organic compounds
N-Methyl-N-propyltryptamine (MPT)
aCaaMTech, LLC, 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA, and bDepartment of Chemistry & Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: andrew@caam.tech
The title compound {systematic name: [2-(1H-indol-3-yl)ethyl](methyl)propylamine}, C14H20N2, has a single molecule in the The molecules in the are held together in infinite one-dimensional chains along [010] through N—H⋯N hydrogen bonds between indole H atoms and trialkylamine N atoms.
Keywords: crystal structure; tryptamines; indoles; hydrogen bonding.
CCDC reference: 1938495
Structure description
N-Methyl-N-propyltryptamine (MPT) is a structural analog of N,N-dimethyltryptamine (DMT), which is a well known `psychedelic' molecule found in a variety of naturally occurring organisms, including plants, animals, and funghi, including mushrooms. In humans, DMT is the only known endogenous mammalian N,N-dimethylated trace amine (Fontanilla et al., 2009). Naturally occurring tryptamines (e.g. DMT, psilocybin, 5-methoxy-N,N-dimethyltryptamine) and their synthetic derivatives (e.g. psilacetin, MPT) have garnered considerable attention of late due to new evidence demonstrating their efficacy in treating mood (e.g. anxiety and depression) and post traumatic stress disorders (PTSDs) (Aixalà et al., 2018; Cameron et al., 2019).
Psilocybin, isolated from the so-called `magic' mushrooms, is perhaps the best known prodrug of the serotonin 2a agonist psilocin (Nichols, 2016). Recent studies indicate that psilocin (and its prodrugs like psilocybin and psilacetin) could provide effective treatment for mood disorders, end-of-life anxiety, addiction, and PTSD (Carhart-Harris et al., 2016; Johnson & Griffiths, 2017). However, the long duration of action of psilocin and its prodrugs can result in practical challenges for both patients and clinicians (Passie et al., 2002). Accordingly, the mental health industry would benefit from exploring alternative tryptamine treatment options that provide similar therapeutic benefits while having a shorter duration of action.
While the synthesis of DMT was first reported in 1931 (Manske, 1931), the first literature report of MPT appeared in 2005 (Brandt et al., 2005) and it has not undergone significant study. In the solid-state structure of MPT, there is a single molecule in the with an indole group that demonstrates a mean deviation from planarity of 0.015 Å (Fig. 1). The metrical parameters are consistent with the previously reported structure of DMT (Falkenberg, 1972) and other dialkyltryptamines (Chadeayne et al., 2019a,b; Petcher & Weber, 1974; Weber & Petcher, 1974). The tryptamine molecules are held together in an infinite one-dimensional chain along [010] through N—H⋯N hydrogen bonds connecting the indole N atom to the amine N atom (Table 1, Fig. 2). In the structure of DMT, there are similar hydrogen bonds, but they hold molecules together as dimers rather than in a chain. There are no π–π interactions observed in the structure.
Synthesis and crystallization
Single crystals of MPT suitable for X-ray analysis were obtained by the slow evaporation of a methylene chloride solution of a commercial sample of N-methyl-N-propyltryptamine (The Indole Shop).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1938495
https://doi.org/10.1107/S2414314619009623/bx4015sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619009623/bx4015Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a) and publCIF (Westrip, 2010); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C14H20N2 | Dx = 1.123 Mg m−3 |
Mr = 216.32 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9106 reflections |
a = 13.5715 (11) Å | θ = 3.0–25.3° |
b = 12.4352 (10) Å | µ = 0.07 mm−1 |
c = 15.1627 (12) Å | T = 200 K |
V = 2558.9 (4) Å3 | Block, colourless |
Z = 8 | 0.28 × 0.20 × 0.13 mm |
F(000) = 944 |
Bruker D8 Venture CMOS diffractometer | 1942 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.048 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 25.4°, θmin = 3.0° |
Tmin = 0.713, Tmax = 0.745 | h = −16→16 |
47431 measured reflections | k = −14→15 |
2350 independent reflections | l = −18→18 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.040P)2 + 0.843P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.095 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.17 e Å−3 |
2350 reflections | Δρmin = −0.16 e Å−3 |
152 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0279 (16) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.15123 (8) | 0.54678 (9) | 0.71757 (7) | 0.0342 (3) | |
N2 | 0.47825 (7) | 0.22356 (7) | 0.76631 (7) | 0.0281 (3) | |
C1 | 0.20625 (9) | 0.48945 (10) | 0.77718 (8) | 0.0329 (3) | |
H1A | 0.2086 | 0.5040 | 0.8387 | 0.040* | |
C2 | 0.16536 (9) | 0.50319 (10) | 0.63560 (8) | 0.0299 (3) | |
C3 | 0.12410 (10) | 0.53092 (11) | 0.55460 (9) | 0.0380 (3) | |
H3 | 0.0802 | 0.5901 | 0.5494 | 0.046* | |
C4 | 0.14904 (10) | 0.46983 (12) | 0.48231 (9) | 0.0438 (4) | |
H4 | 0.1221 | 0.4873 | 0.4263 | 0.053* | |
C7 | 0.23153 (8) | 0.41566 (9) | 0.64465 (8) | 0.0291 (3) | |
C5 | 0.21333 (10) | 0.38242 (12) | 0.48980 (9) | 0.0427 (4) | |
H5 | 0.2288 | 0.3413 | 0.4389 | 0.051* | |
C6 | 0.25456 (10) | 0.35491 (11) | 0.56941 (9) | 0.0368 (3) | |
H6 | 0.2982 | 0.2954 | 0.5735 | 0.044* | |
C8 | 0.25697 (9) | 0.40901 (9) | 0.73654 (8) | 0.0299 (3) | |
C9 | 0.32024 (9) | 0.32514 (10) | 0.77938 (9) | 0.0347 (3) | |
H9A | 0.2902 | 0.2536 | 0.7696 | 0.042* | |
H9B | 0.3217 | 0.3382 | 0.8438 | 0.042* | |
C10 | 0.42572 (9) | 0.32375 (10) | 0.74460 (9) | 0.0334 (3) | |
H10A | 0.4245 | 0.3328 | 0.6797 | 0.040* | |
H10B | 0.4622 | 0.3854 | 0.7699 | 0.040* | |
C11 | 0.50645 (10) | 0.22182 (10) | 0.85999 (8) | 0.0341 (3) | |
H11A | 0.4465 | 0.2323 | 0.8962 | 0.041* | |
H11B | 0.5511 | 0.2832 | 0.8716 | 0.041* | |
C12 | 0.55691 (12) | 0.11938 (12) | 0.88919 (10) | 0.0473 (4) | |
H12A | 0.6211 | 0.1130 | 0.8585 | 0.057* | |
H12B | 0.5159 | 0.0570 | 0.8719 | 0.057* | |
C13 | 0.57384 (14) | 0.11646 (13) | 0.98776 (10) | 0.0574 (4) | |
H13A | 0.6089 | 0.0503 | 1.0034 | 0.086* | |
H13B | 0.5103 | 0.1184 | 1.0183 | 0.086* | |
H13C | 0.6133 | 0.1789 | 1.0054 | 0.086* | |
C14 | 0.56449 (10) | 0.21237 (11) | 0.70873 (9) | 0.0402 (3) | |
H14A | 0.5432 | 0.2125 | 0.6470 | 0.060* | |
H14B | 0.5982 | 0.1446 | 0.7219 | 0.060* | |
H14C | 0.6097 | 0.2726 | 0.7189 | 0.060* | |
H1 | 0.1103 (12) | 0.6027 (13) | 0.7328 (10) | 0.055 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0332 (6) | 0.0297 (6) | 0.0396 (6) | 0.0077 (5) | −0.0033 (5) | −0.0054 (5) |
N2 | 0.0232 (5) | 0.0262 (5) | 0.0350 (6) | −0.0004 (4) | −0.0003 (4) | −0.0002 (4) |
C1 | 0.0321 (6) | 0.0317 (7) | 0.0350 (7) | 0.0017 (5) | −0.0026 (5) | −0.0024 (5) |
C2 | 0.0248 (6) | 0.0282 (6) | 0.0365 (7) | −0.0018 (5) | 0.0000 (5) | −0.0019 (5) |
C3 | 0.0322 (7) | 0.0386 (7) | 0.0434 (8) | 0.0002 (6) | −0.0045 (6) | 0.0023 (6) |
C4 | 0.0412 (8) | 0.0546 (9) | 0.0356 (8) | −0.0068 (7) | −0.0034 (6) | 0.0001 (6) |
C7 | 0.0231 (6) | 0.0255 (6) | 0.0386 (7) | −0.0031 (5) | 0.0019 (5) | −0.0019 (5) |
C5 | 0.0422 (8) | 0.0479 (8) | 0.0380 (8) | −0.0059 (6) | 0.0052 (6) | −0.0103 (6) |
C6 | 0.0320 (7) | 0.0335 (7) | 0.0448 (8) | −0.0010 (5) | 0.0055 (6) | −0.0074 (6) |
C8 | 0.0252 (6) | 0.0263 (6) | 0.0383 (7) | −0.0011 (5) | 0.0005 (5) | 0.0000 (5) |
C9 | 0.0298 (7) | 0.0302 (7) | 0.0442 (8) | 0.0033 (5) | 0.0023 (6) | 0.0047 (5) |
C10 | 0.0273 (6) | 0.0286 (6) | 0.0441 (7) | −0.0015 (5) | −0.0006 (5) | 0.0065 (5) |
C11 | 0.0339 (7) | 0.0307 (7) | 0.0377 (7) | −0.0007 (5) | −0.0048 (5) | −0.0025 (5) |
C12 | 0.0545 (9) | 0.0413 (8) | 0.0462 (8) | 0.0095 (7) | −0.0089 (7) | 0.0019 (6) |
C13 | 0.0701 (11) | 0.0508 (9) | 0.0514 (9) | −0.0043 (8) | −0.0200 (8) | 0.0090 (7) |
C14 | 0.0288 (7) | 0.0439 (8) | 0.0478 (8) | 0.0014 (6) | 0.0060 (6) | 0.0007 (6) |
N1—C1 | 1.3722 (16) | C8—C9 | 1.4991 (17) |
N1—C2 | 1.3695 (16) | C9—H9A | 0.9900 |
N1—H1 | 0.920 (17) | C9—H9B | 0.9900 |
N2—C10 | 1.4727 (15) | C9—C10 | 1.5257 (17) |
N2—C11 | 1.4712 (15) | C10—H10A | 0.9900 |
N2—C14 | 1.4668 (16) | C10—H10B | 0.9900 |
C1—H1A | 0.9500 | C11—H11A | 0.9900 |
C1—C8 | 1.3618 (17) | C11—H11B | 0.9900 |
C2—C3 | 1.3932 (18) | C11—C12 | 1.5126 (18) |
C2—C7 | 1.4177 (17) | C12—H12A | 0.9900 |
C3—H3 | 0.9500 | C12—H12B | 0.9900 |
C3—C4 | 1.3759 (19) | C12—C13 | 1.513 (2) |
C4—H4 | 0.9500 | C13—H13A | 0.9800 |
C4—C5 | 1.398 (2) | C13—H13B | 0.9800 |
C7—C6 | 1.4035 (17) | C13—H13C | 0.9800 |
C7—C8 | 1.4377 (18) | C14—H14A | 0.9800 |
C5—H5 | 0.9500 | C14—H14B | 0.9800 |
C5—C6 | 1.374 (2) | C14—H14C | 0.9800 |
C6—H6 | 0.9500 | ||
C1—N1—H1 | 123.8 (10) | H9A—C9—H9B | 107.7 |
C2—N1—C1 | 108.42 (10) | C10—C9—H9A | 108.9 |
C2—N1—H1 | 127.7 (10) | C10—C9—H9B | 108.9 |
C11—N2—C10 | 110.74 (10) | N2—C10—C9 | 112.74 (10) |
C14—N2—C10 | 109.48 (10) | N2—C10—H10A | 109.0 |
C14—N2—C11 | 111.45 (10) | N2—C10—H10B | 109.0 |
N1—C1—H1A | 124.5 | C9—C10—H10A | 109.0 |
C8—C1—N1 | 111.01 (11) | C9—C10—H10B | 109.0 |
C8—C1—H1A | 124.5 | H10A—C10—H10B | 107.8 |
N1—C2—C3 | 130.23 (12) | N2—C11—H11A | 108.7 |
N1—C2—C7 | 107.74 (11) | N2—C11—H11B | 108.7 |
C3—C2—C7 | 122.01 (12) | N2—C11—C12 | 114.38 (10) |
C2—C3—H3 | 121.1 | H11A—C11—H11B | 107.6 |
C4—C3—C2 | 117.83 (13) | C12—C11—H11A | 108.7 |
C4—C3—H3 | 121.1 | C12—C11—H11B | 108.7 |
C3—C4—H4 | 119.4 | C11—C12—H12A | 109.2 |
C3—C4—C5 | 121.19 (13) | C11—C12—H12B | 109.2 |
C5—C4—H4 | 119.4 | C11—C12—C13 | 112.22 (12) |
C2—C7—C8 | 106.87 (10) | H12A—C12—H12B | 107.9 |
C6—C7—C2 | 118.39 (11) | C13—C12—H12A | 109.2 |
C6—C7—C8 | 134.69 (12) | C13—C12—H12B | 109.2 |
C4—C5—H5 | 119.4 | C12—C13—H13A | 109.5 |
C6—C5—C4 | 121.27 (13) | C12—C13—H13B | 109.5 |
C6—C5—H5 | 119.4 | C12—C13—H13C | 109.5 |
C7—C6—H6 | 120.3 | H13A—C13—H13B | 109.5 |
C5—C6—C7 | 119.31 (12) | H13A—C13—H13C | 109.5 |
C5—C6—H6 | 120.3 | H13B—C13—H13C | 109.5 |
C1—C8—C7 | 105.96 (10) | N2—C14—H14A | 109.5 |
C1—C8—C9 | 127.19 (12) | N2—C14—H14B | 109.5 |
C7—C8—C9 | 126.70 (11) | N2—C14—H14C | 109.5 |
C8—C9—H9A | 108.9 | H14A—C14—H14B | 109.5 |
C8—C9—H9B | 108.9 | H14A—C14—H14C | 109.5 |
C8—C9—C10 | 113.30 (10) | H14B—C14—H14C | 109.5 |
N1—C1—C8—C7 | −0.41 (14) | C3—C2—C7—C6 | −0.82 (18) |
N1—C1—C8—C9 | −176.10 (11) | C3—C2—C7—C8 | −178.57 (11) |
N1—C2—C3—C4 | −177.51 (13) | C3—C4—C5—C6 | −0.5 (2) |
N1—C2—C7—C6 | 177.50 (11) | C4—C5—C6—C7 | 0.1 (2) |
N1—C2—C7—C8 | −0.25 (13) | C7—C2—C3—C4 | 0.40 (19) |
N2—C11—C12—C13 | −173.49 (12) | C7—C8—C9—C10 | 62.03 (17) |
C1—N1—C2—C3 | 178.13 (13) | C6—C7—C8—C1 | −176.81 (13) |
C1—N1—C2—C7 | 0.00 (14) | C6—C7—C8—C9 | −1.1 (2) |
C1—C8—C9—C10 | −123.14 (14) | C8—C7—C6—C5 | 177.52 (13) |
C2—N1—C1—C8 | 0.27 (14) | C8—C9—C10—N2 | −162.95 (10) |
C2—C3—C4—C5 | 0.3 (2) | C10—N2—C11—C12 | 177.40 (11) |
C2—C7—C6—C5 | 0.56 (18) | C11—N2—C10—C9 | −74.78 (13) |
C2—C7—C8—C1 | 0.40 (13) | C14—N2—C10—C9 | 161.94 (11) |
C2—C7—C8—C9 | 176.12 (11) | C14—N2—C11—C12 | −60.47 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N2i | 0.920 (17) | 1.990 (17) | 2.9097 (15) | 179.8 (16) |
Symmetry code: (i) −x+1/2, y+1/2, z. |
Acknowledgements
Financial statements and conflict of interest: This study was funded by CaaMTech, LLC. ARC reports an ownership interest in CaaMTech, LLC, which has filed patent applications covering compositions of psilocybin derivatives.
Funding information
Funding for this research was provided by: National Science Foundation (grant No. CHE-1429086).
References
Aixalà, M., Dos Santos, R. G., Hallak, J. E. C. & Bouso, J. C. (2018). ACS Chem. Neurosci. 9, 2304–2306. Web of Science PubMed Google Scholar
Brandt, S. D., Freeman, S., Fleet, I. A., McGagh, P. & Alder, J. F. (2005). Analyst, 130, 330–344. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cameron, L. P., Benson, C. J., DeFelice, B. C., Fiehn, O. & Olson, D. E. (2019). ACS Chem. Neurosci. In the press. https://doi.org/10.1021/acschemneuro.8b00692. Google Scholar
Carhart-Harris, R. L., Bolstridge, M., Rucker, J., Day, C. M., Erritzoe, D., Kaelen, M., Bloomfield, M., Rickard, J. A., Forbes, B., Feilding, A., Taylor, D., Pilling, S., Curran, V. H. & Nutt, D. J. (2016). Lancet Psychiatr. 3, 619–627. Google Scholar
Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902. CSD CrossRef IUCr Journals Google Scholar
Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). Psychedel. Sci. Rev. https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Falkenberg, G. (1972). Acta Cryst. B28, 3075–3083. CSD CrossRef IUCr Journals Web of Science Google Scholar
Fontanilla, D., Johannessen, M., Hajipour, A. R., Cozzi, N. V., Jackson, M. B. & Ruoho, A. E. (2009). Science, 323, 934–937. Web of Science CrossRef PubMed CAS Google Scholar
Johnson, M. W. & Griffiths, R. R. (2017). Neurotherapeutics, 14, 734–740. Web of Science CrossRef CAS PubMed Google Scholar
Manske, R. H. F. (1931). Can. J. Res. 5, 592–600. CrossRef CAS Google Scholar
Nichols, D. E. (2016). Pharmacol. Rev. 68, 264–355. Web of Science CrossRef CAS PubMed Google Scholar
Passie, T., Seifert, J., Schneider, U. & Emrich, H. M. (2002). Addict. Biol. 7, 357–364. Web of Science CrossRef PubMed CAS Google Scholar
Petcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. II, pp. 946–948. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Weber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. II, pp. 942–946. CSD CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.