organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1Z,2Z)-1,2-Bis{2-[3,5-bis­­(tri­fluoro­meth­yl)phen­yl]hydrazinyl­­idene}-1,2-bis­­(4-meth­­oxy­phen­yl)ethane including an unknown solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 July 2019; accepted 15 July 2019; online 19 July 2019)

The complete mol­ecule of the title compound, C32H22F12N4O2, is generated by a crystallographic twofold axis aligned parallel to [010]. The F atoms of one of the CF3 groups are disordered over three orientations in a 0.6: 0.2: 0.2 ratio. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming zigzag chains propagating along the a-axis direction. In addition, weak C—H⋯O and C—H⋯F bonds are observed. The contribution of the disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] of PLATON. The solvent contribution is not included in the reported mol­ecular weight and density.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In our recent work we have functionalized dye mol­ecules with a C—Cl group, which facilitated halogen bonding (Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019; Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]). In a continuation of this work, we have attached –CF3 groups (potential halogen-bond donor/acceptor sites) to the aromatic moiety of the title hydrazone, C32H22F12N4O2, which may lead to C—H⋯F, C—H⋯O, N—H⋯O and C—F⋯F non-covalent inter­actions in the crystal.

As shown in Fig. 1[link], the complete mol­ecule is generated by a crystallographic twofold axis passing through the midpoint of the central C—C bond. The bond lengths and the bond angles are comparable to those observed in related structures, for example, 3-methyl-4-[(Z)-2-(4-methyl­phen­yl)hydrazin-1-yl­idene]-1-(3-nitro­phen­yl)-1H-pyrazol-5(4H)-one and 3-methyl-4-[(Z)-2-(4-methyl­phen­yl)hydrazin-1-yl­idene]-1-[4-(tri­fluoro­meth­yl)phen­yl]-\1H-pyrazol-5(4H)-one (Alvarez-Thon et al., 2014[Alvarez-Thon, L., Bustos, C., Molins, E., Garland, M. T. & Baggio, R. (2014). Acta Cryst. C70, 837-842.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 20% probability level. The minor components of the disordered CF3 group have been omitted.

In the crystal of the title compound, mol­ecules are linked by N2—H2⋯O1(x − [{1\over 2}], y + [{1\over 2}]) hydrogen bonds (Table 1[link]; Fig. 2[link]), forming zigzag chains propagating along the a-axis direction. C—H⋯O and C—H⋯F inter­actions consolidate the packing but ππ stacking and C—H⋯π inter­actions are not observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.79 (4) 2.32 (4) 3.041 (4) 152 (4)
C3—H3⋯F1"ii 0.95 2.42 3.279 (11) 151
C4—H4⋯F5iii 0.95 2.51 3.439 (4) 165
C14—H14⋯O1i 0.95 2.57 3.348 (5) 139
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-1, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Crystal structure of the title compound viewed along the b axis. Dashed lines show hydrogen-bonding inter­actions. The minor components of the disordered CF3 group have been omitted.

Synthesis and crystallization

The title compound was synthesized according to the reported method (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). A 20 ml screw neck vial was charged with DMSO (10 ml), (E)-1-[3,5-bis(tri­fluoro­meth­yl)phen­yl]-2-(4-meth­oxy­benzyl­idene)hydrazine (362 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into 0.01 M HCl (100 ml, pH = 2–3), and extracted with di­chloro­methane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1 − 1/1) giving an orange solid (63%); m.p. 393 K. Analysis calculated for C32H22F12N4O2 (M = 722.53): C 53.19, H 3.07, N 7.75; found: C 53.07, H 3.01, N 7.74%. 1H NMR (300 MHz, CDCl3) δ 3.89 (6H, 2OCH3), 7.00–8.23 (14H, Ar). 13C NMR (75 MHz, CDCl3) δ 157.76, 155.49, 148.53, 126.67, 125.49, 119.54, 118.92, 118.66, 118.61, 109.29, 50.67, 25.14. ESI-MS: m/z: 723.44 [M + H]+. The title compound was dissolved in di­chloro­methane and then left at room temperature for slow evaporation; colourless prisms started to form after ca 2 d.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The residual electron density was difficult to model and therefore, the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The solvent formula mass was not taken into account during refinement. The cavity of volume ca 384.5 Å3 (ca 11% of the unit-cell volume) contains approximately 105 electrons. Fifteen outliers (0 2 2), (0 2 3), (1 3 3), (3 3 3), (3 5 4), (4 1 5), (0 12 1), (6 0 6), (1 7 2), (0 6 6), (3 1 8), (6 0 8), (0 4 2), (5 3 2) and (1 0 6) were omitted in the final cycles of refinement. The fluorine atoms of the C15F3 group are disordered over three orientations in a 0.6: 0.2: 0.2 ratio. Within the disordered CF3 group, the C—F distances were restrained to 1.330±0.003 Å, and the F—C—F and C—C—F bond angles were limited to near-tetra­hedral values by restraining the F⋯F distances to 2.140±0.003 Å. The disordered F atoms (F1 F2 F3 F1′ F2′ F3′ F1" F2" F3") were restrained using the EADP command in SHELX.

Table 2
Experimental details

Crystal data
Chemical formula C32H22F12N4O2
Mr 722.54
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 100
a, b, c (Å) 13.479 (3), 11.213 (2), 22.552 (5)
V3) 3408.5 (12)
Z 4
Radiation type Synchrotron, λ = 0.78790 Å
μ (mm−1) 0.17
Crystal size (mm) 0.18 × 0.12 × 0.10
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.954, 0.972
No. of measured, independent and observed [I > 2σ(I)] reflections 34331, 3971, 2478
Rint 0.062
(sin θ/λ)max−1) 0.654
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.215, 1.02
No. of reflections 3971
No. of parameters 237
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.56
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP3for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: Marccd (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP3for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(1Z,2Z)-1,2-Bis{2-[3,5-bis(trifluoromethyl)phenyl]hydrazinylidene}-1,2-bis(4-methoxyphenyl)ethane top
Crystal data top
C32H22F12N4O2Dx = 1.408 Mg m3
Mr = 722.54Synchrotron radiation, λ = 0.78790 Å
Orthorhombic, PbcnCell parameters from 600 reflections
a = 13.479 (3) Åθ = 2.0–30.0°
b = 11.213 (2) ŵ = 0.17 mm1
c = 22.552 (5) ÅT = 100 K
V = 3408.5 (12) Å3Prism, colourless
Z = 40.18 × 0.12 × 0.10 mm
F(000) = 1464
Data collection top
Rayonix SX165 CCD
diffractometer
2478 reflections with I > 2σ(I)
/f scanRint = 0.062
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 31.0°, θmin = 2.0°
Tmin = 0.954, Tmax = 0.972h = 1717
34331 measured reflectionsk = 1414
3971 independent reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.079H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.215 w = 1/[σ2(Fo2) + (0.08P)2 + 4P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3971 reflectionsΔρmax = 0.52 e Å3
237 parametersΔρmin = 0.56 e Å3
18 restraintsExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.0077 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms of aromatic and methyl groups were placed in calculated positions (C—H = 0.95 and 0.98 Å, respectively) and refined using a riding model withUiso= 1.2Ueq(C-aromatic) and 1.5Ueq(C-methyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.8573 (3)0.6496 (2)0.57941 (18)0.0832 (7)0.6
F20.8431 (3)0.5107 (4)0.51521 (11)0.0832 (7)0.6
F30.8715 (3)0.4684 (3)0.60651 (16)0.0832 (7)0.6
F1'0.8618 (8)0.6207 (7)0.6062 (4)0.0832 (7)0.2
F2'0.8426 (8)0.5731 (9)0.5152 (2)0.0832 (7)0.2
F3'0.8670 (8)0.4374 (5)0.5803 (5)0.0832 (7)0.2
F1"0.8783 (8)0.5085 (9)0.6148 (4)0.0832 (7)0.2
F2"0.8552 (7)0.6378 (6)0.5458 (5)0.0832 (7)0.2
F3"0.8270 (8)0.4531 (7)0.5295 (4)0.0832 (7)0.2
F40.38927 (16)0.6493 (2)0.52250 (11)0.0811 (7)
F50.47074 (18)0.79502 (19)0.55878 (11)0.0837 (7)
F60.51490 (18)0.7197 (2)0.47565 (11)0.0857 (7)
O10.80893 (17)0.1149 (2)0.84552 (11)0.0618 (6)
N10.59184 (19)0.2977 (2)0.70406 (12)0.0541 (6)
N20.5315 (2)0.3763 (2)0.67618 (14)0.0586 (7)
H20.474 (3)0.370 (4)0.6825 (17)0.070*
C10.5545 (2)0.2249 (3)0.74170 (15)0.0513 (7)
C20.6199 (2)0.1371 (3)0.77029 (15)0.0543 (8)
C30.5875 (3)0.0684 (3)0.81721 (16)0.0603 (8)
H30.52190.07960.83170.072*
C40.6476 (3)0.0165 (3)0.84393 (17)0.0627 (9)
H40.62350.06280.87610.075*
C50.7433 (2)0.0327 (3)0.82289 (15)0.0558 (8)
C60.7778 (2)0.0366 (3)0.77612 (15)0.0581 (8)
H60.84370.02630.76210.070*
C70.7173 (2)0.1194 (3)0.75029 (16)0.0567 (8)
H70.74170.16590.71820.068*
C80.7725 (3)0.1975 (3)0.88859 (17)0.0694 (10)
H8A0.71800.24390.87140.104*
H8B0.74850.15380.92340.104*
H8C0.82610.25150.90050.104*
C90.5710 (2)0.4527 (3)0.63442 (15)0.0564 (8)
C100.6731 (2)0.4553 (3)0.62320 (15)0.0580 (8)
H100.71650.40280.64360.070*
C110.7098 (3)0.5348 (3)0.58237 (16)0.0610 (8)
C120.6496 (3)0.6129 (3)0.55145 (16)0.0627 (9)
H120.67680.66840.52410.075*
C130.5475 (3)0.6076 (3)0.56162 (16)0.0595 (8)
C140.5086 (3)0.5286 (3)0.60240 (16)0.0600 (8)
H140.43890.52590.60880.072*
C150.8195 (2)0.5397 (2)0.57040 (12)0.0723 (10)
C160.4815 (3)0.6924 (3)0.52972 (18)0.0669 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0625 (9)0.0989 (17)0.0883 (16)0.0094 (12)0.0081 (11)0.0227 (13)
F20.0625 (9)0.0989 (17)0.0883 (16)0.0094 (12)0.0081 (11)0.0227 (13)
F30.0625 (9)0.0989 (17)0.0883 (16)0.0094 (12)0.0081 (11)0.0227 (13)
F1'0.0625 (9)0.0989 (17)0.0883 (16)0.0094 (12)0.0081 (11)0.0227 (13)
F2'0.0625 (9)0.0989 (17)0.0883 (16)0.0094 (12)0.0081 (11)0.0227 (13)
F3'0.0625 (9)0.0989 (17)0.0883 (16)0.0094 (12)0.0081 (11)0.0227 (13)
F1"0.0625 (9)0.0989 (17)0.0883 (16)0.0094 (12)0.0081 (11)0.0227 (13)
F2"0.0625 (9)0.0989 (17)0.0883 (16)0.0094 (12)0.0081 (11)0.0227 (13)
F3"0.0625 (9)0.0989 (17)0.0883 (16)0.0094 (12)0.0081 (11)0.0227 (13)
F40.0686 (13)0.0683 (13)0.1064 (17)0.0058 (11)0.0214 (12)0.0126 (12)
F50.0879 (15)0.0552 (12)0.1079 (17)0.0166 (11)0.0122 (13)0.0034 (12)
F60.0849 (15)0.0845 (16)0.0877 (16)0.0244 (13)0.0063 (13)0.0265 (12)
O10.0574 (13)0.0502 (12)0.0779 (15)0.0070 (10)0.0006 (12)0.0084 (11)
N10.0492 (13)0.0475 (13)0.0655 (16)0.0000 (11)0.0017 (12)0.0036 (12)
N20.0458 (14)0.0519 (15)0.0781 (19)0.0036 (12)0.0052 (13)0.0136 (13)
C10.0476 (15)0.0424 (15)0.0638 (18)0.0013 (13)0.0054 (14)0.0024 (13)
C20.0501 (16)0.0450 (15)0.0677 (19)0.0006 (13)0.0067 (15)0.0014 (14)
C30.0507 (17)0.0526 (17)0.078 (2)0.0018 (14)0.0086 (16)0.0090 (16)
C40.0589 (19)0.0563 (19)0.073 (2)0.0023 (16)0.0088 (17)0.0146 (16)
C50.0529 (17)0.0455 (16)0.0691 (19)0.0036 (13)0.0009 (15)0.0008 (15)
C60.0500 (17)0.0546 (18)0.070 (2)0.0044 (14)0.0083 (15)0.0011 (16)
C70.0509 (17)0.0499 (16)0.0692 (19)0.0015 (14)0.0098 (15)0.0064 (15)
C80.075 (2)0.0582 (19)0.075 (2)0.0094 (18)0.0009 (19)0.0113 (18)
C90.0537 (17)0.0478 (16)0.068 (2)0.0013 (14)0.0037 (15)0.0055 (15)
C100.0511 (17)0.0511 (17)0.072 (2)0.0008 (14)0.0014 (15)0.0075 (15)
C110.0525 (17)0.0577 (19)0.073 (2)0.0002 (15)0.0010 (16)0.0095 (16)
C120.063 (2)0.0541 (18)0.070 (2)0.0006 (16)0.0032 (17)0.0106 (16)
C130.0610 (19)0.0474 (16)0.070 (2)0.0041 (15)0.0047 (17)0.0054 (15)
C140.0524 (17)0.0525 (18)0.075 (2)0.0046 (14)0.0000 (16)0.0029 (16)
C150.063 (2)0.071 (2)0.083 (3)0.0008 (18)0.0034 (19)0.022 (2)
C160.065 (2)0.0529 (18)0.083 (3)0.0053 (16)0.0003 (19)0.0067 (18)
Geometric parameters (Å, º) top
F1—C151.349 (3)C3—C41.388 (5)
F2—C151.325 (3)C3—H30.9500
F3—C151.339 (3)C4—C51.386 (5)
F1'—C151.342 (3)C4—H40.9500
F2'—C151.336 (3)C5—C61.391 (5)
F3'—C151.333 (3)C6—C71.366 (4)
F1"—C151.324 (3)C6—H60.9500
F2"—C151.323 (3)C7—H70.9500
F3"—C151.343 (3)C8—H8A0.9800
F4—C161.344 (4)C8—H8B0.9800
F5—C161.332 (4)C8—H8C0.9800
F6—C161.335 (4)C9—C141.398 (5)
O1—C51.375 (4)C9—C101.399 (4)
O1—C81.429 (4)C10—C111.373 (5)
N1—C11.280 (4)C10—H100.9500
N1—N21.355 (4)C11—C121.383 (5)
N2—C91.380 (4)C11—C151.504 (4)
N2—H20.79 (4)C12—C131.396 (5)
C1—C21.471 (4)C12—H120.9500
C1—C1i1.516 (6)C13—C141.380 (5)
C2—C31.380 (4)C13—C161.488 (5)
C2—C71.403 (4)C14—H140.9500
C5—O1—C8117.7 (3)C9—C10—H10120.3
C1—N1—N2119.1 (3)C10—C11—C12122.5 (3)
N1—N2—C9119.3 (3)C10—C11—C15119.9 (3)
N1—N2—H2116 (3)C12—C11—C15117.6 (3)
C9—N2—H2124 (3)C11—C12—C13118.0 (3)
N1—C1—C2118.8 (3)C11—C12—H12121.0
N1—C1—C1i123.0 (3)C13—C12—H12121.0
C2—C1—C1i118.2 (3)C14—C13—C12120.7 (3)
C3—C2—C7117.7 (3)C14—C13—C16120.4 (3)
C3—C2—C1121.3 (3)C12—C13—C16118.8 (3)
C7—C2—C1121.0 (3)C13—C14—C9120.4 (3)
C2—C3—C4122.1 (3)C13—C14—H14119.8
C2—C3—H3119.0C9—C14—H14119.8
C4—C3—H3119.0F2"—C15—F1"108.6 (3)
C5—C4—C3119.0 (3)F3'—C15—F2'106.6 (3)
C5—C4—H4120.5F2—C15—F3107.4 (3)
C3—C4—H4120.5F3'—C15—F1'106.1 (3)
O1—C5—C4124.0 (3)F2'—C15—F1'105.7 (3)
O1—C5—C6116.1 (3)F2"—C15—F3"106.6 (3)
C4—C5—C6119.8 (3)F1"—C15—F3"106.5 (3)
C7—C6—C5120.3 (3)F2—C15—F1106.0 (2)
C7—C6—H6119.9F3—C15—F1104.8 (2)
C5—C6—H6119.9F2"—C15—C11117.6 (5)
C6—C7—C2121.2 (3)F1"—C15—C11116.3 (6)
C6—C7—H7119.4F2—C15—C11113.3 (3)
C2—C7—H7119.4F3'—C15—C11114.2 (5)
O1—C8—H8A109.5F2'—C15—C11114.0 (5)
O1—C8—H8B109.5F3—C15—C11112.5 (3)
H8A—C8—H8B109.5F1'—C15—C11109.6 (5)
O1—C8—H8C109.5F3"—C15—C1199.8 (5)
H8A—C8—H8C109.5F1—C15—C11112.2 (3)
H8B—C8—H8C109.5F6—C16—F5106.8 (3)
N2—C9—C14119.9 (3)F6—C16—F4106.5 (3)
N2—C9—C10121.1 (3)F5—C16—F4105.6 (3)
C14—C9—C10119.0 (3)F6—C16—C13112.7 (3)
C11—C10—C9119.3 (3)F5—C16—C13112.3 (3)
C11—C10—H10120.3F4—C16—C13112.4 (3)
C1—N1—N2—C9178.3 (3)C12—C13—C14—C90.2 (5)
N2—N1—C1—C2177.9 (3)C16—C13—C14—C9177.0 (3)
N2—N1—C1—C1i2.0 (5)N2—C9—C14—C13178.3 (3)
N1—C1—C2—C3170.4 (3)C10—C9—C14—C131.9 (5)
C1i—C1—C2—C39.6 (5)C10—C11—C15—F2"159.7 (6)
N1—C1—C2—C710.2 (5)C12—C11—C15—F2"19.7 (7)
C1i—C1—C2—C7169.7 (3)C10—C11—C15—F1"28.4 (6)
C7—C2—C3—C40.6 (5)C12—C11—C15—F1"151.0 (6)
C1—C2—C3—C4178.7 (3)C10—C11—C15—F2116.9 (4)
C2—C3—C4—C50.1 (6)C12—C11—C15—F263.7 (4)
C8—O1—C5—C47.5 (5)C10—C11—C15—F3'27.3 (6)
C8—O1—C5—C6172.5 (3)C12—C11—C15—F3'153.3 (6)
C3—C4—C5—O1179.4 (3)C10—C11—C15—F2'150.2 (6)
C3—C4—C5—C60.7 (5)C12—C11—C15—F2'30.4 (6)
O1—C5—C6—C7179.1 (3)C10—C11—C15—F35.2 (5)
C4—C5—C6—C70.9 (5)C12—C11—C15—F3174.2 (3)
C5—C6—C7—C20.4 (5)C10—C11—C15—F1'91.5 (6)
C3—C2—C7—C60.4 (5)C12—C11—C15—F1'87.9 (6)
C1—C2—C7—C6179.0 (3)C10—C11—C15—F3"85.6 (6)
N1—N2—C9—C14175.6 (3)C12—C11—C15—F3"95.0 (6)
N1—N2—C9—C104.1 (5)C10—C11—C15—F1123.2 (4)
N2—C9—C10—C11178.3 (3)C12—C11—C15—F156.2 (4)
C14—C9—C10—C111.9 (5)C14—C13—C16—F6149.8 (3)
C9—C10—C11—C120.1 (6)C12—C13—C16—F632.9 (5)
C9—C10—C11—C15179.2 (3)C14—C13—C16—F589.5 (4)
C10—C11—C12—C131.6 (6)C12—C13—C16—F587.8 (4)
C15—C11—C12—C13179.0 (3)C14—C13—C16—F429.5 (5)
C11—C12—C13—C141.6 (5)C12—C13—C16—F4153.3 (3)
C11—C12—C13—C16178.8 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1ii0.79 (4)2.32 (4)3.041 (4)152 (4)
C3—H3···F1"iii0.952.423.279 (11)151
C4—H4···F5iv0.952.513.439 (4)165
C10—H10···F30.952.372.705 (5)100
C14—H14···O1ii0.952.573.348 (5)139
Symmetry codes: (ii) x1/2, y+1/2, z+3/2; (iii) x1/2, y1/2, z+3/2; (iv) x+1, y1, z+3/2.
 

Funding information

This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EİF/MQM/Elm-Tehsil-1–2016–1(26)–71/06/4).

References

First citationAlvarez-Thon, L., Bustos, C., Molins, E., Garland, M. T. & Baggio, R. (2014). Acta Cryst. C70, 837–842.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds