organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Iodo­(triphen­yl)silane

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 July 2019; accepted 4 July 2019; online 9 July 2019)

The mol­ecular structure of the title compound, C18H15ISi, which crystallizes in the space group C2/c, does not exhibit any unusual features. Two weak C—H⋯π inter­actions may help to consolidate the packing. The present structure is not isostructural with the known Ph3SiX (X = F, Cl or Br) compounds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The chemistry and properties of Si—B compounds are of great importance as they are already widely adopted in organic syntheses. Despite the long existence and common usage of these compounds, their reactivity has not yet been thoroughly investigated. In a preliminary study, we investigated the chemical behaviour of supersilylated trieles (Wiberg et al., 1998[Wiberg, N., Amelunxen, K., Lemer, H., Nöth, H., Knizek, J. & Krossing, I. (1998). Z. Naturforsch. Teil B, 53, 333-348.]), which had been synthesized from appropriate triel halides and the donor-unsupported silanide Na[SitBu3] (Lerner, 2005[Lerner, H.-W. (2005). Coord. Chem. Rev. 249, 781-798.]). It has been shown that the halides (tBu3Si)BX2 and (tBu3Si)2BX (X = F, Cl and Br) are more labile than the corresponding hydrogen derivatives (Wiberg et al., 2001[Wiberg, N., Amelunxen, K., Blank, T., Lerner, H.-W., Polborn, K., Nöth, H., Littger, R., Rackl, M., Schmidt-Amelunxen, M., Schwenk-Kircher, H. & Warchold, M. (2001). Z. Naturforsch. Teil B, 56, 634-651.]). In this paper, we report the structure of one of the products from the reaction of BI3 with donor-unsupported K[SiPh3] (Alig et al., 2019[Alig, E., Georg, I., Sänger, I., Fink, L., Wagner, M. & Lerner, H.-W. (2019). Z. Naturforsch. Teil B, 74, 153-158.]).

The mol­ecular structure of the title compound (Fig. 1[link]) does not exhibit any unusual features. The Si—I bond has a length of 2.478 (2) Å, which compares well with the value of 2.48 (3) Å retrieved from the Cambridge Structural Database (Version 5.40 of November 2018 plus one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a comparable fragment. The crystal packing features two C—H⋯π inter­actions, with H⋯Cg distances less than 3 Å, viz. C25—H25⋯Cg(C11–C16)i = 2.77 Å and C15—H15⋯Cg(C1–C6)ii = 2.98 Å [symmetry codes: (i) −x + 1, −y, −z + 1; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]].

[Figure 1]
Figure 1
A perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn with an arbitrary radius.

The crystal structures of fluoro­(triphen­yl)silane (Brendler et al., 2012[Brendler, E., Heine, T., Seichter, W., Wagler, J. & Witter, R. (2012). Z. Anorg. Allg. Chem. 638, 935-944.]), chloro­(tri­phen­yl)silane (Lobkovskii et al., 1981[Lobkovskii, E. B., Fokin, V. N. & Semenenko, K. N. (1981). Zh. Strukt. Khim. 22, 152-155.]) and bromo­(triphen­yl)silane (Steinert et al., 2008[Steinert, H., Lerner, H.-W. & Bolte, M. (2008). Acta Cryst. E64, o880.]; Brendler et al., 2012[Brendler, E., Heine, T., Seichter, W., Wagler, J. & Witter, R. (2012). Z. Anorg. Allg. Chem. 638, 935-944.]) have already been determined. Whereas Ph3SiCl and Ph3SiBr display isomorphous structures (space group P21/c with Z = 8), Ph3SiF (space group P21/c with Z = 4) and the title compound (space group C2/c with Z = 8) crystallize in a different way.

Synthesis and crystallization

Neat BI3 (39 mg, 0.10 mmol) was added to K[SiPh3] (28 mg, 13.87 mmol) suspended in benzene (1 ml) at room temperature. Insoluble material was removed by filtration. The liquor was stored at room temperature for a period of approximately one month, yielding colourless blocks of the title compound (Fig. 2[link]).

[Figure 2]
Figure 2
Reaction scheme for the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula C18H15ISi
Mr 386.29
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 16.0488 (8), 11.2984 (6), 19.648 (1)
β (°) 112.379 (4)
V3) 3294.4 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.01
Crystal size (mm) 0.23 × 0.14 × 0.13
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.411, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12164, 2901, 2338
Rint 0.052
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.153, 1.34
No. of reflections 2901
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.02, −0.80
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Iodo(triphenyl)silane top
Crystal data top
C18H15ISiF(000) = 1520
Mr = 386.29Dx = 1.558 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.0488 (8) ÅCell parameters from 12164 reflections
b = 11.2984 (6) Åθ = 3.4–26.2°
c = 19.648 (1) ŵ = 2.01 mm1
β = 112.379 (4)°T = 173 K
V = 3294.4 (3) Å3Block, colourless
Z = 80.23 × 0.14 × 0.13 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2338 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.052
ω scansθmax = 25.0°, θmin = 3.5°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1919
Tmin = 0.411, Tmax = 1.000k = 1313
12164 measured reflectionsl = 2323
2901 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0192P)2 + 60.7486P]
where P = (Fo2 + 2Fc2)/3
S = 1.34(Δ/σ)max < 0.001
2901 reflectionsΔρmax = 1.02 e Å3
181 parametersΔρmin = 0.80 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.48451 (4)0.29151 (7)0.36275 (4)0.0545 (3)
Si10.37819 (15)0.2688 (2)0.42609 (12)0.0318 (5)
C10.3086 (5)0.4064 (7)0.4073 (4)0.0286 (18)
C20.3497 (6)0.5180 (8)0.4247 (5)0.040 (2)
H20.4136070.5237330.4453190.048*
C30.2981 (7)0.6198 (8)0.4121 (5)0.046 (2)
H30.3263380.6949790.4246630.055*
C40.2059 (7)0.6116 (8)0.3814 (6)0.051 (3)
H40.1704710.6815290.3729850.062*
C50.1639 (6)0.5031 (9)0.3626 (5)0.044 (2)
H50.1000480.4981010.3403680.053*
C60.2161 (6)0.4014 (8)0.3766 (5)0.0342 (19)
H60.1872740.3264770.3646950.041*
C110.3062 (5)0.1356 (7)0.3867 (5)0.0319 (19)
C120.2905 (6)0.0529 (8)0.4309 (5)0.038 (2)
H120.3195230.0610210.4827530.046*
C130.2340 (6)0.0425 (8)0.4028 (5)0.038 (2)
H130.2237220.0984520.4348380.045*
C140.1922 (6)0.0554 (8)0.3269 (5)0.044 (2)
H140.1531130.1205040.3067420.052*
C150.2075 (6)0.0254 (8)0.2818 (5)0.044 (2)
H150.1792280.0161710.2299060.053*
C160.2637 (6)0.1206 (8)0.3105 (5)0.040 (2)
H160.2737430.1764480.2782600.048*
C210.4477 (5)0.2505 (7)0.5266 (5)0.0320 (19)
C220.4370 (6)0.3288 (8)0.5773 (5)0.039 (2)
H220.3951000.3920770.5607430.047*
C230.4872 (7)0.3149 (9)0.6516 (5)0.046 (2)
H230.4808750.3699760.6858120.055*
C240.5469 (6)0.2206 (9)0.6765 (5)0.045 (2)
H240.5799170.2094970.7276980.054*
C250.5576 (6)0.1433 (9)0.6260 (5)0.047 (2)
H250.5994340.0799490.6423660.056*
C260.5082 (6)0.1578 (8)0.5524 (5)0.044 (2)
H260.5154070.1030990.5183810.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0438 (4)0.0704 (5)0.0570 (4)0.0112 (4)0.0277 (3)0.0091 (4)
Si10.0317 (12)0.0303 (12)0.0301 (12)0.0037 (10)0.0080 (10)0.0003 (10)
C10.032 (4)0.029 (4)0.025 (4)0.002 (3)0.010 (3)0.004 (3)
C20.036 (5)0.044 (5)0.043 (5)0.000 (4)0.018 (4)0.000 (4)
C30.056 (6)0.027 (5)0.058 (6)0.003 (4)0.025 (5)0.001 (4)
C40.063 (7)0.030 (5)0.069 (7)0.018 (5)0.034 (6)0.013 (5)
C50.024 (4)0.050 (6)0.056 (6)0.012 (4)0.013 (4)0.003 (5)
C60.037 (5)0.028 (4)0.035 (5)0.004 (4)0.012 (4)0.001 (4)
C110.029 (4)0.030 (4)0.036 (5)0.012 (4)0.011 (4)0.002 (4)
C120.041 (5)0.040 (5)0.028 (5)0.005 (4)0.007 (4)0.008 (4)
C130.045 (5)0.038 (5)0.036 (5)0.006 (4)0.021 (4)0.003 (4)
C140.040 (5)0.033 (5)0.055 (6)0.007 (4)0.015 (5)0.012 (5)
C150.047 (5)0.046 (6)0.030 (5)0.002 (4)0.003 (4)0.010 (4)
C160.048 (5)0.042 (5)0.026 (4)0.011 (4)0.010 (4)0.008 (4)
C210.032 (4)0.023 (4)0.039 (5)0.006 (3)0.011 (4)0.002 (3)
C220.036 (5)0.045 (5)0.034 (5)0.011 (4)0.010 (4)0.006 (4)
C230.056 (6)0.045 (6)0.032 (5)0.004 (5)0.011 (4)0.000 (4)
C240.038 (5)0.055 (6)0.034 (5)0.001 (5)0.005 (4)0.013 (5)
C250.031 (5)0.045 (6)0.053 (6)0.008 (4)0.003 (4)0.006 (5)
C260.036 (5)0.037 (5)0.048 (6)0.011 (4)0.006 (4)0.003 (4)
Geometric parameters (Å, º) top
I1—Si12.478 (2)C13—C141.389 (13)
Si1—C11.867 (8)C13—H130.9500
Si1—C211.873 (9)C14—C151.360 (13)
Si1—C111.876 (9)C14—H140.9500
C1—C61.374 (11)C15—C161.379 (13)
C1—C21.405 (12)C15—H150.9500
C2—C31.384 (12)C16—H160.9500
C2—H20.9500C21—C261.386 (12)
C3—C41.373 (14)C21—C221.391 (12)
C3—H30.9500C22—C231.382 (12)
C4—C51.380 (14)C22—H220.9500
C4—H40.9500C23—C241.391 (13)
C5—C61.387 (12)C23—H230.9500
C5—H50.9500C24—C251.381 (14)
C6—H60.9500C24—H240.9500
C11—C121.363 (12)C25—C261.368 (13)
C11—C161.399 (12)C25—H250.9500
C12—C131.382 (12)C26—H260.9500
C12—H120.9500
C1—Si1—C21111.8 (4)C12—C13—C14119.1 (8)
C1—Si1—C11111.0 (4)C12—C13—H13120.5
C21—Si1—C11111.9 (4)C14—C13—H13120.5
C1—Si1—I1106.8 (3)C15—C14—C13119.8 (8)
C21—Si1—I1107.0 (3)C15—C14—H14120.1
C11—Si1—I1108.0 (3)C13—C14—H14120.1
C6—C1—C2118.2 (8)C14—C15—C16120.6 (8)
C6—C1—Si1121.2 (6)C14—C15—H15119.7
C2—C1—Si1120.6 (6)C16—C15—H15119.7
C3—C2—C1120.6 (8)C15—C16—C11120.6 (8)
C3—C2—H2119.7C15—C16—H16119.7
C1—C2—H2119.7C11—C16—H16119.7
C4—C3—C2119.7 (9)C26—C21—C22118.6 (8)
C4—C3—H3120.2C26—C21—Si1121.5 (7)
C2—C3—H3120.2C22—C21—Si1119.9 (6)
C3—C4—C5120.8 (9)C23—C22—C21120.2 (8)
C3—C4—H4119.6C23—C22—H22119.9
C5—C4—H4119.6C21—C22—H22119.9
C4—C5—C6119.1 (8)C22—C23—C24120.4 (9)
C4—C5—H5120.4C22—C23—H23119.8
C6—C5—H5120.4C24—C23—H23119.8
C1—C6—C5121.6 (8)C25—C24—C23119.2 (8)
C1—C6—H6119.2C25—C24—H24120.4
C5—C6—H6119.2C23—C24—H24120.4
C12—C11—C16117.8 (8)C26—C25—C24120.2 (9)
C12—C11—Si1121.4 (6)C26—C25—H25119.9
C16—C11—Si1120.8 (7)C24—C25—H25119.9
C11—C12—C13122.2 (8)C25—C26—C21121.4 (9)
C11—C12—H12118.9C25—C26—H26119.3
C13—C12—H12118.9C21—C26—H26119.3
C21—Si1—C1—C6118.2 (7)Si1—C11—C12—C13176.6 (7)
C11—Si1—C1—C67.5 (8)C11—C12—C13—C140.7 (14)
I1—Si1—C1—C6125.0 (7)C12—C13—C14—C150.0 (14)
C21—Si1—C1—C261.3 (8)C13—C14—C15—C160.4 (14)
C11—Si1—C1—C2173.0 (7)C14—C15—C16—C110.1 (14)
I1—Si1—C1—C255.5 (7)C12—C11—C16—C150.5 (13)
C6—C1—C2—C30.9 (13)Si1—C11—C16—C15177.0 (7)
Si1—C1—C2—C3178.7 (7)C1—Si1—C21—C26176.4 (7)
C1—C2—C3—C40.9 (14)C11—Si1—C21—C2658.4 (8)
C2—C3—C4—C50.3 (16)I1—Si1—C21—C2659.8 (7)
C3—C4—C5—C61.4 (15)C1—Si1—C21—C225.8 (8)
C2—C1—C6—C50.3 (13)C11—Si1—C21—C22119.4 (7)
Si1—C1—C6—C5179.8 (7)I1—Si1—C21—C22122.4 (7)
C4—C5—C6—C11.4 (14)C26—C21—C22—C231.2 (13)
C1—Si1—C11—C12109.8 (7)Si1—C21—C22—C23179.1 (7)
C21—Si1—C11—C1215.9 (8)C21—C22—C23—C241.8 (14)
I1—Si1—C11—C12133.5 (6)C22—C23—C24—C252.1 (14)
C1—Si1—C11—C1667.7 (8)C23—C24—C25—C261.7 (15)
C21—Si1—C11—C16166.6 (7)C24—C25—C26—C211.2 (15)
I1—Si1—C11—C1649.1 (7)C22—C21—C26—C250.9 (14)
C16—C11—C12—C130.9 (13)Si1—C21—C26—C25178.7 (7)
 

References

First citationAlig, E., Georg, I., Sänger, I., Fink, L., Wagner, M. & Lerner, H.-W. (2019). Z. Naturforsch. Teil B, 74, 153–158.  Web of Science CrossRef CAS Google Scholar
First citationBrendler, E., Heine, T., Seichter, W., Wagler, J. & Witter, R. (2012). Z. Anorg. Allg. Chem. 638, 935–944.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLerner, H.-W. (2005). Coord. Chem. Rev. 249, 781–798.  Web of Science CrossRef CAS Google Scholar
First citationLobkovskii, E. B., Fokin, V. N. & Semenenko, K. N. (1981). Zh. Strukt. Khim. 22, 152–155.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteinert, H., Lerner, H.-W. & Bolte, M. (2008). Acta Cryst. E64, o880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiberg, N., Amelunxen, K., Blank, T., Lerner, H.-W., Polborn, K., Nöth, H., Littger, R., Rackl, M., Schmidt-Amelunxen, M., Schwenk-Kircher, H. & Warchold, M. (2001). Z. Naturforsch. Teil B, 56, 634–651.  CrossRef CAS Google Scholar
First citationWiberg, N., Amelunxen, K., Lemer, H., Nöth, H., Knizek, J. & Krossing, I. (1998). Z. Naturforsch. Teil B, 53, 333–348.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds