organic compounds
N-[(Pyridin-2-yl)methyl]thiophene-2-carboxamide
aDepartment of Physics, Sri Malolan College of Arts & Science, Madhurantakam, Kanchipuram - 603 306, India, bDepartment of Chemistry, National Institute of Technology, Tiruchirappalli - 620 015, India, cDepartment of Chemistry, Texas A & M University, College Station, TX, 77842, USA, and dDepartment of Physics, Presidency College (Autonomous), Chennai - 600 005, India
*Correspondence e-mail: saravindhanpresidency@gmail.com
In the title compound, C11H10N2OS, the dihedral angle between the thiophene and pyridine rings is 77.79 (8)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(10) loops. The dimers are reinforced by pairs of C—H⋯N interactions and C—H⋯O interactions link the dimers into [010] chains.
Keywords: pyridine; methyl; thiophene; carboxamide; hydrogen bonds.; crystal structure.
CCDC reference: 1912193
Structure description
Thiophene and its derivatives have various biological properties including anti-microbial (Russell et al., 1988), analgesic and anti-inflammatory (Chen et al., 2008), antihypertensive (Monge Vega et al., 1980), anti-diabetes mellitus (Abdelhamid et al., 2009) and gonadotropin releasing hormone antagonist (Sabins et al., 1944) activities. As part of our studies of potential active pharmaceutical ingredients (APIs) based on thiophenes, we report here the synthesis and of the title compound (Fig. 1).
The key torsion angle of the molecule, S1—C8—C7—O1 and C9—C8—C7—N2 with (−)syn-periplanar conformations and N1—C1—C6—N2 and C1—C6—N2—C7 with (+)syn-clinal conformations are −5.13 (19), −6.4 (2), 79.64 (16) and 73.47 (17)°, respectively. The dihedral angle between the thiophene ring and the pyridine ring is 77.79 (8)°.
In the crystal, the molecules are linked via pairs of N2—H2⋯N1 hydrogen bonds, forming inversion dimers with an R22(10) ring motif; the dimers are reinforced by a pair of C9—H9⋯N1 interactions. The dimers are linked into [010] chains by C5—H5⋯O1 interactions (Table 1 and Figs. 2 and 3).
Synthesis and crystallization
Thiophene 2-carbonyl chloride (1 mmol) and dimethylaminopyridine (DMAP) (1.1 mmol) were dissolved in 10 ml of dry toluene and the mixture was refluxed with stirring for 1 h. The reaction mixture was cooled to room temperature and a solution of 2-aminomethylpyridine (1 mmol) in 5 ml of dry toluene was slowly added to it. The resultant solution was refluxed again for 3 h and the completion of the reaction was confirmed through TLC. The resultant solution was filtered and the filtrate volume was reduced using a rotary evaporator. The residue obtained was dissolved in dichloromethane and washed with water. The organic layer was separated and dried over sodium sulfate and kept for crystallization.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1912193
https://doi.org/10.1107/S2414314619009805/hb4302sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619009805/hb4302Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314619009805/hb4302Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C11H10N2OS | F(000) = 456 |
Mr = 218.27 | Dx = 1.426 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.681 (3) Å | Cell parameters from 4931 reflections |
b = 8.088 (3) Å | θ = 2.4–27.5° |
c = 14.875 (6) Å | µ = 0.29 mm−1 |
β = 103.175 (4)° | T = 110 K |
V = 1016.8 (7) Å3 | Black, colourless |
Z = 4 | 0.57 × 0.57 × 0.56 mm |
Bruker APEXII CCD diffractometer | 2058 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.041 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 27.6°, θmin = 2.4° |
Tmin = 0.539, Tmax = 0.746 | h = −11→11 |
11046 measured reflections | k = −10→10 |
2319 independent reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0462P)2 + 0.5739P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2319 reflections | Δρmax = 0.29 e Å−3 |
136 parameters | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.48410 (5) | 1.06177 (5) | 0.27924 (3) | 0.02145 (13) | |
O1 | 0.27142 (13) | 0.92442 (13) | 0.38710 (8) | 0.0201 (3) | |
N1 | 0.25034 (15) | 0.41563 (15) | 0.44501 (9) | 0.0164 (3) | |
N2 | 0.44226 (14) | 0.74541 (15) | 0.47523 (9) | 0.0149 (3) | |
H2 | 0.5392 | 0.7058 | 0.4897 | 0.018* | |
C1 | 0.20492 (17) | 0.57130 (18) | 0.45674 (10) | 0.0138 (3) | |
C2 | 0.05897 (18) | 0.63262 (19) | 0.41132 (11) | 0.0195 (3) | |
H2A | 0.0290 | 0.7424 | 0.4224 | 0.023* | |
C3 | −0.04294 (19) | 0.5317 (2) | 0.34950 (12) | 0.0245 (4) | |
H3 | −0.1432 | 0.5714 | 0.3169 | 0.029* | |
C4 | 0.00436 (19) | 0.3724 (2) | 0.33628 (12) | 0.0238 (4) | |
H4 | −0.0625 | 0.3006 | 0.2941 | 0.029* | |
C5 | 0.15017 (19) | 0.3193 (2) | 0.38527 (11) | 0.0210 (3) | |
H5 | 0.1814 | 0.2091 | 0.3763 | 0.025* | |
C6 | 0.32272 (17) | 0.68000 (18) | 0.52048 (10) | 0.0162 (3) | |
H6A | 0.2661 | 0.7731 | 0.5418 | 0.019* | |
H6B | 0.3754 | 0.6152 | 0.5754 | 0.019* | |
C7 | 0.40555 (17) | 0.86572 (17) | 0.41170 (10) | 0.0143 (3) | |
C8 | 0.53409 (18) | 0.92391 (17) | 0.36918 (10) | 0.0141 (3) | |
C9 | 0.69193 (18) | 0.88705 (19) | 0.38810 (11) | 0.0176 (3) | |
H9 | 0.7421 | 0.8136 | 0.4357 | 0.021* | |
C10 | 0.77229 (19) | 0.9712 (2) | 0.32843 (11) | 0.0213 (3) | |
H10 | 0.8824 | 0.9607 | 0.3317 | 0.026* | |
C11 | 0.6740 (2) | 1.0683 (2) | 0.26630 (11) | 0.0208 (3) | |
H11 | 0.7072 | 1.1326 | 0.2207 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0171 (2) | 0.0242 (2) | 0.0209 (2) | −0.00174 (15) | −0.00019 (15) | 0.00863 (15) |
O1 | 0.0139 (5) | 0.0177 (6) | 0.0278 (6) | 0.0023 (4) | 0.0029 (5) | 0.0045 (4) |
N1 | 0.0146 (6) | 0.0150 (6) | 0.0199 (7) | 0.0009 (5) | 0.0046 (5) | 0.0026 (5) |
N2 | 0.0101 (6) | 0.0151 (6) | 0.0194 (6) | −0.0001 (5) | 0.0029 (5) | 0.0018 (5) |
C1 | 0.0124 (7) | 0.0155 (7) | 0.0149 (7) | −0.0001 (5) | 0.0061 (5) | 0.0032 (5) |
C2 | 0.0132 (7) | 0.0178 (7) | 0.0283 (9) | 0.0020 (6) | 0.0065 (6) | 0.0048 (6) |
C3 | 0.0112 (7) | 0.0306 (9) | 0.0296 (9) | −0.0014 (6) | 0.0003 (6) | 0.0080 (7) |
C4 | 0.0194 (8) | 0.0268 (9) | 0.0236 (8) | −0.0102 (7) | 0.0018 (6) | 0.0008 (6) |
C5 | 0.0223 (8) | 0.0166 (7) | 0.0252 (8) | −0.0024 (6) | 0.0074 (7) | −0.0013 (6) |
C6 | 0.0158 (7) | 0.0168 (7) | 0.0172 (7) | −0.0009 (6) | 0.0063 (6) | 0.0009 (6) |
C7 | 0.0148 (7) | 0.0110 (6) | 0.0169 (7) | −0.0012 (5) | 0.0032 (6) | −0.0025 (5) |
C8 | 0.0175 (7) | 0.0112 (6) | 0.0131 (7) | −0.0001 (5) | 0.0023 (5) | −0.0002 (5) |
C9 | 0.0176 (8) | 0.0168 (7) | 0.0197 (8) | 0.0027 (6) | 0.0069 (6) | 0.0033 (6) |
C10 | 0.0197 (8) | 0.0223 (8) | 0.0249 (8) | 0.0026 (6) | 0.0110 (6) | 0.0030 (6) |
C11 | 0.0225 (8) | 0.0226 (8) | 0.0187 (8) | −0.0036 (6) | 0.0075 (6) | 0.0030 (6) |
S1—C8 | 1.7195 (16) | C3—C4 | 1.380 (3) |
S1—C11 | 1.7031 (18) | C4—H4 | 0.9500 |
O1—C7 | 1.2331 (18) | C4—C5 | 1.377 (2) |
N1—C1 | 1.3425 (19) | C5—H5 | 0.9500 |
N1—C5 | 1.342 (2) | C6—H6A | 0.9900 |
N2—H2 | 0.8800 | C6—H6B | 0.9900 |
N2—C6 | 1.4587 (18) | C7—C8 | 1.479 (2) |
N2—C7 | 1.3431 (19) | C8—C9 | 1.367 (2) |
C1—C2 | 1.385 (2) | C9—H9 | 0.9500 |
C1—C6 | 1.509 (2) | C9—C10 | 1.421 (2) |
C2—H2A | 0.9500 | C10—H10 | 0.9500 |
C2—C3 | 1.387 (2) | C10—C11 | 1.356 (2) |
C3—H3 | 0.9500 | C11—H11 | 0.9500 |
C11—S1—C8 | 91.66 (8) | N2—C6—H6A | 109.2 |
C5—N1—C1 | 117.73 (13) | N2—C6—H6B | 109.2 |
C6—N2—H2 | 119.7 | C1—C6—H6A | 109.2 |
C7—N2—H2 | 119.7 | C1—C6—H6B | 109.2 |
C7—N2—C6 | 120.51 (13) | H6A—C6—H6B | 107.9 |
N1—C1—C2 | 122.39 (14) | O1—C7—N2 | 122.98 (13) |
N1—C1—C6 | 116.81 (13) | O1—C7—C8 | 120.25 (13) |
C2—C1—C6 | 120.77 (14) | N2—C7—C8 | 116.75 (13) |
C1—C2—H2A | 120.4 | C7—C8—S1 | 117.25 (11) |
C1—C2—C3 | 119.16 (15) | C9—C8—S1 | 111.40 (11) |
C3—C2—H2A | 120.4 | C9—C8—C7 | 131.35 (14) |
C2—C3—H3 | 120.7 | C8—C9—H9 | 123.9 |
C4—C3—C2 | 118.57 (15) | C8—C9—C10 | 112.24 (14) |
C4—C3—H3 | 120.7 | C10—C9—H9 | 123.9 |
C3—C4—H4 | 120.6 | C9—C10—H10 | 123.8 |
C5—C4—C3 | 118.90 (15) | C11—C10—C9 | 112.37 (15) |
C5—C4—H4 | 120.6 | C11—C10—H10 | 123.8 |
N1—C5—C4 | 123.23 (15) | S1—C11—H11 | 123.8 |
N1—C5—H5 | 118.4 | C10—C11—S1 | 112.33 (12) |
C4—C5—H5 | 118.4 | C10—C11—H11 | 123.8 |
N2—C6—C1 | 111.90 (12) | ||
S1—C8—C9—C10 | −0.32 (17) | C5—N1—C1—C2 | 1.5 (2) |
O1—C7—C8—S1 | −5.13 (19) | C5—N1—C1—C6 | −176.95 (13) |
O1—C7—C8—C9 | 175.25 (15) | C6—N2—C7—O1 | −1.4 (2) |
N1—C1—C2—C3 | −1.8 (2) | C6—N2—C7—C8 | −179.75 (12) |
N1—C1—C6—N2 | 79.64 (16) | C6—C1—C2—C3 | 176.59 (14) |
N2—C7—C8—S1 | 173.26 (11) | C7—N2—C6—C1 | 73.47 (17) |
N2—C7—C8—C9 | −6.4 (2) | C7—C8—C9—C10 | 179.31 (15) |
C1—N1—C5—C4 | −0.2 (2) | C8—S1—C11—C10 | −0.70 (13) |
C1—C2—C3—C4 | 0.8 (2) | C8—C9—C10—C11 | −0.2 (2) |
C2—C1—C6—N2 | −98.81 (16) | C9—C10—C11—S1 | 0.64 (19) |
C2—C3—C4—C5 | 0.4 (2) | C11—S1—C8—C7 | −179.12 (12) |
C3—C4—C5—N1 | −0.7 (2) | C11—S1—C8—C9 | 0.58 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N1i | 0.88 | 2.11 | 2.963 (2) | 164 |
C5—H5···O1ii | 0.95 | 2.43 | 3.361 (2) | 168 |
C9—H9···N1i | 0.95 | 2.56 | 3.441 (2) | 155 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z. |
References
Abdelhamid, A. O. (2009). J. Heterocycl. Chem. 46, 680–686. Web of Science CrossRef CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, H. J., Wang, W., l Wang, G. F., Shi, L. P., Gu, M., Ren, Y. D. & Hou, L. F. (2008). Med. Chem. 3, 1316–1321. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Monge Vega, A., Aldana, I., Rabbani, M. M. & Fernandez-Alvarez, E. (1980). Heterocycl. Chem. 17, 77–80. CrossRef CAS Web of Science Google Scholar
Russell, R. K., Press, J. B., Rampulla, R. A., McNally, J. J., Falotico, R., Keiser, J. A., Bright, D. A. & Tobia, A. (1988). J. Med. Chem. 31, 1786–1793. CrossRef CAS PubMed Web of Science Google Scholar
Sabins, R. W. (1944). Sulfur Rep. 16, 1. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.