metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Crystal structure of bis­­(benzoato-κO)[5,15-di­phenyl-10,20-bis­­(pyridin-4-yl)porphyrinato-κ4N,N′,N′′,N′′′]tin(IV)

crossmark logo

aDepartment of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
*Correspondence e-mail: hjk@kumoh.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 May 2019; accepted 1 June 2019; online 8 July 2019)

In the crystal structure of the title compound, [Sn(C42H26N6)(C7H5O2)2], the SnIV ion is located on a crystallographic inversion centre and is octa­hedrally coordinated with an N4O2 set. Four N atoms of the porphyrin ring form the equatorial plane while the axial positions are occupied by two O atoms from benzoate anions. The molecular packing of the title complex involves non-classical hydrogen bonds of the types C—H⋯O and C—H⋯N, leading to a three-dimensional network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Tin(IV) porphyrin is a suitable scaffold for use as a building block in the design of supra­molecular porphyrin assemblies (Kim et al., 2005[Kim, H.-J., Jo, H. J., Kim, J., Kim, S.-Y., Kim, D. & Kim, K. (2005). CrystEngComm, 7, 417-420.], 2019[Kim, H. J., Shee, N. K., Park, K.-M. & Kim, H.-J. (2019). Inorg. Chim. Acta, 488, 1-7.]; Titi et al., 2013a[Titi, H. M., Patra, R. & Goldberg, I. (2013a). Acta Cryst. C69, 1013-1016.]; Jo et al., 2015[Jo, H. J., Kim, S. H. & Kim, H.-J. (2015). Bull. Korean Chem. Soc. 36, 2348-2351.]). Tin(IV) porphyrins readily form stable complexes, with the central tin(IV) atom usually in a sixfold coordination. Next to the porphyrin core, two trans axial oxyanion ligands are frequently encountered as a result of the oxophilic nature of the high-valent tin(IV) atom (Arnold & Blok, 2004[Arnold, D. P. & Blok, J. (2004). Coord. Chem. Rev. 248, 299-319.]; Shetti et al., 2012[Shetti, V. S., Pareek, Y. & Ravikanth, M. (2012). Coord. Chem. Rev. 256, 2816-2842.]; Titi et al., 2015[Titi, H. M., Nandi, G., Tripuramallu, B. K. & Goldberg, I. (2015). Cryst. Growth Des. 15, 3063-3075.]). The latter can be accommodated in the porphyrin core without a considerable distortion from planarity of the macrocyclic ligand (Lee et al., 2006[Lee, J. Y., Lee, S. J., Kim, H. J. & Kim, H.-J. (2006). J. Phys. Chem. B, 110, 5337-5342.]; Kim et al., 2008a[Kim, W., Park, J., Jo, H. J., Kim, H.-J. & Choi, W. (2008a). J. Phys. Chem. C, 112, 491-499.]; Li et al., 2015[Li, C., Park, K.-M. & Kim, H.-J. (2015). Inorg. Chem. Commun. 60, 8-11.]). Structural information for these complexes are readily obtainable as these complexes are diamagnetic with NMR-active Sn nuclei. Inter­esting optical and luminescent properties are also important characteristics of these complexes (Jang et al., 2007a[Jang, J. H., Kim, H. J., Kim, H.-J., Kim, C. H., Joo, T., Cho, D. W. & Yoon, M. (2007a). Bull. Korean Chem. Soc. 28, 1967-1972.],b[Jang, J. H., Jeon, K.-S., Oh, S., Kim, H.-J., Asahi, T., Masuhara, H. & Yoon, M. (2007b). Chem. Mater. 19, 1984-1991.]; Kim et al., 2008b[Kim, H. J., Jang, J. H., Choi, H., Lee, T., Ko, J., Yoon, M. & Kim, H.-J. (2008b). Inorg. Chem. 47, 2411-2415.], 2010[Kim, W., Tachikawa, T., Majima, T., Li, C., Kim, H.-J. & Choi, W. (2010). Energy Environ. Sci. 3, 1789-1795.]; Indelli et al., 2010[Indelli, M. T., Chiorboli, C., Ghirotti, M., Orlandi, M., Scandola, F., Kim, H. J. & Kim, H.-J. (2010). J. Phys. Chem. B, 114, 14273-14282.]; Yoo et al., 2016[Yoo, H.-Y., Yan, S., Ra, J. W., Jeon, D., Goh, B., Kim, T.-Y., Mackeyev, Y., Ahn, Y.-Y., Kim, H.-J., Wilson, L. J., Alvarez, P. J. J., Lee, Y., Song, W., Hong, S. W., Kim, J. & Lee, J. (2016). Appl. Catal. Environ. 199, 33-44.]). A large number of SnIV porphyrins have been synthesized through variation of the axial ligands such as hydroxide, alkoxide, carboxyl­ate, halide, perchlorate or nitrate (Smith et al., 1991[Smith, G., Arnold, D. P., Kennard, C. H. L. & Mak, T. C. W. (1991). Polyhedron, 10, 509-516.]; Singh & Kim, 2012[Singh, A. P. & Kim, H.-J. (2012). Acta Cryst. E68, m626.]; Wang et al., 2016[Wang, S., Knowles, G. P., Chaffee, A. L. & Langford, S. J. (2016). CrystEngComm, 18, 1515-1522.]). Among these compounds, hydroxido–tin(IV) porphyrins have been developed as useful precursors for the preparation of various other tin(IV) porphyrin complexes bearing preferentially oxygen donor ligands (Kim et al., 2004[Kim, H. J., Park, K.-M., Ahn, T. K., Kim, S. K., Kim, K. S., Kim, D. & Kim, H.-J. (2004). Chem. Commun. pp. 2594-2595.], 2007[Kim, H. J., Jeon, W. S., Lim, J. H., Hong, C. S. & Kim, H.-J. (2007). Polyhedron, 26, 2517-2522.], 2009[Kim, S. H., Kim, H., Kim, K. & Kim, H.-J. (2009). J. Porphyrins Phthalocyanines, 13, 805-810.], 2012[Kim, H., Kim, W., Mackeyev, Y., Lee, G.-S., Kim, H.-J., Tachikawa, T., Hong, S., Lee, S., Kim, J., Wilson, L. J., Majima, T., Alvarez, P. J. J., Choi, W. & Lee, J. (2012). Environ. Sci. Technol. 46, 9606-9613.]; Singh et al., 2012[Singh, A. P., Park, B. B. & Kim, H.-J. (2012). Tetrahedron Lett. 53, 6456-6459.]; Titi et al., 2013b[Titi, H. M., Patra, R. & Goldberg, I. (2013b). Chem. Eur. J. 19, 14941-14949.]). The strong preference of SnIV for coordination to oxyanionic ligands such as carboxyl­ates and alkoxides can be advantageous when constructing multiporphyrin assemblies. Here we report on the synthesis and crystal structure analysis of the title compound [Sn(C42H26N6)(C7H5O2)2] or [Sn(BPBPyP)(PhCOO)2] [where BPBPyP is the 5,15-bis­(phen­yl)-10,20-bis­(4-pyrid­yl) porphyrinato dianion and PhCOO is the benzoate anion].

The mol­ecular structure of [Sn(BPBPyP)(PhCOO)2] (Fig. 1[link]) reveals the tin(IV) atom (site symmetry [\overline{1}]) is in an octa­hedral coordination environment. The equatorial plane is formed by four N atoms of the porphyrin ring while the axial positions are occupied by O atoms of two benzoate groups. Relevant bond lengths and angles are listed in Table 1[link]. The two different types of rings of the BPBPyP system are inclined by 71.48 (7)° (phenyl ring) and by 65.81 (7)° (pyridyl ring) relative to the planar porphyrin core. As for all carboxyl­ate examples, the coordinating inter­action of the benzoate ligand with the central metal is purely unidentate, the second carboxyl­ate oxygen being 3.3845 (19) Å away from the tin(IV) atom. The Sn1—O1 bond length [2.0794 (15) Å] is slightly longer than that in Sn(TPP)(PhCOO)2 [2.055 (5) Å; TPP = tetra­phenyl­porphyrin; Smith et al., 1991[Smith, G., Arnold, D. P., Kennard, C. H. L. & Mak, T. C. W. (1991). Polyhedron, 10, 509-516.]]. The relevant torsion angle for the benzoate ring including the coordinating O1 atom, C28—C23—C22—O1 is −170.9 (3)°.

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.0794 (15) Sn1—N1 2.0942 (17)
Sn1—N2 2.0874 (17)    
       
O1—Sn1—N2 96.88 (7) N2—Sn1—N1 89.81 (7)
O1—Sn1—N1 89.01 (6) C22—O1—Sn1 128.68 (15)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by the symmetry operation −x + 1, −y + 1, −z + 1.

The packing of the title complex (Figs. 2[link] and 3[link]) involves three inter­molecular non-classical hydrogen bonds of weak strength. One hydrogen bond forms between the phenyl H12A atom of one porphyrin mol­ecule with the pyridine N3 atom of the adjacent porphyrin mol­ecule. The other two involve phenyl H18A and H13A atoms and benzoate O1 and O2 atoms (Table 2[link]). Moreover, there is a ππ inter­action between the pyridyl ring and a neighbouring pyrrole ring, C18⋯Cg = 3.523 (3) Å, where Cg is the centroid of the N1/C1–C4 pyrrole ring.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯N3i 0.95 (1) 2.69 (1) 3.360 (3) 128 (1)
C18—H18A⋯O1i 0.95 (1) 2.69 (2) 3.357 (3) 128 (1)
C13—H13A⋯O2ii 0.95 (1) 2.72 (1) 3.411 (3) 130 (1)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
View of the packing of the mol­ecular components in the title compound in a view along [010]. Red and cyan lines represent inter­molecular hydrogen bonds (Table 2[link]).
[Figure 3]
Figure 3
View of the three-dimensional packing in a view along [111]. Colour code; purple (front layer), blue (middle layer), and green (back end layer). Hydrogen atoms are omitted for clarity.

Synthesis and crystallization

The title compound was prepared according to a literature procedure (Kim et al., 2005[Kim, H.-J., Jo, H. J., Kim, J., Kim, S.-Y., Kim, D. & Kim, K. (2005). CrystEngComm, 7, 417-420.]). Solid benzoic acid (30 mg, 0.25 mmol) was added into a solution of [Sn(BPBPyP)(OH)2] (77 mg, 0.1 mmol) in THF (20 ml) and the mixture was refluxed for 12 h. The solution was filtered and evaporated to dryness in vacuo. The crude product was extracted with CHCl3 and filtered through a Celite pad. The product was recrystallized from a CHCl3/n-hexane solution (vv = 1:1) to afford a violet powder (83 mg, 86%). Single crystals suitable for X-ray analysis were obtained by direct diffusion of n-hexane into a CHCl3 solution of the title compound at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Sn(C42H26N6)(C7H5O2)2]
Mr 975.60
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 20.8021 (4), 11.4260 (2), 18.1164 (4)
β (°) 90.745 (1)
V3) 4305.63 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.16 × 0.15 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.705, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 35578, 4972, 3804
Rint 0.048
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.04
No. of reflections 4972
No. of parameters 304
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(benzoato-κO)[5,15-diphenyl-10,20-bis(pyridin-4-yl)porphyrinato-κ4N,N',N'',N''']tin(IV) top
Crystal data top
[Sn(C42H26N6)(C7H5O2)2]F(000) = 1984
Mr = 975.60Dx = 1.505 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.8021 (4) ÅCell parameters from 8728 reflections
b = 11.4260 (2) Åθ = 2.3–24.8°
c = 18.1164 (4) ŵ = 0.65 mm1
β = 90.745 (1)°T = 173 K
V = 4305.63 (15) Å3Block, violet
Z = 40.16 × 0.15 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3804 reflections with I > 2σ(I)
φ and ω scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.6°, θmin = 2.0°
Tmin = 0.705, Tmax = 0.746h = 2626
35578 measured reflectionsk = 1414
4972 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0317P)2 + 4.0687P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4972 reflectionsΔρmax = 0.40 e Å3
304 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.50000.50000.02250 (7)
O10.44403 (8)0.41626 (14)0.42008 (9)0.0324 (4)
O20.35962 (9)0.35219 (16)0.48265 (11)0.0495 (5)
N10.49675 (8)0.65244 (15)0.43588 (10)0.0245 (4)
N20.42420 (8)0.56314 (15)0.56302 (10)0.0253 (4)
N30.30373 (11)0.2884 (2)0.83538 (13)0.0492 (6)
C10.53422 (10)0.67472 (19)0.37562 (12)0.0256 (5)
C20.51565 (11)0.78669 (19)0.34642 (13)0.0298 (5)
H2A0.53360.82400.30460.036*
C30.46794 (11)0.82998 (19)0.38894 (13)0.0299 (5)
H3A0.44640.90260.38220.036*
C40.45597 (10)0.74582 (18)0.44611 (12)0.0256 (5)
C50.40974 (10)0.75569 (19)0.50169 (12)0.0263 (5)
C60.39522 (10)0.67094 (19)0.55466 (12)0.0268 (5)
C70.34847 (11)0.6824 (2)0.61206 (13)0.0328 (5)
H7A0.32100.74770.61970.039*
C80.35058 (11)0.5841 (2)0.65310 (13)0.0338 (5)
H8A0.32450.56780.69450.041*
C90.39888 (10)0.50826 (19)0.62359 (12)0.0274 (5)
C100.41763 (10)0.39927 (19)0.65170 (12)0.0260 (5)
C110.37336 (11)0.86845 (19)0.50731 (13)0.0292 (5)
C120.30815 (11)0.8741 (2)0.48994 (13)0.0336 (5)
H12A0.28710.80750.46960.040*
C130.27340 (13)0.9755 (2)0.50184 (15)0.0410 (6)
H13A0.22850.97760.49150.049*
C140.30417 (15)1.0727 (3)0.52860 (18)0.0572 (8)
H14A0.28041.14210.53790.069*
C150.36917 (16)1.0706 (3)0.54213 (19)0.0637 (9)
H15A0.39061.13970.55810.076*
C160.40391 (14)0.9680 (2)0.53259 (17)0.0466 (7)
H16A0.44870.96650.54350.056*
C170.38046 (11)0.3568 (2)0.71710 (13)0.0296 (5)
C180.38393 (11)0.4140 (2)0.78459 (13)0.0338 (5)
H18A0.41310.47700.79200.041*
C190.34427 (12)0.3779 (2)0.84088 (14)0.0394 (6)
H19A0.34610.41960.88620.047*
C200.30314 (15)0.2318 (3)0.77159 (18)0.0586 (8)
H20A0.27600.16530.76700.070*
C210.33945 (13)0.2629 (2)0.71119 (16)0.0492 (7)
H21A0.33610.22010.66640.059*
C220.39476 (12)0.3487 (2)0.42894 (14)0.0340 (5)
C230.38259 (12)0.2618 (2)0.36792 (14)0.0374 (6)
C240.42668 (16)0.2422 (3)0.31373 (17)0.0598 (8)
H24A0.46540.28630.31300.072*
C250.4149 (2)0.1576 (3)0.25950 (19)0.0778 (11)
H25A0.44540.14620.22160.093*
C260.36105 (18)0.0917 (3)0.25978 (19)0.0694 (10)
H26A0.35420.03240.22380.083*
C270.31690 (19)0.1125 (3)0.3128 (2)0.0793 (11)
H27A0.27830.06810.31310.095*
C280.32706 (15)0.1974 (3)0.3663 (2)0.0645 (9)
H28A0.29510.21100.40240.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02343 (11)0.02357 (11)0.02071 (12)0.00149 (9)0.00881 (8)0.00118 (9)
O10.0359 (9)0.0332 (9)0.0281 (9)0.0071 (7)0.0024 (7)0.0017 (7)
O20.0420 (11)0.0505 (11)0.0563 (13)0.0084 (9)0.0170 (10)0.0137 (10)
N10.0241 (9)0.0268 (9)0.0227 (10)0.0013 (7)0.0087 (8)0.0014 (8)
N20.0250 (10)0.0272 (10)0.0241 (10)0.0004 (8)0.0098 (8)0.0006 (8)
N30.0519 (14)0.0578 (15)0.0384 (14)0.0046 (12)0.0197 (11)0.0095 (12)
C10.0253 (11)0.0301 (12)0.0214 (11)0.0026 (9)0.0043 (9)0.0005 (9)
C20.0335 (13)0.0307 (12)0.0251 (12)0.0036 (10)0.0051 (10)0.0048 (10)
C30.0331 (13)0.0263 (11)0.0304 (13)0.0010 (10)0.0022 (10)0.0021 (10)
C40.0259 (11)0.0237 (11)0.0274 (12)0.0014 (9)0.0032 (9)0.0001 (9)
C50.0259 (11)0.0279 (11)0.0252 (12)0.0021 (9)0.0022 (9)0.0034 (9)
C60.0262 (11)0.0300 (12)0.0244 (12)0.0023 (9)0.0068 (9)0.0025 (9)
C70.0312 (13)0.0393 (13)0.0281 (13)0.0102 (10)0.0098 (10)0.0014 (10)
C80.0294 (12)0.0440 (14)0.0283 (13)0.0061 (11)0.0136 (10)0.0029 (11)
C90.0247 (11)0.0346 (12)0.0231 (11)0.0009 (10)0.0086 (9)0.0005 (10)
C100.0262 (11)0.0302 (12)0.0216 (11)0.0039 (9)0.0066 (9)0.0002 (9)
C110.0341 (13)0.0276 (12)0.0260 (12)0.0052 (10)0.0056 (10)0.0022 (9)
C120.0342 (13)0.0321 (12)0.0346 (14)0.0018 (10)0.0056 (11)0.0016 (10)
C130.0384 (14)0.0433 (16)0.0414 (16)0.0135 (11)0.0024 (12)0.0026 (11)
C140.065 (2)0.0432 (17)0.064 (2)0.0247 (15)0.0122 (16)0.0192 (15)
C150.068 (2)0.0367 (16)0.086 (3)0.0102 (15)0.0248 (18)0.0261 (16)
C160.0427 (16)0.0372 (14)0.0597 (19)0.0074 (12)0.0135 (14)0.0143 (13)
C170.0279 (12)0.0351 (13)0.0262 (12)0.0002 (10)0.0109 (10)0.0019 (10)
C180.0335 (13)0.0387 (13)0.0294 (13)0.0002 (11)0.0084 (10)0.0023 (11)
C190.0436 (15)0.0493 (16)0.0255 (13)0.0026 (12)0.0099 (11)0.0046 (11)
C200.0584 (19)0.0545 (18)0.064 (2)0.0252 (15)0.0254 (16)0.0005 (16)
C210.0535 (17)0.0533 (17)0.0414 (16)0.0213 (14)0.0208 (14)0.0102 (13)
C220.0335 (13)0.0330 (13)0.0357 (14)0.0046 (11)0.0025 (11)0.0034 (11)
C230.0444 (15)0.0317 (13)0.0362 (14)0.0012 (11)0.0030 (12)0.0021 (11)
C240.070 (2)0.0571 (19)0.0525 (19)0.0200 (16)0.0203 (17)0.0149 (15)
C250.105 (3)0.073 (2)0.057 (2)0.023 (2)0.027 (2)0.0246 (18)
C260.095 (3)0.0534 (19)0.060 (2)0.0219 (19)0.002 (2)0.0125 (17)
C270.079 (3)0.071 (2)0.089 (3)0.032 (2)0.007 (2)0.030 (2)
C280.0524 (19)0.064 (2)0.078 (2)0.0141 (16)0.0102 (17)0.0252 (18)
Geometric parameters (Å, º) top
Sn1—O1i2.0794 (15)C11—C161.378 (3)
Sn1—O12.0794 (15)C11—C121.390 (3)
Sn1—N22.0874 (17)C12—C131.384 (3)
Sn1—N2i2.0874 (17)C12—H12A0.9500
Sn1—N1i2.0941 (17)C13—C141.368 (4)
Sn1—N12.0942 (17)C13—H13A0.9500
O1—C221.294 (3)C14—C151.371 (4)
O2—C221.225 (3)C14—H14A0.9500
N1—C11.373 (3)C15—C161.389 (4)
N1—C41.377 (3)C15—H15A0.9500
N2—C91.375 (3)C16—H16A0.9500
N2—C61.379 (3)C17—C211.374 (3)
N3—C201.325 (4)C17—C181.387 (3)
N3—C191.328 (3)C18—C191.383 (3)
C1—C10i1.406 (3)C18—H18A0.9500
C1—C21.435 (3)C19—H19A0.9500
C2—C31.358 (3)C20—C211.384 (4)
C2—H2A0.9500C20—H20A0.9500
C3—C41.437 (3)C21—H21A0.9500
C3—H3A0.9500C22—C231.505 (3)
C4—C51.406 (3)C23—C281.370 (4)
C5—C61.399 (3)C23—C241.370 (4)
C5—C111.498 (3)C24—C251.398 (4)
C6—C71.439 (3)C24—H24A0.9500
C7—C81.348 (3)C25—C261.349 (5)
C7—H7A0.9500C25—H25A0.9500
C8—C91.435 (3)C26—C271.358 (5)
C8—H8A0.9500C26—H26A0.9500
C9—C101.399 (3)C27—C281.386 (4)
C10—C1i1.406 (3)C27—H27A0.9500
C10—C171.504 (3)C28—H28A0.9500
O1i—Sn1—O1180.0C16—C11—C5120.1 (2)
O1i—Sn1—N283.12 (7)C12—C11—C5121.1 (2)
O1—Sn1—N296.88 (7)C13—C12—C11120.9 (2)
O1i—Sn1—N2i96.88 (7)C13—C12—H12A119.5
O1—Sn1—N2i83.12 (7)C11—C12—H12A119.5
N2—Sn1—N2i180.00 (8)C14—C13—C12119.5 (3)
O1i—Sn1—N1i89.01 (6)C14—C13—H13A120.3
O1—Sn1—N1i90.99 (6)C12—C13—H13A120.3
N2—Sn1—N1i90.19 (7)C13—C14—C15120.3 (3)
N2i—Sn1—N1i89.81 (7)C13—C14—H14A119.8
O1i—Sn1—N190.99 (6)C15—C14—H14A119.8
O1—Sn1—N189.01 (6)C14—C15—C16120.4 (3)
N2—Sn1—N189.81 (7)C14—C15—H15A119.8
N2i—Sn1—N190.19 (7)C16—C15—H15A119.8
N1i—Sn1—N1180.0C11—C16—C15120.0 (3)
C22—O1—Sn1128.68 (15)C11—C16—H16A120.0
C1—N1—C4108.68 (18)C15—C16—H16A120.0
C1—N1—Sn1125.49 (14)C21—C17—C18117.5 (2)
C4—N1—Sn1125.82 (14)C21—C17—C10121.0 (2)
C9—N2—C6108.88 (17)C18—C17—C10121.4 (2)
C9—N2—Sn1125.37 (14)C19—C18—C17119.0 (2)
C6—N2—Sn1125.52 (14)C19—C18—H18A120.5
C20—N3—C19116.1 (2)C17—C18—H18A120.5
N1—C1—C10i125.6 (2)N3—C19—C18123.9 (2)
N1—C1—C2107.78 (19)N3—C19—H19A118.0
C10i—C1—C2126.6 (2)C18—C19—H19A118.0
C3—C2—C1108.1 (2)N3—C20—C21124.4 (3)
C3—C2—H2A125.9N3—C20—H20A117.8
C1—C2—H2A125.9C21—C20—H20A117.8
C2—C3—C4107.4 (2)C17—C21—C20118.9 (3)
C2—C3—H3A126.3C17—C21—H21A120.5
C4—C3—H3A126.3C20—C21—H21A120.5
N1—C4—C5125.9 (2)O2—C22—O1124.1 (2)
N1—C4—C3107.97 (19)O2—C22—C23120.5 (2)
C5—C4—C3126.1 (2)O1—C22—C23115.3 (2)
C6—C5—C4126.3 (2)C28—C23—C24118.0 (3)
C6—C5—C11115.77 (19)C28—C23—C22120.2 (2)
C4—C5—C11117.94 (19)C24—C23—C22121.7 (2)
N2—C6—C5126.6 (2)C23—C24—C25120.2 (3)
N2—C6—C7107.51 (19)C23—C24—H24A119.9
C5—C6—C7125.9 (2)C25—C24—H24A119.9
C8—C7—C6107.8 (2)C26—C25—C24121.4 (3)
C8—C7—H7A126.1C26—C25—H25A119.3
C6—C7—H7A126.1C24—C25—H25A119.3
C7—C8—C9108.4 (2)C25—C26—C27118.3 (3)
C7—C8—H8A125.8C25—C26—H26A120.9
C9—C8—H8A125.8C27—C26—H26A120.9
N2—C9—C10126.1 (2)C26—C27—C28121.3 (3)
N2—C9—C8107.41 (19)C26—C27—H27A119.4
C10—C9—C8126.5 (2)C28—C27—H27A119.4
C9—C10—C1i127.1 (2)C23—C28—C27120.8 (3)
C9—C10—C17115.50 (19)C23—C28—H28A119.6
C1i—C10—C17117.33 (19)C27—C28—H28A119.6
C16—C11—C12118.7 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···N3ii0.95 (1)2.69 (1)3.360 (3)128 (1)
C18—H18A···O1ii0.95 (1)2.69 (2)3.357 (3)128 (1)
C13—H13A···O2iii0.95 (1)2.72 (1)3.411 (3)130 (1)
Symmetry codes: (ii) x, y+1, z1/2; (iii) x+1/2, y+3/2, z+1.
 

Funding information

This work was supported by Kumoh National Institute of Technology (grant No. 2018-104-136).

References

First citationArnold, D. P. & Blok, J. (2004). Coord. Chem. Rev. 248, 299–319.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIndelli, M. T., Chiorboli, C., Ghirotti, M., Orlandi, M., Scandola, F., Kim, H. J. & Kim, H.-J. (2010). J. Phys. Chem. B, 114, 14273–14282.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJang, J. H., Jeon, K.-S., Oh, S., Kim, H.-J., Asahi, T., Masuhara, H. & Yoon, M. (2007b). Chem. Mater. 19, 1984–1991.  Web of Science CrossRef CAS Google Scholar
First citationJang, J. H., Kim, H. J., Kim, H.-J., Kim, C. H., Joo, T., Cho, D. W. & Yoon, M. (2007a). Bull. Korean Chem. Soc. 28, 1967–1972.  CAS Google Scholar
First citationJo, H. J., Kim, S. H. & Kim, H.-J. (2015). Bull. Korean Chem. Soc. 36, 2348–2351.  Web of Science CrossRef CAS Google Scholar
First citationKim, H., Kim, W., Mackeyev, Y., Lee, G.-S., Kim, H.-J., Tachikawa, T., Hong, S., Lee, S., Kim, J., Wilson, L. J., Majima, T., Alvarez, P. J. J., Choi, W. & Lee, J. (2012). Environ. Sci. Technol. 46, 9606–9613.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKim, H. J., Jang, J. H., Choi, H., Lee, T., Ko, J., Yoon, M. & Kim, H.-J. (2008b). Inorg. Chem. 47, 2411–2415.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, H. J., Jeon, W. S., Lim, J. H., Hong, C. S. & Kim, H.-J. (2007). Polyhedron, 26, 2517–2522.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, H.-J., Jo, H. J., Kim, J., Kim, S.-Y., Kim, D. & Kim, K. (2005). CrystEngComm, 7, 417–420.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, H. J., Park, K.-M., Ahn, T. K., Kim, S. K., Kim, K. S., Kim, D. & Kim, H.-J. (2004). Chem. Commun. pp. 2594–2595.  Web of Science CSD CrossRef Google Scholar
First citationKim, H. J., Shee, N. K., Park, K.-M. & Kim, H.-J. (2019). Inorg. Chim. Acta, 488, 1–7.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, S. H., Kim, H., Kim, K. & Kim, H.-J. (2009). J. Porphyrins Phthalocyanines, 13, 805–810.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, W., Park, J., Jo, H. J., Kim, H.-J. & Choi, W. (2008a). J. Phys. Chem. C, 112, 491–499.  Web of Science CrossRef CAS Google Scholar
First citationKim, W., Tachikawa, T., Majima, T., Li, C., Kim, H.-J. & Choi, W. (2010). Energy Environ. Sci. 3, 1789–1795.  Web of Science CrossRef CAS Google Scholar
First citationLee, J. Y., Lee, S. J., Kim, H. J. & Kim, H.-J. (2006). J. Phys. Chem. B, 110, 5337–5342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, C., Park, K.-M. & Kim, H.-J. (2015). Inorg. Chem. Commun. 60, 8–11.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShetti, V. S., Pareek, Y. & Ravikanth, M. (2012). Coord. Chem. Rev. 256, 2816–2842.  Web of Science CrossRef CAS Google Scholar
First citationSingh, A. P. & Kim, H.-J. (2012). Acta Cryst. E68, m626.  CSD CrossRef IUCr Journals Google Scholar
First citationSingh, A. P., Park, B. B. & Kim, H.-J. (2012). Tetrahedron Lett. 53, 6456–6459.  CSD CrossRef CAS Google Scholar
First citationSmith, G., Arnold, D. P., Kennard, C. H. L. & Mak, T. C. W. (1991). Polyhedron, 10, 509–516.  CSD CrossRef CAS Web of Science Google Scholar
First citationTiti, H. M., Nandi, G., Tripuramallu, B. K. & Goldberg, I. (2015). Cryst. Growth Des. 15, 3063–3075.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiti, H. M., Patra, R. & Goldberg, I. (2013a). Acta Cryst. C69, 1013–1016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTiti, H. M., Patra, R. & Goldberg, I. (2013b). Chem. Eur. J. 19, 14941–14949.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, S., Knowles, G. P., Chaffee, A. L. & Langford, S. J. (2016). CrystEngComm, 18, 1515–1522.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoo, H.-Y., Yan, S., Ra, J. W., Jeon, D., Goh, B., Kim, T.-Y., Mackeyev, Y., Ahn, Y.-Y., Kim, H.-J., Wilson, L. J., Alvarez, P. J. J., Lee, Y., Song, W., Hong, S. W., Kim, J. & Lee, J. (2016). Appl. Catal. Environ. 199, 33–44.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds