organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-6-chloro­pyridine–glutaric acid (1/1)

crossmark logo

aPG and Research Department of Physics, Government Arts College for Men (Autonomous), Nandanam, Chennai 600 035, India, bDepartment of Physics, Annai Violet Arts and Science College, Chennai 600 053, India, cDepartment of Physics, Jeppiaar Engineering College, Jeppiaar Nagar, OMR, Chennai 600 119, India, and dCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: agsv71@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 6 May 2019; accepted 30 May 2019; online 14 June 2019)

In the title 1:1 co-crystal [systematic name: 6-chloro­pyridin-2-amine–penta­nedioic acid (1/1)], C5H5ClN2·C5H8O4, the pyridine ring is essentially planar, with a maximum deviation of 0.003 (1) Å. The base and acid mol­ecules are linked via N—H⋯O and O—H⋯N hydrogen bonds, while inversion-related acid mol­ecules are linked via pairs of O—H⋯O hydrogen bonds. These inter­actions together with a C—H⋯O hydrogen bond connect the two components, forming (001) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In order to study hydrogen-bonding inter­actions in pyridine–carb­oxy acid systems, the crystal structure determination of the title compound was carried out. Some related crystal structures have previously been reported, viz. 2-amino-5-methyl­pyridinium 4-carb­oxy­butano­ate (Hemamalini & Fun, 2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1841-o1842.]), 2,6-di­amino-4-chloro­pyrimidinium 4-carb­oxy­butano­ate (Edison et al., 2014[Edison, B., Balasubramani, K., Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2014). Acta Cryst. E70, o857-o858.]), pyrimidin-2-amine–glutaric acid (1/1) and bis­(2-amino­pyrimidinium)glutarate–glutaric acid (1/2) (Odiase et al., 2015[Odiase, I., Nicholson, C. E., Ahmad, R., Cooper, J., Yufit, D. S. & Cooper, S. J. (2015). Acta Cryst. C71, 276-283.]).

As expected, the pyridine ring of the title compound is essentially planar, with a maximum deviation of 0.004 (1) Å for atom C1. The backbone conformation of the acid mol­ecule can be described by the torsion angles C6—C7—C8—C9 [−174.76 (9)°] and C7—C8—C9—C10 [171.92 (9)°], which indicates a fully extended conformation of the molecule. The dihedral angle between the CO2H groups is 13.8 (10)°.. As evident from the torsion angles, the backbone exhibits a fully extended conformation of the two carboxyl groups (Fig. 1[link]). In the crystal, the N1 atom and the 2-amino group (N2) are linked to the carboxyl oxygen atoms (O3 and O4) via O—H⋯N and N—H⋯O hydrogen bonds with an R22(8) ring motif. The acid and base mol­ecules are further linked by O—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]), forming (001) sheets (Fig. 2[link])

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.55 3.3711 (13) 147
N2—H2A⋯O3ii 0.87 (1) 2.08 (1) 2.9443 (13) 171 (2)
N2—H2B⋯O3i 0.87 (1) 2.18 (1) 2.9525 (13) 147 (1)
O1—H1A⋯O2iii 0.83 (1) 1.82 (1) 2.6433 (12) 173 (2)
O4—H4A⋯N1iv 0.83 (1) 1.93 (1) 2.7545 (12) 171 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y, -z+1]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2]
Figure 2
A packing view of the title compound, showing the sheet structure formed by O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds (dashed lines).

Synthesis and crystallization

Hot methanol solutions (20 ml) of 2-amino-6-chloro­pyridine (34 mg, Aldrich) and glutaric acid (34 mg, Merck) were mixed. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C5H5ClN2·C5H8O4
Mr 260.67
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 14.7115 (16), 4.9598 (6), 17.3105 (19)
β (°) 112.960 (2)
V3) 1163.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.80 × 0.30 × 0.04
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.774, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 14500, 3966, 3264
Rint 0.036
(sin θ/λ)max−1) 0.742
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 0.93
No. of reflections 3966
No. of parameters 170
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2016 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

6-Chloropyridin-2-amine–pentanedioic acid (1/1) top
Crystal data top
C5H5ClN2·C5H8O4F(000) = 544
Mr = 260.67Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.7115 (16) ÅCell parameters from 3966 reflections
b = 4.9598 (6) Åθ = 3.1–31.8°
c = 17.3105 (19) ŵ = 0.33 mm1
β = 112.960 (2)°T = 296 K
V = 1163.0 (2) Å3Plate, yellow
Z = 40.80 × 0.30 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3264 reflections with I > 2σ(I)
ω and φ scanRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 31.8°, θmin = 3.1°
Tmin = 0.774, Tmax = 0.987h = 2121
14500 measured reflectionsk = 76
3966 independent reflectionsl = 2525
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.4259P]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
3966 reflectionsΔρmax = 0.49 e Å3
170 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). Other H atoms were located in a difference map and refined with bond length restraints [O—H = 0.83 (1) Å and N—H = 0.88 (1) Å].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32219 (7)0.5358 (2)0.18568 (6)0.01383 (18)
C20.40778 (8)0.6161 (2)0.17751 (7)0.0171 (2)
H20.4684180.5361170.2080910.021*
C30.39787 (8)0.8254 (2)0.12033 (7)0.0183 (2)
H30.4531670.8885720.1124740.022*
C40.30710 (8)0.9376 (2)0.07589 (6)0.0171 (2)
H40.3004391.0768830.0380850.021*
C50.22388 (8)0.8382 (2)0.08852 (6)0.01566 (19)
C60.36785 (8)0.0963 (2)0.42745 (7)0.0158 (2)
C70.26506 (7)0.1901 (2)0.37424 (7)0.01589 (19)
H7A0.2577360.3763980.3878460.019*
H7B0.2557940.1827630.3156460.019*
C80.18569 (7)0.0211 (2)0.38679 (7)0.01630 (19)
H8A0.1981310.0148050.4460660.020*
H8B0.1887240.1618430.3681170.020*
C90.08316 (8)0.1353 (2)0.33855 (7)0.0173 (2)
H9A0.0673980.1181900.2788840.021*
H9B0.0831790.3258220.3512590.021*
C100.00447 (7)0.0044 (2)0.35926 (6)0.0161 (2)
N10.23222 (6)0.6371 (2)0.14376 (5)0.01474 (17)
N20.13245 (7)0.9357 (2)0.04534 (7)0.0232 (2)
H2A0.0834 (10)0.882 (4)0.0580 (11)0.039 (5)*
H2B0.1237 (11)1.074 (2)0.0120 (9)0.026 (4)*
O10.43745 (6)0.2565 (2)0.42360 (6)0.0258 (2)
H1A0.4925 (9)0.197 (4)0.4543 (10)0.039 (5)*
O20.38508 (6)0.10702 (17)0.47067 (5)0.01919 (17)
O30.02085 (6)0.19918 (19)0.40576 (6)0.0255 (2)
O40.08387 (6)0.10152 (19)0.32075 (5)0.02091 (18)
H4A0.1240 (12)0.019 (4)0.3347 (12)0.052 (6)*
Cl10.32782 (2)0.28122 (6)0.25664 (2)0.01679 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0167 (4)0.0121 (5)0.0126 (4)0.0002 (4)0.0056 (3)0.0002 (3)
C20.0156 (4)0.0188 (5)0.0165 (4)0.0003 (4)0.0057 (4)0.0007 (4)
C30.0196 (5)0.0193 (6)0.0169 (4)0.0036 (4)0.0082 (4)0.0008 (4)
C40.0215 (5)0.0160 (5)0.0148 (4)0.0023 (4)0.0081 (4)0.0007 (4)
C50.0184 (4)0.0149 (5)0.0135 (4)0.0001 (4)0.0061 (4)0.0012 (4)
C60.0168 (4)0.0154 (5)0.0167 (4)0.0001 (4)0.0081 (4)0.0004 (4)
C70.0153 (4)0.0155 (5)0.0170 (4)0.0010 (4)0.0064 (4)0.0019 (4)
C80.0158 (4)0.0149 (5)0.0181 (4)0.0003 (4)0.0065 (4)0.0021 (4)
C90.0155 (4)0.0174 (5)0.0186 (5)0.0002 (4)0.0061 (4)0.0038 (4)
C100.0150 (4)0.0164 (5)0.0155 (4)0.0005 (4)0.0042 (3)0.0005 (4)
N10.0153 (4)0.0147 (4)0.0139 (4)0.0001 (3)0.0054 (3)0.0017 (3)
N20.0187 (4)0.0256 (6)0.0246 (5)0.0033 (4)0.0075 (4)0.0126 (4)
O10.0141 (4)0.0260 (5)0.0345 (5)0.0004 (3)0.0063 (3)0.0149 (4)
O20.0169 (3)0.0168 (4)0.0231 (4)0.0004 (3)0.0070 (3)0.0051 (3)
O30.0173 (4)0.0266 (5)0.0316 (5)0.0025 (3)0.0083 (3)0.0143 (4)
O40.0148 (3)0.0227 (5)0.0254 (4)0.0033 (3)0.0081 (3)0.0081 (3)
Cl10.01809 (12)0.01660 (13)0.01572 (12)0.00172 (9)0.00664 (9)0.00420 (9)
Geometric parameters (Å, º) top
C1—N11.3346 (13)C7—H7A0.9700
C1—C21.3794 (14)C7—H7B0.9700
C1—Cl11.7409 (11)C8—C91.5202 (15)
C2—C31.4022 (16)C8—H8A0.9700
C2—H20.9300C8—H8B0.9700
C3—C41.3724 (16)C9—C101.5076 (15)
C3—H30.9300C9—H9A0.9700
C4—C51.4137 (14)C9—H9B0.9700
C4—H40.9300C10—O31.2199 (14)
C5—N21.3481 (14)C10—O41.3165 (13)
C5—N11.3540 (14)N2—H2A0.873 (9)
C6—O21.2217 (14)N2—H2B0.873 (9)
C6—O11.3181 (13)O1—H1A0.830 (9)
C6—C71.5049 (15)O4—H4A0.828 (9)
C7—C81.5202 (15)
N1—C1—C2125.94 (10)H7A—C7—H7B107.8
N1—C1—Cl1114.88 (7)C9—C8—C7111.65 (9)
C2—C1—Cl1119.18 (8)C9—C8—H8A109.3
C1—C2—C3116.00 (10)C7—C8—H8A109.3
C1—C2—H2122.0C9—C8—H8B109.3
C3—C2—H2122.0C7—C8—H8B109.3
C4—C3—C2120.43 (10)H8A—C8—H8B108.0
C4—C3—H3119.8C10—C9—C8112.80 (9)
C2—C3—H3119.8C10—C9—H9A109.0
C3—C4—C5118.93 (10)C8—C9—H9A109.0
C3—C4—H4120.5C10—C9—H9B109.0
C5—C4—H4120.5C8—C9—H9B109.0
N2—C5—N1116.87 (9)H9A—C9—H9B107.8
N2—C5—C4121.74 (10)O3—C10—O4123.51 (10)
N1—C5—C4121.39 (10)O3—C10—C9123.27 (10)
O2—C6—O1123.27 (10)O4—C10—C9113.20 (9)
O2—C6—C7123.29 (10)C1—N1—C5117.31 (9)
O1—C6—C7113.43 (9)C5—N2—H2A119.6 (13)
C6—C7—C8112.74 (9)C5—N2—H2B120.4 (10)
C6—C7—H7A109.0H2A—N2—H2B119.0 (16)
C8—C7—H7A109.0C6—O1—H1A109.8 (13)
C6—C7—H7B109.0C10—O4—H4A109.2 (14)
C8—C7—H7B109.0
N1—C1—C2—C30.78 (17)C6—C7—C8—C9174.76 (9)
Cl1—C1—C2—C3178.87 (8)C7—C8—C9—C10171.92 (9)
C1—C2—C3—C40.39 (16)C8—C9—C10—O34.34 (16)
C2—C3—C4—C50.21 (16)C8—C9—C10—O4176.99 (9)
C3—C4—C5—N2178.41 (11)C2—C1—N1—C50.50 (16)
C3—C4—C5—N10.52 (16)Cl1—C1—N1—C5179.16 (8)
O2—C6—C7—C85.66 (15)N2—C5—N1—C1178.80 (10)
O1—C6—C7—C8173.62 (10)C4—C5—N1—C10.18 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.553.3711 (13)147
N2—H2A···O3ii0.87 (1)2.08 (1)2.9443 (13)171 (2)
N2—H2B···O3i0.87 (1)2.18 (1)2.9525 (13)147 (1)
O1—H1A···O2iii0.83 (1)1.82 (1)2.6433 (12)173 (2)
O4—H4A···N1iv0.83 (1)1.93 (1)2.7545 (12)171 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y1/2, z+1/2.
 

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdison, B., Balasubramani, K., Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2014). Acta Cryst. E70, o857–o858.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1841–o1842.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdiase, I., Nicholson, C. E., Ahmad, R., Cooper, J., Yufit, D. S. & Cooper, S. J. (2015). Acta Cryst. C71, 276–283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds