organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(S)-1-(Benzyl­selan­yl)-3-phenyl­propan-2-amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka-572103, India, bDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka-572103, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and dDepartment of Inorganic & Structural Chemistry, Howard University Washington DC, 20059, USA
*Correspondence e-mail: raghukp1@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 July 2019; accepted 18 July 2019; online 26 July 2019)

In the title compound, C16H19NSe, the dihedral angle between the benzene rings is 66.49 (12) and a weak intra­molecular N—H⋯Se hydrogen bond generates an S(6) ring. In the crystal, weak N—H⋯N hydrogen bonds link the mol­ecules into [100] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C16H19NSe, is a chiral selenated amine that could act as a hybrid ligand of the (N,Se) type. This amine could further be used for the synthesis of chiral Schiff bases with various aldehydes/ketones, which may result in multidentate hybrid ligands (Kostas et al., 2006[Kostas, I. D., Steele, B. R., Terzis, A., Amosova, S. V., Martynov, A. V. & Makhaeva, N. A. (2006). Eur. J. Inorg. Chem. pp. 2642-2646.]; Kumar et al., 2009[Kumar, A., Agarwal, M., Singh, A. K. & Butcher, R. J. (2009). Inorg. Chim. Acta, 362, 3208-3218.]).

The mol­ecular structure is shown in Fig. 1[link]. The dihedral angle between the benzene rings is 66.49 (12)° and the C7—Se1—C8—C9 torsion angle is 75.3 (5)°. A weak intra­molecular N—H⋯Se hydrogen bond (Table 1[link]) generates an S(5) ring. In the crystal, mol­ecules are linked by weak N1—H2N⋯N1 inter­actions, generating [100] chains (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Se1 0.93 (7) 2.69 (7) 3.239 (7) 119 (5)
N1—H2N⋯N1i 0.79 (5) 2.56 (5) 3.319 (5) 161 (4)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The packing of the title compound viewed along [010] showing the formation of [100] hydrogen-bonded chains.

Synthesis and crystallization

The title compound was synthesized according to our reported procedure (Rajegowda et al., 2015[Rajegowda, H. R., Kumar, P. R., Hosamani, A. & Palakshamurthy, B. S. (2015). Organomet. Chem. 61-69,799-800.]). The light-yellow viscous liquid obtained was dissolved in a 1:1 mixture of di­chloro­methane and n-hexane, which was kept undisturbed in the refrigerator at 0°C. After four to five days, light-yellow crystals were collected by filtration and dried in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H19NSe
Mr 304.28
Crystal system, space group Orthorhombic, P212121
Temperature (K) 295
a, b, c (Å) 5.7670 (3), 8.1908 (3), 31.6737 (9)
V3) 1496.15 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.24
Crystal size (mm) 0.32 × 0.28 × 0.22
 
Data collection
Diffractometer Rigaku Oxford Diffraction CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.403, 0.490
No. of measured, independent and observed [I > 2σ(I)] reflections 9030, 2848, 2501
Rint 0.037
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.09
No. of reflections 2848
No. of parameters 171
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.45
Absolute structure Flack x determined using 861 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.015 (16)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.], SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014; cell refinement: CrysAlis PRO (Agilent, 2014; data reduction: CrysAlis PRO (Agilent, 2014; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(S)-1-(Benzylselanyl)-3-phenylpropan-2-amine top
Crystal data top
C16H19NSeprism
Mr = 304.28Dx = 1.351 Mg m3
Orthorhombic, P212121Melting point: 498 K
Hall symbol: P 2ac 2abCu Kα radiation, λ = 1.54178 Å
a = 5.7670 (3) ÅCell parameters from 2501 reflections
b = 8.1908 (3) Åθ = 1–71.8°
c = 31.6737 (9) ŵ = 3.24 mm1
V = 1496.15 (10) Å3T = 295 K
Z = 4Prism, yellow
F(000) = 6240.32 × 0.28 × 0.22 mm
Data collection top
Rigaku Oxford Diffraction CCD
diffractometer
2848 independent reflections
Radiation source: Cu Kα2501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.2 pixels mm-1θmax = 71.8°, θmin = 5.6°
ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 96
Tmin = 0.403, Tmax = 0.490l = 3738
9030 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.2035P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2848 reflectionsΔρmax = 0.39 e Å3
171 parametersΔρmin = 0.45 e Å3
0 restraintsAbsolute structure: Flack x determined using 861 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 constraintsAbsolute structure parameter: 0.015 (16)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound hydrogen atoms were fixed geometrically and allowed to ride on their parent atoms: C—H = 0.93–0.97Å. The N-bound H atoms were located in difference maps and their positions were freely refined. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.09270 (14)0.59847 (9)0.46926 (2)0.0991 (3)
N10.4997 (11)0.3335 (8)0.48563 (15)0.0909 (14)
H1N0.447 (12)0.424 (8)0.501 (2)0.10 (2)*
H2N0.633 (9)0.313 (6)0.4892 (14)0.051 (12)*
C10.1443 (9)0.8034 (5)0.39473 (16)0.0771 (12)
C20.0602 (10)0.8816 (7)0.3875 (2)0.0964 (16)
H2A0.1473230.9197440.4101660.116*
C30.1392 (12)0.9046 (9)0.3468 (3)0.116 (2)
H3A0.2776360.9598670.3420640.139*
C40.0145 (16)0.8463 (8)0.3137 (3)0.113 (2)
H4A0.0682750.8610570.2862910.135*
C50.1889 (15)0.7662 (8)0.3205 (2)0.106 (2)
H5A0.2739200.7262060.2978450.127*
C60.2680 (10)0.7449 (6)0.36081 (18)0.0823 (13)
H6A0.4070400.6901010.3653520.099*
C70.2370 (15)0.7833 (7)0.43881 (19)0.1000 (18)
H7A0.2096420.8831060.4545270.120*
H7B0.4032430.7661150.4374520.120*
C80.2155 (9)0.4239 (6)0.43435 (13)0.0699 (11)
H8A0.1256250.3257880.4395100.084*
H8B0.1947960.4533090.4049280.084*
C90.4694 (8)0.3857 (6)0.44176 (13)0.0690 (10)
H9A0.5624450.4837260.4365490.083*
C100.5504 (10)0.2484 (6)0.41261 (17)0.0816 (13)
H10A0.7106050.2226850.4191940.098*
H10B0.4585340.1516990.4183090.098*
C110.5328 (9)0.2881 (6)0.36655 (15)0.0719 (11)
C120.3552 (11)0.2271 (7)0.34193 (17)0.0865 (14)
H12A0.2447570.1585380.3539070.104*
C130.3404 (13)0.2668 (8)0.29984 (19)0.1018 (19)
H13A0.2205900.2241790.2835660.122*
C140.4997 (12)0.3684 (9)0.28164 (18)0.1019 (19)
H14A0.4872090.3958940.2532490.122*
C150.6758 (12)0.4286 (10)0.3052 (2)0.106 (2)
H15A0.7853600.4966590.2927820.128*
C160.6946 (9)0.3899 (8)0.34768 (18)0.0894 (14)
H16A0.8161310.4323180.3635670.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.1124 (5)0.1187 (5)0.0661 (3)0.0105 (4)0.0205 (3)0.0022 (3)
N10.092 (3)0.117 (4)0.064 (2)0.005 (3)0.018 (2)0.022 (2)
C10.082 (3)0.059 (2)0.091 (3)0.004 (2)0.000 (2)0.005 (2)
C20.081 (3)0.081 (3)0.127 (5)0.015 (3)0.003 (3)0.007 (3)
C30.086 (4)0.092 (4)0.170 (7)0.004 (4)0.033 (4)0.008 (5)
C40.139 (6)0.088 (4)0.112 (5)0.024 (4)0.037 (5)0.015 (3)
C50.142 (6)0.087 (3)0.089 (4)0.007 (4)0.021 (4)0.008 (3)
C60.080 (3)0.074 (3)0.093 (3)0.005 (2)0.012 (3)0.010 (2)
C70.135 (5)0.076 (3)0.089 (3)0.006 (3)0.007 (4)0.011 (3)
C80.076 (3)0.074 (2)0.060 (2)0.006 (2)0.0019 (19)0.0083 (18)
C90.075 (3)0.076 (2)0.056 (2)0.008 (2)0.0111 (17)0.0117 (19)
C100.088 (4)0.073 (2)0.083 (3)0.008 (3)0.010 (2)0.006 (2)
C110.075 (3)0.066 (2)0.075 (2)0.012 (2)0.003 (2)0.0074 (19)
C120.095 (4)0.080 (3)0.085 (3)0.005 (3)0.008 (3)0.013 (2)
C130.115 (5)0.111 (4)0.079 (3)0.003 (4)0.017 (3)0.026 (3)
C140.118 (4)0.124 (5)0.064 (3)0.015 (4)0.010 (3)0.013 (3)
C150.104 (4)0.131 (5)0.084 (3)0.012 (4)0.026 (3)0.007 (3)
C160.074 (3)0.104 (4)0.091 (3)0.001 (3)0.000 (2)0.011 (3)
Geometric parameters (Å, º) top
Se1—C81.942 (5)C8—C91.515 (7)
Se1—C71.979 (7)C8—H8A0.9700
N1—C91.464 (6)C8—H8B0.9700
N1—H1N0.93 (7)C9—C101.528 (7)
N1—H2N0.79 (5)C9—H9A0.9800
C1—C21.361 (8)C10—C111.498 (7)
C1—C61.376 (7)C10—H10A0.9700
C1—C71.504 (8)C10—H10B0.9700
C2—C31.380 (11)C11—C121.381 (7)
C2—H2A0.9300C11—C161.387 (8)
C3—C41.358 (12)C12—C131.375 (8)
C3—H3A0.9300C12—H12A0.9300
C4—C51.361 (11)C13—C141.367 (9)
C4—H4A0.9300C13—H13A0.9300
C5—C61.365 (10)C14—C151.354 (10)
C5—H5A0.9300C14—H14A0.9300
C6—H6A0.9300C15—C161.386 (9)
C7—H7A0.9700C15—H15A0.9300
C7—H7B0.9700C16—H16A0.9300
C8—Se1—C797.6 (2)Se1—C8—H8B108.6
C9—N1—H1N103 (4)H8A—C8—H8B107.6
C9—N1—H2N108 (3)N1—C9—C8108.8 (4)
H1N—N1—H2N114 (6)N1—C9—C10108.8 (4)
C2—C1—C6118.8 (5)C8—C9—C10110.7 (4)
C2—C1—C7121.0 (6)N1—C9—H9A109.5
C6—C1—C7120.1 (5)C8—C9—H9A109.5
C1—C2—C3120.5 (6)C10—C9—H9A109.5
C1—C2—H2A119.8C11—C10—C9114.1 (4)
C3—C2—H2A119.8C11—C10—H10A108.7
C4—C3—C2119.9 (6)C9—C10—H10A108.7
C4—C3—H3A120.1C11—C10—H10B108.7
C2—C3—H3A120.1C9—C10—H10B108.7
C3—C4—C5120.2 (7)H10A—C10—H10B107.6
C3—C4—H4A119.9C12—C11—C16118.3 (5)
C5—C4—H4A119.9C12—C11—C10121.5 (5)
C4—C5—C6119.9 (7)C16—C11—C10120.3 (5)
C4—C5—H5A120.1C13—C12—C11120.5 (6)
C6—C5—H5A120.1C13—C12—H12A119.7
C5—C6—C1120.8 (6)C11—C12—H12A119.7
C5—C6—H6A119.6C14—C13—C12120.7 (6)
C1—C6—H6A119.6C14—C13—H13A119.6
C1—C7—Se1112.8 (4)C12—C13—H13A119.6
C1—C7—H7A109.0C15—C14—C13119.6 (6)
Se1—C7—H7A109.0C15—C14—H14A120.2
C1—C7—H7B109.0C13—C14—H14A120.2
Se1—C7—H7B109.0C14—C15—C16120.7 (6)
H7A—C7—H7B107.8C14—C15—H15A119.6
C9—C8—Se1114.6 (3)C16—C15—H15A119.6
C9—C8—H8A108.6C15—C16—C11120.2 (5)
Se1—C8—H8A108.6C15—C16—H16A119.9
C9—C8—H8B108.6C11—C16—H16A119.9
C6—C1—C2—C31.4 (8)N1—C9—C10—C11178.8 (4)
C7—C1—C2—C3177.6 (6)C8—C9—C10—C1161.6 (6)
C1—C2—C3—C41.2 (10)C9—C10—C11—C12102.5 (6)
C2—C3—C4—C50.5 (11)C9—C10—C11—C1676.7 (6)
C3—C4—C5—C60.1 (10)C16—C11—C12—C130.0 (8)
C4—C5—C6—C10.0 (9)C10—C11—C12—C13179.1 (5)
C2—C1—C6—C50.8 (8)C11—C12—C13—C140.5 (9)
C7—C1—C6—C5178.2 (5)C12—C13—C14—C150.9 (10)
C2—C1—C7—Se181.1 (6)C13—C14—C15—C160.8 (11)
C6—C1—C7—Se199.9 (6)C14—C15—C16—C110.2 (10)
Se1—C8—C9—N161.1 (5)C12—C11—C16—C150.2 (8)
Se1—C8—C9—C10179.4 (3)C10—C11—C16—C15179.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Se10.93 (7)2.69 (7)3.239 (7)119 (5)
N1—H2N···N1i0.79 (5)2.56 (5)3.319 (5)161 (4)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

We are grateful to the facilities at BSPM Lab, Albert Einstein Block, University College of Science, Tumkur University, for the support related to crystallography work.

Funding information

Funding for this research was provided by: DST–SERB, Government of India, (grant No. DST/SR/S-1/IC76/2010(G) to PRK); NSF-MRI Program (grant No. CHE-1039027 to JPJ).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationKostas, I. D., Steele, B. R., Terzis, A., Amosova, S. V., Martynov, A. V. & Makhaeva, N. A. (2006). Eur. J. Inorg. Chem. pp. 2642–2646.  CSD CrossRef Google Scholar
First citationKumar, A., Agarwal, M., Singh, A. K. & Butcher, R. J. (2009). Inorg. Chim. Acta, 362, 3208–3218.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRajegowda, H. R., Kumar, P. R., Hosamani, A. & Palakshamurthy, B. S. (2015). Organomet. Chem. 61-69,799-800.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds