

1H NMR (500 MHz, DMSO-d6, δ in ppm): 1.42 (d, J = 6.8 Hz, 12H), 2.30 (s, 6H), 3.74 (m, J = 6.7 Hz, 2H), 5.65 (s, 2H), 6.11 (s, 4H), 7.30 (s, 2H), 7.85 (s, 2H).

13C NMR (125 MHz, DMSO-d6, δ in ppm): 19.8, 21.0, 21.2, 95.7, 100.7, 102.1, 120.3, 121.4, 122.0, 126.3, 129.0, 132.2, 145.3, 147.20, 147.23.

HRMS (ESI–TOF, m/z): [M + H]+ 499.2123 calculated: 499.2120

Elemental analysis for C31H30O6 (498.2 g mol−1), calculated (found) in wt.-%: C 74.68 (74.42), H 6.07 (6.12).

IR (ATR, 32 scans, ν~ in cm−1) 2957(m), 2926(m), 2877(m), 1614(w), 1441(s), 1347(m), 1310(m), 1298(m), 1241(m), 1224(s), 1168(m), 1121(m), 1102(m), 1073(m), 1044(s), 1016(m), 996(m), 980(m), 953(s), 933(m), 908(m), 881(m), 859(s), 785(m), 744(m), 731(m), 668(m), 636(m), 602(m), 568(m), 527(m), 422(m).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C31H30O6
Mr 498.55
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 9.7053 (6), 11.0901 (7), 12.4156 (8)
α, β, γ (°) 68.0282 (16), 81.7012 (16), 86.4672 (16)
V3) 1226.25 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.46 × 0.33 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.95, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 43308, 5923, 4941
Rint 0.023
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.138, 1.05
No. of reflections 5923
No. of parameters 340
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

8,13-Diisopropyl-10,11-dimethyl-bis([1,3]dioxolo[4',5':6,7]naphtho)[1,2-d;2,1-f][1,3]dioxepine top
Crystal data top
C31H30O6Z = 2
Mr = 498.55F(000) = 528
Triclinic, P1Dx = 1.350 Mg m3
a = 9.7053 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0901 (7) ÅCell parameters from 9929 reflections
c = 12.4156 (8) Åθ = 2.8–30.6°
α = 68.0282 (16)°µ = 0.09 mm1
β = 81.7012 (16)°T = 150 K
γ = 86.4672 (16)°Part of a plate, orange
V = 1226.25 (13) Å30.46 × 0.33 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
5923 independent reflections
Radiation source: fine-focus sealed tube4941 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.023
φ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1212
Tmin = 0.95, Tmax = 0.98k = 1414
43308 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.4119P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5923 reflectionsΔρmax = 0.50 e Å3
340 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed in idealized positions with d(C—H) = 0.95–1.00 Å (CH), 0.99 (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH, CH2 and 1.5 Ueq(C) for CH3.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.82699 (13)0.25631 (12)0.23443 (11)0.0250 (3)
C20.76549 (13)0.22345 (11)0.34917 (11)0.0241 (2)
C30.61762 (13)0.21611 (12)0.37149 (11)0.0261 (3)
C40.54302 (13)0.23621 (12)0.27978 (11)0.0264 (3)
H40.44430.23250.29580.032*
C50.60517 (13)0.26203 (12)0.16310 (11)0.0252 (3)
C60.52512 (14)0.27466 (12)0.06984 (12)0.0279 (3)
C70.60147 (14)0.29242 (13)0.03592 (12)0.0310 (3)
C80.74758 (15)0.30407 (14)0.05803 (12)0.0316 (3)
C90.82598 (14)0.29600 (13)0.02588 (11)0.0288 (3)
H90.92430.30510.00980.035*
C100.75335 (13)0.27314 (11)0.13981 (11)0.0248 (3)
C110.94951 (13)0.31227 (12)0.41291 (11)0.0241 (2)
C120.85840 (13)0.21138 (12)0.43837 (11)0.0240 (2)
C130.86743 (13)0.10115 (12)0.54305 (11)0.0258 (3)
C140.96098 (14)0.10164 (12)0.61658 (11)0.0272 (3)
H140.96510.02770.68660.033*
C151.05123 (13)0.20650 (12)0.59326 (11)0.0249 (3)
C161.14992 (14)0.20510 (12)0.67065 (11)0.0265 (3)
C171.22813 (13)0.31411 (12)0.63546 (11)0.0266 (3)
C181.22056 (13)0.42122 (12)0.53020 (12)0.0261 (3)
C191.13326 (13)0.42565 (12)0.45361 (11)0.0265 (3)
H191.13020.49780.38210.032*
C201.04574 (13)0.31570 (12)0.48625 (11)0.0239 (2)
C210.67417 (17)0.2882 (2)0.21373 (14)0.0475 (4)
H21A0.66680.34550.29590.057*
H21B0.68430.19710.20940.057*
C221.01188 (14)0.39371 (14)0.21042 (12)0.0324 (3)
H22A1.11400.39280.21040.039*
H22B0.98940.46470.13810.039*
C231.36283 (15)0.47149 (13)0.63326 (13)0.0329 (3)
H23A1.46470.48310.62410.039*
H23B1.31670.52320.67840.039*
C240.53967 (15)0.19488 (15)0.49121 (12)0.0334 (3)
H24A0.45240.24500.48300.050*
H24B0.59690.22370.53580.050*
H24C0.51900.10220.53260.050*
C250.36832 (14)0.25869 (15)0.08976 (13)0.0337 (3)
H250.33330.26800.16610.040*
C260.33202 (18)0.12209 (17)0.10137 (15)0.0454 (4)
H26A0.36370.11030.02730.068*
H26B0.23100.11040.12010.068*
H26C0.37810.05780.16410.068*
C270.29569 (16)0.36318 (17)0.00509 (15)0.0431 (4)
H27A0.32180.44950.01070.065*
H27B0.19460.35320.01520.065*
H27C0.32420.35380.08060.065*
C280.78370 (15)0.01978 (13)0.57202 (12)0.0321 (3)
H28A0.83940.09670.61030.048*
H28B0.75830.02360.49980.048*
H28C0.69900.01760.62480.048*
C291.16247 (16)0.09451 (13)0.78629 (12)0.0340 (3)
H291.10970.01880.78840.041*
C301.31337 (18)0.05092 (15)0.80179 (14)0.0426 (4)
H30A1.35510.02620.73620.064*
H30B1.31540.02380.87550.064*
H30C1.36620.12250.80360.064*
C311.09481 (18)0.13534 (19)0.88678 (14)0.0481 (4)
H31A1.14030.21370.88280.072*
H31B1.10520.06490.96180.072*
H31C0.99560.15350.88010.072*
O10.55313 (11)0.30220 (11)0.13812 (9)0.0404 (3)
O20.79134 (11)0.32419 (12)0.17393 (9)0.0414 (3)
O30.97105 (9)0.27298 (9)0.20978 (8)0.0295 (2)
O40.94521 (9)0.41888 (8)0.30849 (8)0.0278 (2)
O51.31535 (10)0.51336 (9)0.52047 (9)0.0330 (2)
O61.32875 (11)0.33807 (9)0.69250 (9)0.0336 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0229 (6)0.0248 (6)0.0275 (6)0.0008 (4)0.0039 (5)0.0095 (5)
C20.0255 (6)0.0221 (5)0.0258 (6)0.0024 (4)0.0046 (5)0.0093 (5)
C30.0274 (6)0.0243 (6)0.0270 (6)0.0044 (5)0.0015 (5)0.0101 (5)
C40.0234 (6)0.0253 (6)0.0307 (6)0.0034 (4)0.0024 (5)0.0105 (5)
C50.0265 (6)0.0211 (5)0.0282 (6)0.0013 (4)0.0060 (5)0.0083 (5)
C60.0270 (6)0.0266 (6)0.0297 (6)0.0006 (5)0.0073 (5)0.0085 (5)
C70.0325 (7)0.0320 (7)0.0276 (6)0.0011 (5)0.0107 (5)0.0075 (5)
C80.0332 (7)0.0347 (7)0.0230 (6)0.0018 (5)0.0028 (5)0.0064 (5)
C90.0256 (6)0.0318 (6)0.0266 (6)0.0018 (5)0.0038 (5)0.0077 (5)
C100.0259 (6)0.0218 (6)0.0256 (6)0.0004 (4)0.0048 (5)0.0071 (5)
C110.0258 (6)0.0220 (6)0.0233 (6)0.0000 (4)0.0036 (5)0.0070 (5)
C120.0248 (6)0.0248 (6)0.0235 (6)0.0021 (4)0.0026 (4)0.0101 (5)
C130.0293 (6)0.0235 (6)0.0246 (6)0.0047 (5)0.0018 (5)0.0087 (5)
C140.0340 (7)0.0235 (6)0.0228 (6)0.0031 (5)0.0045 (5)0.0064 (5)
C150.0291 (6)0.0230 (6)0.0244 (6)0.0005 (5)0.0048 (5)0.0103 (5)
C160.0326 (6)0.0231 (6)0.0253 (6)0.0002 (5)0.0072 (5)0.0094 (5)
C170.0284 (6)0.0261 (6)0.0285 (6)0.0014 (5)0.0081 (5)0.0124 (5)
C180.0234 (6)0.0229 (6)0.0321 (6)0.0027 (4)0.0029 (5)0.0103 (5)
C190.0261 (6)0.0232 (6)0.0277 (6)0.0021 (5)0.0036 (5)0.0063 (5)
C200.0250 (6)0.0220 (5)0.0251 (6)0.0010 (4)0.0035 (5)0.0092 (5)
C210.0429 (9)0.0684 (11)0.0304 (8)0.0067 (8)0.0077 (6)0.0152 (7)
C220.0289 (6)0.0376 (7)0.0272 (6)0.0094 (5)0.0025 (5)0.0071 (5)
C230.0303 (7)0.0305 (7)0.0386 (7)0.0030 (5)0.0112 (6)0.0107 (6)
C240.0296 (6)0.0419 (8)0.0298 (7)0.0062 (6)0.0008 (5)0.0154 (6)
C250.0267 (6)0.0435 (8)0.0318 (7)0.0026 (5)0.0069 (5)0.0134 (6)
C260.0417 (8)0.0469 (9)0.0433 (9)0.0145 (7)0.0093 (7)0.0085 (7)
C270.0325 (7)0.0484 (9)0.0479 (9)0.0061 (6)0.0130 (6)0.0153 (7)
C280.0381 (7)0.0271 (6)0.0305 (7)0.0085 (5)0.0056 (5)0.0081 (5)
C290.0433 (8)0.0274 (6)0.0305 (7)0.0062 (6)0.0142 (6)0.0056 (5)
C300.0509 (9)0.0321 (7)0.0402 (8)0.0095 (6)0.0125 (7)0.0073 (6)
C310.0428 (9)0.0621 (11)0.0313 (8)0.0035 (8)0.0034 (6)0.0082 (7)
O10.0369 (5)0.0571 (7)0.0278 (5)0.0021 (5)0.0118 (4)0.0135 (5)
O20.0380 (6)0.0606 (7)0.0227 (5)0.0051 (5)0.0055 (4)0.0106 (5)
O30.0223 (4)0.0379 (5)0.0281 (5)0.0021 (4)0.0028 (3)0.0119 (4)
O40.0289 (5)0.0245 (4)0.0261 (5)0.0035 (3)0.0055 (4)0.0037 (4)
O50.0303 (5)0.0294 (5)0.0379 (5)0.0079 (4)0.0102 (4)0.0075 (4)
O60.0378 (5)0.0282 (5)0.0381 (5)0.0032 (4)0.0166 (4)0.0114 (4)
Geometric parameters (Å, º) top
C1—C21.3825 (18)C21—O11.433 (2)
C1—O31.3959 (15)C21—O21.4362 (19)
C1—C101.4098 (17)C21—H21A0.9900
C2—C31.4233 (17)C21—H21B0.9900
C2—C121.4900 (16)C22—O41.4085 (17)
C3—C41.3779 (17)C22—O31.4226 (17)
C3—C241.5075 (18)C22—H22A0.9900
C4—C51.4152 (18)C22—H22B0.9900
C4—H40.9500C23—O61.4197 (17)
C5—C101.4290 (17)C23—O51.4362 (17)
C5—C61.4453 (17)C23—H23A0.9900
C6—C71.362 (2)C23—H23B0.9900
C6—C251.5167 (18)C24—H24A0.9800
C7—O11.3801 (16)C24—H24B0.9800
C7—C81.4094 (19)C24—H24C0.9800
C8—C91.3502 (18)C25—C261.526 (2)
C8—O21.3769 (16)C25—C271.531 (2)
C9—C101.4241 (18)C25—H251.0000
C9—H90.9500C26—H26A0.9800
C11—C121.3821 (17)C26—H26B0.9800
C11—O41.3939 (14)C26—H26C0.9800
C11—C201.4066 (17)C27—H27A0.9800
C12—C131.4219 (17)C27—H27B0.9800
C13—C141.3789 (17)C27—H27C0.9800
C13—C281.5091 (17)C28—H28A0.9800
C14—C151.4155 (17)C28—H28B0.9800
C14—H140.9500C28—H28C0.9800
C15—C201.4293 (17)C29—C301.530 (2)
C15—C161.4470 (17)C29—C311.530 (2)
C16—C171.3604 (18)C29—H291.0000
C16—C291.5149 (18)C30—H30A0.9800
C17—O61.3777 (15)C30—H30B0.9800
C17—C181.4070 (18)C30—H30C0.9800
C18—C191.3479 (18)C31—H31A0.9800
C18—O51.3771 (15)C31—H31B0.9800
C19—C201.4252 (17)C31—H31C0.9800
C19—H190.9500
C2—C1—O3118.53 (11)O4—C22—O3112.29 (10)
C2—C1—C10124.07 (11)O4—C22—H22A109.1
O3—C1—C10117.40 (11)O3—C22—H22A109.1
C1—C2—C3117.75 (11)O4—C22—H22B109.1
C1—C2—C12117.17 (11)O3—C22—H22B109.1
C3—C2—C12124.79 (11)H22A—C22—H22B107.9
C4—C3—C2119.11 (11)O6—C23—O5107.43 (10)
C4—C3—C24118.90 (12)O6—C23—H23A110.2
C2—C3—C24121.90 (11)O5—C23—H23A110.2
C3—C4—C5123.69 (12)O6—C23—H23B110.2
C3—C4—H4118.2O5—C23—H23B110.2
C5—C4—H4118.2H23A—C23—H23B108.5
C4—C5—C10117.31 (11)C3—C24—H24A109.5
C4—C5—C6122.60 (12)C3—C24—H24B109.5
C10—C5—C6120.08 (12)H24A—C24—H24B109.5
C7—C6—C5115.21 (12)C3—C24—H24C109.5
C7—C6—C25121.96 (12)H24A—C24—H24C109.5
C5—C6—C25122.65 (12)H24B—C24—H24C109.5
C6—C7—O1127.54 (13)C6—C25—C26110.01 (12)
C6—C7—C8124.16 (12)C6—C25—C27112.64 (12)
O1—C7—C8108.30 (12)C26—C25—C27111.63 (12)
C9—C8—O2128.09 (13)C6—C25—H25107.4
C9—C8—C7122.49 (12)C26—C25—H25107.4
O2—C8—C7109.42 (12)C27—C25—H25107.4
C8—C9—C10116.41 (12)C25—C26—H26A109.5
C8—C9—H9121.8C25—C26—H26B109.5
C10—C9—H9121.8H26A—C26—H26B109.5
C1—C10—C9120.48 (11)C25—C26—H26C109.5
C1—C10—C5117.89 (11)H26A—C26—H26C109.5
C9—C10—C5121.59 (11)H26B—C26—H26C109.5
C12—C11—O4118.23 (11)C25—C27—H27A109.5
C12—C11—C20124.36 (11)C25—C27—H27B109.5
O4—C11—C20117.41 (10)H27A—C27—H27B109.5
C11—C12—C13117.62 (11)C25—C27—H27C109.5
C11—C12—C2116.91 (11)H27A—C27—H27C109.5
C13—C12—C2125.32 (11)H27B—C27—H27C109.5
C14—C13—C12119.25 (11)C13—C28—H28A109.5
C14—C13—C28119.01 (11)C13—C28—H28B109.5
C12—C13—C28121.62 (11)H28A—C28—H28B109.5
C13—C14—C15123.47 (11)C13—C28—H28C109.5
C13—C14—H14118.3H28A—C28—H28C109.5
C15—C14—H14118.3H28B—C28—H28C109.5
C14—C15—C20117.46 (11)C16—C29—C30112.64 (12)
C14—C15—C16122.87 (11)C16—C29—C31109.28 (12)
C20—C15—C16119.64 (11)C30—C29—C31110.71 (12)
C17—C16—C15115.30 (11)C16—C29—H29108.0
C17—C16—C29121.16 (11)C30—C29—H29108.0
C15—C16—C29123.47 (11)C31—C29—H29108.0
C16—C17—O6127.12 (12)C29—C30—H30A109.5
C16—C17—C18124.26 (12)C29—C30—H30B109.5
O6—C17—C18108.60 (11)H30A—C30—H30B109.5
C19—C18—O5127.98 (12)C29—C30—H30C109.5
C19—C18—C17122.69 (11)H30A—C30—H30C109.5
O5—C18—C17109.32 (11)H30B—C30—H30C109.5
C18—C19—C20116.05 (11)C29—C31—H31A109.5
C18—C19—H19122.0C29—C31—H31B109.5
C20—C19—H19122.0H31A—C31—H31B109.5
C11—C20—C19120.23 (11)C29—C31—H31C109.5
C11—C20—C15117.76 (11)H31A—C31—H31C109.5
C19—C20—C15122.01 (11)H31B—C31—H31C109.5
O1—C21—O2106.62 (12)C7—O1—C21105.23 (11)
O1—C21—H21A110.4C8—O2—C21104.42 (11)
O2—C21—H21A110.4C1—O3—C22112.20 (10)
O1—C21—H21B110.4C11—O4—C22112.54 (10)
O2—C21—H21B110.4C18—O5—C23105.17 (10)
H21A—C21—H21B108.6C17—O6—C23106.00 (10)
O3—C1—C2—C3175.54 (10)C13—C14—C15—C16179.34 (12)
C10—C1—C2—C35.07 (19)C14—C15—C16—C17179.62 (12)
O3—C1—C2—C121.47 (17)C20—C15—C16—C172.43 (18)
C10—C1—C2—C12179.13 (11)C14—C15—C16—C292.7 (2)
C1—C2—C3—C42.77 (18)C20—C15—C16—C29179.38 (12)
C12—C2—C3—C4176.34 (11)C15—C16—C17—O6179.85 (12)
C1—C2—C3—C24173.52 (12)C29—C16—C17—O62.8 (2)
C12—C2—C3—C240.05 (19)C15—C16—C17—C182.0 (2)
C2—C3—C4—C51.10 (19)C29—C16—C17—C18179.06 (12)
C24—C3—C4—C5177.50 (12)C16—C17—C18—C190.2 (2)
C3—C4—C5—C102.82 (18)O6—C17—C18—C19178.63 (12)
C3—C4—C5—C6176.00 (12)C16—C17—C18—O5178.74 (12)
C4—C5—C6—C7176.55 (12)O6—C17—C18—O50.33 (15)
C10—C5—C6—C72.23 (18)O5—C18—C19—C20179.94 (12)
C4—C5—C6—C251.22 (19)C17—C18—C19—C201.19 (19)
C10—C5—C6—C25177.56 (12)C12—C11—C20—C19178.50 (12)
C5—C6—C7—O1177.26 (12)O4—C11—C20—C190.63 (17)
C25—C6—C7—O11.9 (2)C12—C11—C20—C151.13 (19)
C5—C6—C7—C82.8 (2)O4—C11—C20—C15179.73 (11)
C25—C6—C7—C8178.14 (13)C18—C19—C20—C11178.95 (12)
C6—C7—C8—C91.3 (2)C18—C19—C20—C150.67 (18)
O1—C7—C8—C9178.72 (13)C14—C15—C20—C111.14 (18)
C6—C7—C8—O2178.55 (13)C16—C15—C20—C11179.20 (11)
O1—C7—C8—O21.42 (16)C14—C15—C20—C19179.23 (11)
O2—C8—C9—C10179.36 (13)C16—C15—C20—C191.18 (19)
C7—C8—C9—C100.8 (2)C7—C6—C25—C2676.33 (16)
C2—C1—C10—C9174.57 (12)C5—C6—C25—C2698.68 (15)
O3—C1—C10—C94.83 (17)C7—C6—C25—C2748.91 (18)
C2—C1—C10—C53.33 (19)C5—C6—C25—C27136.07 (14)
O3—C1—C10—C5177.27 (10)C17—C16—C29—C3050.79 (18)
C8—C9—C10—C1176.59 (12)C15—C16—C29—C30132.44 (14)
C8—C9—C10—C51.23 (19)C17—C16—C29—C3172.70 (17)
C4—C5—C10—C10.65 (17)C15—C16—C29—C31104.07 (15)
C6—C5—C10—C1178.19 (11)C6—C7—O1—C21166.34 (15)
C4—C5—C10—C9178.53 (11)C8—C7—O1—C2113.69 (16)
C6—C5—C10—C90.31 (18)O2—C21—O1—C723.43 (17)
O4—C11—C12—C13177.72 (11)C9—C8—O2—C21164.34 (16)
C20—C11—C12—C133.15 (19)C7—C8—O2—C2115.81 (16)
O4—C11—C12—C21.94 (17)O1—C21—O2—C824.11 (17)
C20—C11—C12—C2178.93 (11)C2—C1—O3—C2276.37 (14)
C1—C2—C12—C1149.07 (16)C10—C1—O3—C22104.20 (12)
C3—C2—C12—C11124.53 (13)O4—C22—O3—C146.28 (14)
C1—C2—C12—C13126.35 (13)C12—C11—O4—C2277.59 (14)
C3—C2—C12—C1360.04 (18)C20—C11—O4—C22103.22 (13)
C11—C12—C13—C142.84 (18)O3—C22—O4—C1147.28 (14)
C2—C12—C13—C14178.23 (12)C19—C18—O5—C23170.18 (13)
C11—C12—C13—C28173.25 (12)C17—C18—O5—C2310.94 (14)
C2—C12—C13—C282.1 (2)O6—C23—O5—C1818.06 (14)
C12—C13—C14—C150.7 (2)C16—C17—O6—C23170.02 (14)
C28—C13—C14—C15175.52 (12)C18—C17—O6—C2311.63 (14)
C13—C14—C15—C201.35 (19)O5—C23—O6—C1718.38 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O5i0.992.583.3956 (18)140
C23—H23B···O4ii0.992.583.2442 (18)124
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

We thank Dr Vu Dinh Tien and Prof. Dr Tran Khac Vu from the Hanoi University of Science and Technology, Vietnam for developing a new work-up method for the educt apogossypol.

References

First citationBonthrone, W. & Cornforth, J. W. (1969). J. Chem. Soc. C, pp. 1202–1204.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWuts, P. G. M. & Greene, T. W. (2007). Greene's Protective Groups in Organic Synthesis. Hoboken, N. J.: Wiley-Interscience.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds