organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(2-methyl­lactato)borate tetra­hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bPrincipal, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 27 June 2019; accepted 9 July 2019; online 12 July 2019)

The asymmetric unit of the title compound (systematic name: 3,3,8,8-tetra­methyl-1,4,6,9-tetra­oxa-λ4-bora­spiro­[4.4]nonane-2,7-dione tetra­hydrate), C8H12BO6·4H2O, consists of half a bis­(2-methyl­lactato)borate mol­ecule and two water mol­ecules of solvation. In the crystal, O—H⋯O hydrogen bonds link the components into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Allen et al. (2012[Allen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.]) have reported the structure of lithium bis­(2-methyl­lactato)borate monohydrate. We report here the growth and structural analysis of bis(2-methyl­lactato)borate tetrahydrate, prepared by the slow evaporation method. Whereas the lithium salt crystallizes in the space group Pbca with Z = 8, the title compound crystallizes in the space group P21212 with Z = 2.

The asymmetric unit of the title compound consists of a (2-methyl­lactato)borate mol­ecule and two water mol­ecules (Fig. 1[link]). The five-membered ring O1/C1/C2/O3/B1 adopts an envelope form on O3 atom [puckering parameters Q2 = 0.104 (2) Å, φ2 = 288.5 (11)°] and B1/O1i/C1i/C2i/O3i adopts an envelope form on O3i atom [puckering parameters Q2 = 0.104 (2) Å, φ2 = 144.5 (11)°]. The dihedral angle between the above two five-membered rings is 89.83 (12)°. In the crystal, O—H⋯O hydrogen bonds (Table 1[link]) link the components into a three-dimensional network, as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O3 0.90 (2) 1.77 (2) 2.645 (2) 165 (4)
O5—H3⋯O2i 0.88 (2) 1.92 (2) 2.805 (3) 179 (3)
O5—H4⋯O2ii 0.87 (2) 1.92 (2) 2.795 (2) 175 (4)
O4—H2⋯O5 0.92 (2) 1.67 (2) 2.591 (2) 173 (4)
Symmetry codes: (i) -x+1, -y+1, z-1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
A view of the asymmetric unit of the title compound showing the atom numbering with displacement ellipsoids drawn at the 30% probability level. Symmetry code: (i) −x + 1, −y + 1, z.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the c axis.

Synthesis and crystallization

The title compound was synthesized by reacting 2-methyl­lactic acid and boric acid (molar ratio 2:1) in double-distilled water. Slow evaporation of the solvent yielded good quality crystals in a period of about four months.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H12BO6·4H2O
Mr 287.05
Crystal system, space group Orthorhombic, P21212
Temperature (K) 296
a, b, c (Å) 7.0809 (1), 16.7912 (3), 6.5001 (1)
V3) 772.84 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.568, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18957, 1680, 1585
Rint 0.052
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.08
No. of reflections 1680
No. of parameters 104
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.12
Absolute structure Flack x determined using 587 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.4 (4)
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 and SAINT (Bruker, 2016); data reduction: SAINT and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3,3,8,8-Tetramethyl-1,4,6,9-tetraoxa-λ4-boraspiro[4.4]nonane-2,7-dione tetrahydrate top
Crystal data top
C8H12BO6·4H2ODx = 1.234 Mg m3
Mr = 287.05Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 6304 reflections
a = 7.0809 (1) Åθ = 3.1–30.4°
b = 16.7912 (3) ŵ = 0.11 mm1
c = 6.5001 (1) ÅT = 296 K
V = 772.84 (2) Å3Block, colourless
Z = 20.15 × 0.15 × 0.10 mm
F(000) = 306
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
1680 independent reflections
Radiation source: fine-focus sealed tube1585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω and φ scanθmax = 27.0°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.568, Tmax = 0.746k = 2121
18957 measured reflectionsl = 88
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0444P)2 + 0.1071P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max < 0.001
wR(F2) = 0.094Δρmax = 0.21 e Å3
S = 1.08Δρmin = 0.12 e Å3
1680 reflectionsExtinction correction: SHELXL2018 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
104 parametersExtinction coefficient: 0.26 (3)
6 restraintsAbsolute structure: Flack x determined using 587 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.4 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.5000000.5000000.6216 (5)0.0446 (7)
C10.4604 (3)0.62908 (10)0.7335 (3)0.0450 (5)
C20.3039 (3)0.61335 (11)0.5802 (3)0.0451 (5)
C30.1148 (3)0.61058 (17)0.6908 (5)0.0718 (7)
H3A0.0850170.6625410.7431280.108*
H3B0.0183070.5940260.5962940.108*
H3C0.1217540.5734150.8027700.108*
C40.3052 (5)0.67396 (15)0.4066 (4)0.0705 (7)
H4A0.2734540.7255270.4601410.106*
H4B0.4287080.6758320.3457580.106*
H4C0.2143970.6588070.3041840.106*
O10.5687 (2)0.56635 (8)0.7558 (3)0.0529 (4)
O20.4861 (3)0.69107 (8)0.8287 (3)0.0627 (5)
O30.3516 (2)0.53588 (8)0.5003 (3)0.0550 (4)
O40.1638 (3)0.47942 (11)0.1802 (3)0.0664 (5)
O50.2299 (3)0.32920 (10)0.1250 (4)0.0780 (6)
H10.223 (6)0.491 (2)0.299 (5)0.124 (14)*
H20.180 (6)0.4259 (15)0.153 (7)0.132 (16)*
H30.319 (4)0.322 (2)0.032 (5)0.103 (12)*
H40.160 (5)0.2871 (18)0.146 (6)0.109 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0511 (17)0.0316 (13)0.0511 (16)0.0068 (12)0.0000.000
C10.0458 (10)0.0308 (8)0.0584 (10)0.0052 (7)0.0008 (8)0.0009 (7)
C20.0465 (10)0.0298 (8)0.0589 (11)0.0086 (7)0.0018 (9)0.0000 (8)
C30.0498 (13)0.0664 (15)0.0994 (19)0.0000 (11)0.0100 (13)0.0073 (14)
C40.0858 (18)0.0534 (13)0.0721 (15)0.0146 (12)0.0064 (14)0.0165 (11)
O10.0551 (8)0.0353 (7)0.0683 (9)0.0125 (6)0.0147 (7)0.0036 (6)
O20.0651 (10)0.0360 (7)0.0870 (11)0.0082 (7)0.0124 (9)0.0131 (7)
O30.0640 (9)0.0370 (7)0.0640 (9)0.0160 (6)0.0158 (7)0.0091 (7)
O40.0687 (11)0.0631 (11)0.0673 (10)0.0098 (8)0.0077 (8)0.0156 (8)
O50.0820 (13)0.0421 (9)0.1098 (16)0.0100 (8)0.0335 (12)0.0042 (9)
Geometric parameters (Å, º) top
B1—O3i1.445 (2)C3—H3A0.9600
B1—O31.445 (2)C3—H3B0.9600
B1—O11.496 (2)C3—H3C0.9600
B1—O1i1.496 (2)C4—H4A0.9600
C1—O21.225 (2)C4—H4B0.9600
C1—O11.311 (2)C4—H4C0.9600
C1—C21.513 (3)O4—H10.90 (2)
C2—O31.441 (2)O4—H20.92 (2)
C2—C41.520 (3)O5—H30.88 (2)
C2—C31.521 (3)O5—H40.87 (2)
O3i—B1—O3113.9 (2)C2—C3—H3B109.5
O3i—B1—O1113.09 (9)H3A—C3—H3B109.5
O3—B1—O1104.13 (7)C2—C3—H3C109.5
O3i—B1—O1i104.13 (7)H3A—C3—H3C109.5
O3—B1—O1i113.09 (9)H3B—C3—H3C109.5
O1—B1—O1i108.7 (2)C2—C4—H4A109.5
O2—C1—O1122.67 (19)C2—C4—H4B109.5
O2—C1—C2126.17 (17)H4A—C4—H4B109.5
O1—C1—C2111.17 (16)C2—C4—H4C109.5
O3—C2—C1102.92 (15)H4A—C4—H4C109.5
O3—C2—C4109.59 (18)H4B—C4—H4C109.5
C1—C2—C4111.57 (19)C1—O1—B1110.08 (14)
O3—C2—C3110.44 (18)C2—O3—B1110.48 (14)
C1—C2—C3109.80 (18)H1—O4—H2108 (3)
C4—C2—C3112.1 (2)H3—O5—H4114 (3)
C2—C3—H3A109.5
O2—C1—C2—O3174.2 (2)O3—B1—O1—C16.8 (2)
O1—C1—C2—O36.5 (2)O1i—B1—O1—C1114.04 (16)
O2—C1—C2—C456.7 (3)C1—C2—O3—B110.8 (2)
O1—C1—C2—C4123.9 (2)C4—C2—O3—B1129.6 (2)
O2—C1—C2—C368.2 (3)C3—C2—O3—B1106.4 (2)
O1—C1—C2—C3111.1 (2)O3i—B1—O3—C2134.64 (16)
O2—C1—O1—B1179.2 (2)O1—B1—O3—C211.0 (2)
C2—C1—O1—B10.2 (2)O1i—B1—O3—C2106.76 (18)
O3i—B1—O1—C1130.86 (18)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O30.90 (2)1.77 (2)2.645 (2)165 (4)
O5—H3···O2ii0.88 (2)1.92 (2)2.805 (3)179 (3)
O5—H4···O2iii0.87 (2)1.92 (2)2.795 (2)175 (4)
O4—H2···O50.92 (2)1.67 (2)2.591 (2)173 (4)
Symmetry codes: (ii) x+1, y+1, z1; (iii) x+1/2, y1/2, z+1.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Madras (IITM), Chennai 600 036, Tamilnadu, India, for the single-crystal X-ray diffraction data.

References

First citationAllen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds