organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-4-Iodo-2-[(phenyl­imino)­meth­yl]phenol

crossmark logo

aPostgraduate and Research Department of Physics, Government Arts College (Autonomous), Kumbakonam 612 001, Tamilnadu, India, bPostgraduate and Research Department of Physics, D.G. Government Arts College for Women, Mayiladuthurai 609 001, Tamilnadu, India, cPrincipal, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India, and dPostgraduate Department of Physics, A.D.M. College for Women (Autonomous), Nagapattinam 611 001, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 31 May 2019; accepted 1 June 2019; online 4 June 2019)

The title compound, C13H10INO, is not planar as the dihedral angle between the planes of the two aryl rings is 44.5 (9)°. The configuration about the central C=N bond is E, and there is an intra­molecular O—H⋯N hydrogen bond which generates an S(6) ring. The mol­ecular packing is stabilized by weak C—H⋯π inter­actions. The structure was refined as a two-component inversion twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We report here, as part of our on-going research (Ida Malarselvi et al., 2016[Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A., Priscilla, J. & Panneer Selvam, K. (2016). IUCrData, 1, x161595.]; Swetha et al., 2017[Swetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2017). IUCrData, 2, x171671.], 2018[Swetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2018). IUCrData, 3, x180464.]), the synthesis and X-ray crystal structure determination of the title iodinated Schiff base compound, Fig. 1[link], which was synthesized from the condensation reaction of equimolar amounts of 5-iodo­salicyl­aldehyde and aniline in DMSO.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and showing the atom-numbering scheme. Dashed lines indicate the intra­molecular hydrogen-bonding inter­action (Table 1[link]).

The benzene and phenyl rings deviate from co-planarity with the dihedral angle between the two ring being 44.5 (9)°. The mol­ecule has an E configuration about the C=N bond, and the C1—C7=N1—C8 torsion angle is 169.5 (17)°. There is a strong intra-mol­ecular O1—H1⋯N1 hydrogen bond, Table 1[link], with an H⋯N separation of 1.94 Å which leads to an S(6) ring. The crystal structure (Fig. 2[link]) is stabilized by three weak C—H⋯π inter­actions, see Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 benzene ring and the C8–C13 phenyl ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.94 2.64 (2) 143
C5—H5⋯Cg1i 0.93 2.86 3.476 (15) 125
C9—H9⋯Cg2ii 0.93 2.81 3.48 (2) 129
C12—H12⋯Cg2iii 0.93 2.82 3.55 (3) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y, z-1]; (ii) [x+{\script{3\over 2}}, -y, z-1]; (iii) [x+{\script{1\over 2}}, -y, z].
[Figure 2]
Figure 2
The mol­ecular packing, viewed along the crystallographic c axis.

Yan et al. (2014[Yan, X.-X., Lu, L.-P. & Zhu, M.-L. (2014). Acta Cryst. E70, o853.]) have reported the crystal structure determination of 4-bromo-2-[(phenyl­imino)­meth­yl]phenol, in which the mol­ecule is essentially planar (r.m.s. deviation = 0.026 Å), a result in contrast to our present study.

Synthesis and crystallization

5-Iodo­salicyl­aldehyde (0.3 g) was dissolved in DMSO (15 ml). To this solution, aniline (0.2 g) was added dropwise with constant stirring for 1 h at 50°C. During this time, the solution turned light yellow. On standing for 1 month with slow evaporation of the solvent, light-orange crystals of the title compound suitable for the X-ray study were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two-component inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula C13H10INO
Mr 323.12
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 296
a, b, c (Å) 7.0848 (8), 26.422 (3), 6.2664 (7)
V3) 1173.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.71
Crystal size (mm) 0.30 × 0.25 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.287, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 13051, 2057, 2043
Rint 0.055
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.223, 1.18
No. of reflections 2057
No. of parameters 146
No. of restraints 148
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.90, −1.22
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.53 (13)
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2018[Brandenburg, K. & Putz, H. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 and SAINT (Bruker, 2016); data reduction: SAINT and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2018); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-4-Iodo-2-[(phenylimino)methyl]phenol top
Crystal data top
C13H10INODx = 1.830 Mg m3
Mr = 323.12Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 9900 reflections
a = 7.0848 (8) Åθ = 2.9–30.8°
b = 26.422 (3) ŵ = 2.71 mm1
c = 6.2664 (7) ÅT = 296 K
V = 1173.1 (2) Å3Plate, orange
Z = 40.30 × 0.25 × 0.15 mm
F(000) = 624
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
2057 independent reflections
Radiation source: fine-focus sealed tube2043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω and φ scanθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.287, Tmax = 0.746k = 3131
13051 measured reflectionsl = 77
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.080 w = 1/[σ2(Fo2) + (0.1256P)2 + 10.5304P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.223(Δ/σ)max < 0.001
S = 1.18Δρmax = 2.90 e Å3
2057 reflectionsΔρmin = 1.22 e Å3
146 parametersAbsolute structure: Refined as an inversion twin.
148 restraintsAbsolute structure parameter: 0.53 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin. C-bound H atoms were placed in geometrically idealized positions with C—H = 0.93 Å. The OH H1 atom was placed geometrically with O—H = 0.82 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.528 (2)0.7086 (7)0.466 (3)0.036 (3)
C20.557 (2)0.6640 (6)0.586 (3)0.031 (3)
H20.5986940.6666610.7256800.038*
C30.526 (2)0.6174 (6)0.503 (2)0.027 (3)
C40.461 (2)0.6133 (7)0.289 (3)0.035 (4)
H40.4392140.5812740.2325090.042*
C50.429 (2)0.6565 (6)0.1556 (19)0.034 (4)
H50.3885970.6536610.0150240.040*
C60.465 (2)0.7045 (7)0.255 (2)0.035 (3)
C70.551 (2)0.7588 (8)0.554 (4)0.044 (4)
H70.5954510.7603510.6933380.053*
N10.5206 (18)0.7982 (6)0.470 (3)0.038 (3)
O10.445 (2)0.7439 (6)0.126 (3)0.063 (5)
H10.4781280.7696320.1889440.095*
C80.516 (2)0.8464 (8)0.565 (3)0.043 (4)
C90.582 (3)0.8877 (6)0.444 (4)0.052 (5)
H90.6274780.8830810.3059290.062*
C100.577 (4)0.9366 (9)0.538 (5)0.069 (7)
H100.6287610.9644790.4686230.083*
C110.491 (3)0.9414 (7)0.738 (4)0.063 (6)
H110.4820260.9733290.7998360.076*
C120.420 (4)0.9000 (8)0.847 (5)0.077 (7)
H120.3630780.9045590.9791380.092*
C130.431 (2)0.8520 (7)0.760 (3)0.049 (5)
H130.3820800.8241470.8317190.059*
I10.54634 (16)0.55120 (4)0.6950 (5)0.0477 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (8)0.039 (6)0.034 (7)0.001 (5)0.011 (6)0.005 (5)
C20.033 (8)0.034 (6)0.028 (7)0.005 (5)0.009 (6)0.000 (5)
C30.026 (7)0.034 (6)0.021 (6)0.007 (5)0.008 (5)0.001 (5)
C40.038 (9)0.043 (8)0.024 (6)0.004 (6)0.009 (6)0.001 (6)
C50.044 (8)0.052 (7)0.004 (8)0.000 (6)0.005 (5)0.001 (5)
C60.027 (7)0.045 (7)0.032 (7)0.002 (6)0.008 (5)0.000 (5)
C70.038 (10)0.047 (6)0.047 (10)0.003 (6)0.010 (7)0.006 (5)
N10.019 (6)0.051 (7)0.044 (8)0.002 (6)0.008 (6)0.001 (6)
O10.074 (11)0.034 (8)0.082 (14)0.002 (7)0.015 (8)0.005 (7)
C80.019 (7)0.054 (9)0.056 (10)0.004 (7)0.009 (7)0.015 (7)
C90.043 (10)0.039 (7)0.074 (13)0.008 (7)0.028 (9)0.002 (7)
C100.045 (11)0.052 (9)0.111 (17)0.002 (10)0.009 (12)0.027 (10)
C110.044 (9)0.039 (8)0.106 (18)0.008 (7)0.003 (12)0.031 (9)
C120.052 (12)0.058 (9)0.120 (18)0.009 (9)0.009 (12)0.012 (10)
C130.020 (7)0.052 (8)0.074 (13)0.009 (7)0.014 (7)0.003 (7)
I10.0529 (8)0.0357 (7)0.0545 (8)0.0010 (4)0.0052 (8)0.0067 (8)
Geometric parameters (Å, º) top
C1—C61.402 (18)N1—C81.41 (3)
C1—C21.412 (19)O1—H10.8200
C1—C71.44 (3)C8—C131.37 (2)
C2—C31.353 (19)C8—C91.41 (2)
C2—H20.9300C9—C101.42 (2)
C3—C41.421 (19)C9—H90.9300
C3—I12.130 (16)C10—C111.40 (2)
C4—C51.431 (19)C10—H100.9300
C4—H40.9300C11—C121.38 (2)
C5—C61.433 (19)C11—H110.9300
C5—H50.9300C12—C131.38 (2)
C6—O11.32 (2)C12—H120.9300
C7—N11.19 (3)C13—H130.9300
C7—H70.9300
C6—C1—C2118.9 (17)C7—N1—C8127.6 (19)
C6—C1—C7117.9 (17)C6—O1—H1109.5
C2—C1—C7123.2 (16)C13—C8—N1119.1 (17)
C3—C2—C1122.1 (15)C13—C8—C9123 (2)
C3—C2—H2119.0N1—C8—C9117.5 (17)
C1—C2—H2119.0C8—C9—C10118 (2)
C2—C3—C4119.0 (15)C8—C9—H9120.9
C2—C3—I1121.2 (11)C10—C9—H9120.9
C4—C3—I1119.6 (12)C11—C10—C9118 (2)
C3—C4—C5122.7 (15)C11—C10—H10121.1
C3—C4—H4118.7C9—C10—H10121.1
C5—C4—H4118.7C12—C11—C10122 (2)
C4—C5—C6115.2 (13)C12—C11—H11119.1
C4—C5—H5122.4C10—C11—H11119.1
C6—C5—H5122.4C13—C12—C11121 (2)
O1—C6—C1123.1 (17)C13—C12—H12119.7
O1—C6—C5114.5 (14)C11—C12—H12119.7
C1—C6—C5122.2 (16)C8—C13—C12118 (2)
N1—C7—C1128 (2)C8—C13—H13120.8
N1—C7—H7116.0C12—C13—H13120.8
C1—C7—H7116.0
C6—C1—C2—C30 (3)C6—C1—C7—N11 (3)
C7—C1—C2—C3176.9 (17)C2—C1—C7—N1175.8 (19)
C1—C2—C3—C40 (2)C1—C7—N1—C8169.5 (17)
C1—C2—C3—I1174.3 (13)C7—N1—C8—C1342 (3)
C2—C3—C4—C50 (2)C7—N1—C8—C9145 (2)
I1—C3—C4—C5174.8 (13)C13—C8—C9—C107 (3)
C3—C4—C5—C61 (2)N1—C8—C9—C10180 (2)
C2—C1—C6—O1175.6 (16)C8—C9—C10—C116 (4)
C7—C1—C6—O17 (3)C9—C10—C11—C122 (4)
C2—C1—C6—C50 (3)C10—C11—C12—C130 (4)
C7—C1—C6—C5177.3 (16)N1—C8—C13—C12177 (2)
C4—C5—C6—O1176.3 (16)C9—C8—C13—C124 (3)
C4—C5—C6—C11 (2)C11—C12—C13—C81 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 benzene ring and the C8–C13 phenyl ring, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.64 (2)143
C5—H5···Cg1i0.932.863.476 (15)125
C9—H9···Cg2ii0.932.813.48 (2)129
C12—H12···Cg2iii0.932.823.55 (3)136
Symmetry codes: (i) x+1/2, y, z1; (ii) x+3/2, y, z1; (iii) x+1/2, y, z.
 

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai 600 036, Tamilnadu, India, for the single-crystal X-ray diffraction data.

References

First citationBrandenburg, K. & Putz, H. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIda Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A., Priscilla, J. & Panneer Selvam, K. (2016). IUCrData, 1, x161595.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2017). IUCrData, 2, x171671.  Google Scholar
First citationSwetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2018). IUCrData, 3, x180464.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, X.-X., Lu, L.-P. & Zhu, M.-L. (2014). Acta Cryst. E70, o853.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds