metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[benzyl 2-(heptan-4-yl­­idene)hydrazine-1-carboxyl­ate]bis­­(thio­cyanato)­cobalt(II)

crossmark logo

aDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 May 2019; accepted 5 June 2019; online 11 June 2019)

The title compound, [Co(NCS)2(C15H22N2O2)2] or C32H44CoN6O4S2, was prepared from cobalt(II) nitrate, benzyl carbazate and ammonium thio­cyanate in the presence of 4-hepta­none. The compound crystallizes with two centrosymmetric complexes in which the cobalt(II) atoms have a trans-CoO2N4 octa­hedral coordination geometry. In the crystal, N—H⋯S, C—H⋯S and C—H⋯.π contacts stack the complex mol­ecules along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Our previous work involving Schiff-base complexes derived from benzyl carbazate and carbonyl compounds was limited to short-chain dialkyl ketones (Nithya et al., 2016[Nithya, P., Helena, S., Simpson, J., Ilanchelian, M., Muthusankar, A. & Govindarajan, S. (2016). J. Photochem. Photobiol. B, 165, 220-231.], 2017[Nithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017). J. Therm. Anal. Calorim. 129, 1001-1019.]). In order to investigate and compare the coordinating ability of benzyl carbazate Schiff bases derived from higher homologues, we have prepared the title cobalt complex from benzyl carbazate with 4-hepta­none with thio­cyanate as the charge-balancing anionic ligand. We report the mol­ecular and crystal structure of the complex here. Neither the structure of the bidentate ligand used here, nor of its complexes, have been reported previously.

The title compound, Co(C15H22N2O2)2(NCS)2, crystallizes with two centrosymmetric, octa­hedral cobalt(II) complexes (1) and (2) in the monoclinic unit cell. These are differentiated in the numbering scheme by leading 1 and 2 characters, respectively (Fig. 1[link]). The mol­ecules overlay with an r.m.s. deviation of 0.602 Å (Fig. 2[link]), with the greatest conformational differences in the vicinity of the n-propyl substituents on C12 and C22 (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The benzyl-2-(heptan-4-yl­idene)hydrazine-1-carboxyl­ate ligand is N,O-bidentate with two such ligands in the equatorial plane, binding through the imine N and carbonyl O atoms. The N bound thio­cyanato ligands occupy trans-axial positions and are slightly kinked, with N—C—S and Co—N—C bond angles of 177.3 (6) and 169.8 (5)°, respectively, in (1) and 178.9 (6) and 165.6 (6)°, respectively, in (2). With the exception of the di-n-propyl substituents on the C12 and C22 carbon atoms, the non-hydrogen atoms of the bidentate ligands lie close to the equatorial planes of both complexes with r.m.s. deviations from the best-fit plane through N11, N12, O11, C11, O12, C13⋯C19 of 0.079 Å for (1) and 0.094 Å for the corresponding plane in (2). Pairs of intra­molecular C—H⋯O hydrogen bonds form in both mol­ecules, Table 1[link], Fig. 1[link]. In the crystal, N—H⋯S and weaker C—H⋯S hydrogen bonds combine with a C—H⋯π contact between mol­ecules (1) and (2), Table 1[link], to stack the complexes along the b-axis direction, Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C24–C29 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12⋯S1i 0.85 (8) 2.47 (8) 3.298 (6) 166 (7)
C121—H12B⋯S1i 0.99 2.93 3.786 (7) 146
N22—H22⋯S2ii 0.96 (8) 2.55 (8) 3.480 (6) 164 (6)
C25—H25⋯S2ii 0.95 2.94 3.811 (7) 153
C124—H12I⋯O11iii 0.99 2.48 3.259 (9) 135
C221—H22A⋯O21iv 0.99 2.38 3.229 (8) 144
C13—H13BCg6 0.99 2.60 3.464 (7) 145
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, -y, -z]; (iv) [-x+1, -y, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with ellipsoids drawn at the 50% probability level. Intra­molecular hydrogen bonds are drawn as dashed lines. Labelled atom are related to unlabelled atoms by the symmetry operations −x, −y, −z for mol­ecule (1) and −x + 1, −y, −z + 1 for mol­ecule (2).
[Figure 2]
Figure 2
An overlay of the two unique mol­ecules of the title compound (r.m.s. deviation = 0.602 Å).
[Figure 3]
Figure 3
A view of the overall packing of the title compound along the b-axis direction. Hydrogen bonds are drawn as cyan dashed lines and a representative C—H⋯π(ring) contact is shown as a green dashed line, with a red sphere representing the ring centroid.

Synthesis and crystallization

Cobalt(II) nitrate (0.146 g, 0.50 mmol) dissolved in 10 ml of doubly distilled water was added to a methano­lic solution (10 ml) of benzyl carbazate (0.166 g, 1.00 mmol) and ammonium thio­cyanate (0.076 g, 1.00 mmol). The solution was then layered with 4-hepta­none (0.1 ml, 1 mmol) and the colour changed from pink to blue. The resulting mixture was retained for slow evaporation at room temperature, resulting in olive-green crystals, which were collected, washed with water and air-dried. Yield 81.5% (0.119 g) with respect to the metal.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Crystals of this compound were not of good quality and, despite several data collections on different samples with both Cu and Mo radiation, the residuals reported here were the best that could be obtained.

Table 2
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C15H22N2O2)2]
Mr 699.78
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 23.194 (3), 9.825 (1), 16.475 (2)
β (°) 106.154 (13)
V3) 3606.1 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.16
Crystal size (mm) 0.21 × 0.15 × 0.11
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.839, 0.912
No. of measured, independent and observed [I > 2σ(I)] reflections 34985, 7198, 4299
Rint 0.153
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.094, 0.263, 1.07
No. of reflections 7198
No. of parameters 419
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.19, −0.62
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip 2010).

Bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate]bis(thiocyanato)cobalt(II) top
Crystal data top
[Co(NCS)2(C15H22N2O2)2]F(000) = 1476
Mr = 699.78Dx = 1.289 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 23.194 (3) ÅCell parameters from 2699 reflections
b = 9.825 (1) Åθ = 3.9–72.7°
c = 16.475 (2) ŵ = 5.16 mm1
β = 106.154 (13)°T = 100 K
V = 3606.1 (8) Å3Block, olive green
Z = 40.21 × 0.15 × 0.11 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
7198 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source4299 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.153
ω scansθmax = 74.4°, θmin = 4.0°
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
h = 2828
Tmin = 0.839, Tmax = 0.912k = 1112
34985 measured reflectionsl = 1920
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.094H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.263 w = 1/[σ2(Fo2) + (0.0923P)2 + 14.0183P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
7198 reflectionsΔρmax = 1.19 e Å3
419 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. l reflection with Fo >>> Fc was omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.0000000.0000000.0000000.0298 (4)
N110.0137 (2)0.1536 (6)0.1013 (3)0.0322 (12)
C120.0084 (3)0.2731 (7)0.1072 (4)0.0323 (15)
C1210.0110 (3)0.3609 (7)0.1846 (4)0.0341 (15)
H12A0.0210530.4276400.1844260.041*
H12B0.0169110.3033270.2356400.041*
C1220.0698 (3)0.4373 (8)0.1883 (5)0.0419 (17)
H12C0.0658120.4834920.1335920.050*
H12D0.1030870.3709390.1971900.050*
C1230.0847 (4)0.5416 (9)0.2586 (5)0.052 (2)
H12E0.0838170.4981590.3118230.078*
H12F0.1247620.5788690.2641940.078*
H12G0.0550240.6152410.2453680.078*
C1240.0538 (3)0.3287 (8)0.0323 (4)0.0364 (15)
H12H0.0459420.4269470.0271240.044*
H12I0.0493920.2828230.0191490.044*
C1250.1180 (3)0.3104 (8)0.0371 (5)0.0441 (18)
H12J0.1283470.2123790.0321330.053*
H12K0.1208080.3422010.0929040.053*
C1260.1631 (3)0.3887 (8)0.0324 (5)0.0448 (18)
H12L0.1579430.3634910.0875090.067*
H12M0.2039260.3663750.0309120.067*
H12N0.1562120.4867010.0233400.067*
N120.0573 (3)0.1037 (6)0.1712 (4)0.0327 (12)
H120.070 (3)0.136 (8)0.221 (5)0.039*
O110.0806 (2)0.0600 (5)0.0883 (3)0.0323 (10)
C110.0897 (3)0.0026 (7)0.1561 (4)0.0298 (14)
O120.1327 (2)0.0389 (5)0.2253 (3)0.0330 (10)
C130.1703 (3)0.1503 (7)0.2106 (4)0.0333 (15)
H13A0.1458520.2340050.1960510.040*
H13B0.1860390.1273340.1621980.040*
C140.2213 (3)0.1757 (7)0.2867 (4)0.0347 (15)
C150.2366 (3)0.0952 (8)0.3578 (5)0.0392 (16)
H150.2127770.0177780.3609630.047*
C160.2865 (3)0.1251 (8)0.4254 (5)0.0438 (18)
H160.2967210.0680160.4738070.053*
C170.3209 (3)0.2383 (8)0.4212 (5)0.0408 (17)
H170.3550730.2587920.4668770.049*
C180.3058 (3)0.3213 (9)0.3514 (5)0.0468 (19)
H180.3293650.3997110.3492000.056*
C190.2563 (3)0.2911 (8)0.2838 (5)0.0402 (17)
H190.2461960.3487200.2355640.048*
N130.0433 (2)0.1289 (6)0.0627 (4)0.0333 (12)
C1100.0677 (3)0.2137 (7)0.0880 (4)0.0323 (14)
S10.10507 (8)0.33019 (19)0.12477 (11)0.0400 (4)
Co20.5000000.0000000.5000000.0305 (4)
N210.4960 (2)0.1867 (6)0.4197 (3)0.0317 (12)
C220.5324 (3)0.2874 (7)0.4219 (5)0.0362 (16)
C2210.5867 (3)0.2997 (7)0.4961 (5)0.0353 (15)
H22A0.5792370.2511360.5448110.042*
H22B0.5934170.3969320.5116290.042*
C2220.6438 (3)0.2414 (8)0.4786 (5)0.0474 (19)
H22C0.6387710.1422860.4681110.057*
H22D0.6497520.2844690.4271780.057*
C2230.6985 (4)0.2666 (11)0.5525 (6)0.065 (3)
H22E0.7038820.3647560.5623300.097*
H22F0.7341190.2287320.5397710.097*
H22G0.6929540.2226540.6031700.097*
C2240.5242 (3)0.3964 (7)0.3546 (5)0.0363 (15)
H22H0.5041720.3567250.2986010.044*
H22I0.5639790.4310130.3530310.044*
C2250.4860 (3)0.5153 (7)0.3730 (5)0.0381 (16)
H22J0.4453560.4816930.3707230.046*
H22K0.5046160.5505440.4306770.046*
C2260.4811 (4)0.6303 (7)0.3089 (5)0.0420 (17)
H22L0.5213190.6648750.3119850.063*
H22M0.4566020.7040640.3217190.063*
H22N0.4623310.5956750.2518700.063*
N220.4473 (3)0.1744 (6)0.3494 (4)0.0353 (13)
H220.435 (3)0.238 (8)0.304 (5)0.042*
O210.4248 (2)0.0321 (5)0.3958 (3)0.0343 (11)
C210.4151 (3)0.0578 (7)0.3420 (4)0.0327 (14)
O220.3730 (2)0.0517 (5)0.2689 (3)0.0371 (11)
C230.3364 (3)0.0692 (7)0.2566 (5)0.0393 (16)
H23A0.3178660.0794400.3036340.047*
H23B0.3614590.1504410.2557310.047*
C240.2882 (3)0.0577 (7)0.1742 (4)0.0351 (15)
C250.2887 (3)0.0403 (7)0.1141 (4)0.0339 (15)
H250.3206170.1042750.1241840.041*
C260.2432 (3)0.0459 (7)0.0395 (4)0.0363 (15)
H260.2431280.1156370.0004170.044*
C270.1972 (3)0.0505 (8)0.0226 (5)0.0415 (17)
H270.1663820.0486000.0293160.050*
C280.1970 (3)0.1493 (8)0.0828 (5)0.0430 (17)
H280.1655630.2145560.0723670.052*
C290.2422 (3)0.1534 (8)0.1576 (5)0.0410 (17)
H290.2418820.2220040.1980780.049*
N230.5525 (3)0.0819 (6)0.4321 (4)0.0357 (13)
C2100.5825 (3)0.1012 (7)0.3862 (4)0.0320 (14)
S20.62538 (8)0.1277 (2)0.32411 (12)0.0406 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0294 (7)0.0330 (9)0.0297 (8)0.0011 (7)0.0125 (6)0.0001 (7)
N110.035 (3)0.035 (3)0.031 (3)0.001 (2)0.015 (2)0.001 (2)
C120.034 (3)0.036 (4)0.032 (3)0.002 (3)0.018 (3)0.002 (3)
C1210.040 (4)0.027 (4)0.039 (4)0.006 (3)0.018 (3)0.002 (3)
C1220.043 (4)0.048 (5)0.038 (4)0.009 (3)0.016 (3)0.001 (3)
C1230.064 (5)0.050 (5)0.046 (5)0.021 (4)0.021 (4)0.000 (4)
C1240.037 (4)0.037 (4)0.039 (4)0.001 (3)0.016 (3)0.001 (3)
C1250.037 (4)0.045 (5)0.052 (5)0.003 (3)0.015 (3)0.007 (4)
C1260.043 (4)0.048 (5)0.043 (4)0.009 (4)0.012 (3)0.009 (4)
N120.034 (3)0.035 (3)0.028 (3)0.004 (2)0.008 (2)0.006 (2)
O110.035 (2)0.034 (3)0.030 (2)0.003 (2)0.0119 (19)0.001 (2)
C110.031 (3)0.035 (4)0.026 (3)0.002 (3)0.013 (3)0.000 (3)
O120.032 (2)0.036 (3)0.032 (2)0.0044 (19)0.0096 (19)0.000 (2)
C130.032 (3)0.035 (4)0.035 (4)0.007 (3)0.013 (3)0.001 (3)
C140.032 (3)0.039 (4)0.038 (4)0.001 (3)0.017 (3)0.006 (3)
C150.039 (4)0.043 (4)0.038 (4)0.005 (3)0.014 (3)0.007 (3)
C160.046 (4)0.040 (4)0.045 (4)0.008 (3)0.012 (3)0.005 (3)
C170.033 (3)0.047 (5)0.042 (4)0.002 (3)0.009 (3)0.005 (3)
C180.036 (4)0.055 (5)0.052 (5)0.005 (4)0.017 (3)0.006 (4)
C190.036 (4)0.044 (4)0.043 (4)0.003 (3)0.016 (3)0.004 (3)
N130.034 (3)0.032 (3)0.036 (3)0.000 (2)0.013 (2)0.000 (2)
C1100.035 (3)0.028 (4)0.031 (3)0.005 (3)0.005 (3)0.001 (3)
S10.0469 (10)0.0344 (10)0.0380 (9)0.0061 (8)0.0108 (8)0.0038 (7)
Co20.0319 (8)0.0302 (8)0.0331 (8)0.0011 (7)0.0152 (6)0.0002 (7)
N210.038 (3)0.028 (3)0.033 (3)0.001 (2)0.017 (2)0.000 (2)
C220.041 (4)0.030 (4)0.042 (4)0.000 (3)0.020 (3)0.003 (3)
C2210.031 (3)0.027 (4)0.052 (4)0.005 (3)0.019 (3)0.006 (3)
C2220.042 (4)0.040 (5)0.063 (5)0.001 (3)0.021 (4)0.003 (4)
C2230.044 (5)0.073 (7)0.076 (7)0.012 (5)0.016 (4)0.023 (5)
C2240.041 (4)0.031 (4)0.044 (4)0.002 (3)0.021 (3)0.001 (3)
C2250.050 (4)0.030 (4)0.041 (4)0.003 (3)0.023 (3)0.004 (3)
C2260.060 (5)0.024 (4)0.047 (4)0.005 (3)0.024 (4)0.002 (3)
N220.041 (3)0.031 (3)0.036 (3)0.000 (3)0.015 (3)0.006 (3)
O210.038 (3)0.034 (3)0.033 (3)0.001 (2)0.014 (2)0.005 (2)
C210.035 (3)0.036 (4)0.028 (3)0.000 (3)0.011 (3)0.001 (3)
O220.040 (3)0.036 (3)0.037 (3)0.005 (2)0.013 (2)0.001 (2)
C230.044 (4)0.030 (4)0.044 (4)0.009 (3)0.012 (3)0.004 (3)
C240.038 (4)0.033 (4)0.040 (4)0.002 (3)0.021 (3)0.009 (3)
C250.028 (3)0.038 (4)0.040 (4)0.003 (3)0.015 (3)0.004 (3)
C260.042 (4)0.035 (4)0.037 (4)0.003 (3)0.019 (3)0.001 (3)
C270.043 (4)0.046 (5)0.037 (4)0.003 (3)0.014 (3)0.005 (3)
C280.042 (4)0.041 (4)0.047 (4)0.006 (3)0.013 (3)0.005 (3)
C290.042 (4)0.037 (4)0.046 (4)0.006 (3)0.016 (3)0.002 (3)
N230.037 (3)0.032 (3)0.039 (3)0.000 (2)0.013 (3)0.001 (2)
C2100.033 (3)0.031 (4)0.035 (4)0.000 (3)0.013 (3)0.009 (3)
S20.0397 (9)0.0462 (11)0.0409 (10)0.0002 (8)0.0193 (8)0.0053 (8)
Geometric parameters (Å, º) top
Co1—N132.064 (6)Co2—N232.036 (6)
Co1—N13i2.064 (6)Co2—N23ii2.036 (6)
Co1—O112.109 (5)Co2—O212.103 (5)
Co1—O11i2.109 (5)Co2—O21ii2.103 (5)
Co1—N112.206 (6)Co2—N212.248 (6)
Co1—N11i2.206 (6)Co2—N21ii2.248 (6)
N11—C121.295 (9)N21—C221.293 (9)
N11—N121.393 (8)N21—N221.380 (8)
C12—C1241.486 (10)C22—C2211.496 (10)
C12—C1211.501 (9)C22—C2241.515 (10)
C121—C1221.544 (9)C221—C2221.542 (9)
C121—H12A0.9900C221—H22A0.9900
C121—H12B0.9900C221—H22B0.9900
C122—C1231.513 (11)C222—C2231.515 (12)
C122—H12C0.9900C222—H22C0.9900
C122—H12D0.9900C222—H22D0.9900
C123—H12E0.9800C223—H22E0.9800
C123—H12F0.9800C223—H22F0.9800
C123—H12G0.9800C223—H22G0.9800
C124—C1251.524 (9)C224—C2251.546 (9)
C124—H12H0.9900C224—H22H0.9900
C124—H12I0.9900C224—H22I0.9900
C125—C1261.527 (11)C225—C2261.530 (9)
C125—H12J0.9900C225—H22J0.9900
C125—H12K0.9900C225—H22K0.9900
C126—H12L0.9800C226—H22L0.9800
C126—H12M0.9800C226—H22M0.9800
C126—H12N0.9800C226—H22N0.9800
N12—C111.350 (9)N22—C211.354 (9)
N12—H120.85 (8)N22—H220.96 (8)
O11—C111.216 (8)O21—C211.227 (8)
C11—O121.338 (8)C21—O221.325 (8)
O12—C131.462 (8)O22—C231.442 (8)
C13—C141.487 (9)C23—C241.503 (10)
C13—H13A0.9900C23—H23A0.9900
C13—H13B0.9900C23—H23B0.9900
C14—C151.375 (10)C24—C251.383 (10)
C14—C191.403 (10)C24—C291.392 (10)
C15—C161.395 (11)C25—C261.380 (10)
C15—H150.9500C25—H250.9500
C16—C171.381 (11)C26—C271.396 (10)
C16—H160.9500C26—H260.9500
C17—C181.375 (11)C27—C281.388 (11)
C17—H170.9500C27—H270.9500
C18—C191.391 (11)C28—C291.378 (11)
C18—H180.9500C28—H280.9500
C19—H190.9500C29—H290.9500
N13—C1101.148 (9)N23—C2101.176 (8)
C110—S11.649 (7)C210—S21.634 (6)
N13—Co1—N13i180.0N23—Co2—N23ii180.0
N13—Co1—O1186.8 (2)N23—Co2—O2188.8 (2)
N13i—Co1—O1193.2 (2)N23ii—Co2—O2191.2 (2)
N13—Co1—O11i93.2 (2)N23—Co2—O21ii91.2 (2)
N13i—Co1—O11i86.8 (2)N23ii—Co2—O21ii88.8 (2)
O11—Co1—O11i180.0 (3)O21—Co2—O21ii180.0
N13—Co1—N1191.7 (2)N23—Co2—N2186.1 (2)
N13i—Co1—N1188.4 (2)N23ii—Co2—N2193.9 (2)
O11—Co1—N1175.87 (19)O21—Co2—N2175.71 (19)
O11i—Co1—N11104.13 (19)O21ii—Co2—N21104.29 (19)
N13—Co1—N11i88.3 (2)N23—Co2—N21ii93.9 (2)
N13i—Co1—N11i91.6 (2)N23ii—Co2—N21ii86.1 (2)
O11—Co1—N11i104.13 (19)O21—Co2—N21ii104.29 (19)
O11i—Co1—N11i75.87 (19)O21ii—Co2—N21ii75.71 (19)
N11—Co1—N11i180.0N21—Co2—N21ii180.0
C12—N11—N12117.9 (6)C22—N21—N22117.7 (6)
C12—N11—Co1134.5 (5)C22—N21—Co2133.5 (5)
N12—N11—Co1107.7 (4)N22—N21—Co2108.2 (4)
N11—C12—C124118.3 (6)N21—C22—C221118.6 (6)
N11—C12—C121123.6 (6)N21—C22—C224124.9 (7)
C124—C12—C121118.0 (6)C221—C22—C224116.5 (6)
C12—C121—C122111.3 (5)C22—C221—C222112.9 (6)
C12—C121—H12A109.4C22—C221—H22A109.0
C122—C121—H12A109.4C222—C221—H22A109.0
C12—C121—H12B109.4C22—C221—H22B109.0
C122—C121—H12B109.4C222—C221—H22B109.0
H12A—C121—H12B108.0H22A—C221—H22B107.8
C123—C122—C121111.7 (6)C223—C222—C221111.1 (7)
C123—C122—H12C109.3C223—C222—H22C109.4
C121—C122—H12C109.3C221—C222—H22C109.4
C123—C122—H12D109.3C223—C222—H22D109.4
C121—C122—H12D109.3C221—C222—H22D109.4
H12C—C122—H12D107.9H22C—C222—H22D108.0
C122—C123—H12E109.5C222—C223—H22E109.5
C122—C123—H12F109.5C222—C223—H22F109.5
H12E—C123—H12F109.5H22E—C223—H22F109.5
C122—C123—H12G109.5C222—C223—H22G109.5
H12E—C123—H12G109.5H22E—C223—H22G109.5
H12F—C123—H12G109.5H22F—C223—H22G109.5
C12—C124—C125113.0 (6)C22—C224—C225110.6 (5)
C12—C124—H12H109.0C22—C224—H22H109.5
C125—C124—H12H109.0C225—C224—H22H109.5
C12—C124—H12I109.0C22—C224—H22I109.5
C125—C124—H12I109.0C225—C224—H22I109.5
H12H—C124—H12I107.8H22H—C224—H22I108.1
C124—C125—C126112.1 (6)C226—C225—C224111.0 (6)
C124—C125—H12J109.2C226—C225—H22J109.4
C126—C125—H12J109.2C224—C225—H22J109.4
C124—C125—H12K109.2C226—C225—H22K109.4
C126—C125—H12K109.2C224—C225—H22K109.4
H12J—C125—H12K107.9H22J—C225—H22K108.0
C125—C126—H12L109.5C225—C226—H22L109.5
C125—C126—H12M109.5C225—C226—H22M109.5
H12L—C126—H12M109.5H22L—C226—H22M109.5
C125—C126—H12N109.5C225—C226—H22N109.5
H12L—C126—H12N109.5H22L—C226—H22N109.5
H12M—C126—H12N109.5H22M—C226—H22N109.5
C11—N12—N11115.7 (5)C21—N22—N21116.8 (6)
C11—N12—H12114 (5)C21—N22—H22117 (5)
N11—N12—H12130 (5)N21—N22—H22127 (5)
C11—O11—Co1113.4 (4)C21—O21—Co2115.2 (4)
O11—C11—O12123.8 (6)O21—C21—O22124.4 (7)
O11—C11—N12124.4 (6)O21—C21—N22123.9 (6)
O12—C11—N12111.7 (5)O22—C21—N22111.6 (6)
C11—O12—C13113.3 (5)C21—O22—C23114.9 (5)
O12—C13—C14110.9 (5)O22—C23—C24109.0 (6)
O12—C13—H13A109.5O22—C23—H23A109.9
C14—C13—H13A109.5C24—C23—H23A109.9
O12—C13—H13B109.5O22—C23—H23B109.9
C14—C13—H13B109.5C24—C23—H23B109.9
H13A—C13—H13B108.0H23A—C23—H23B108.3
C15—C14—C19118.7 (7)C25—C24—C29119.2 (7)
C15—C14—C13125.3 (6)C25—C24—C23123.2 (6)
C19—C14—C13116.0 (6)C29—C24—C23117.6 (7)
C14—C15—C16121.2 (7)C26—C25—C24120.5 (7)
C14—C15—H15119.4C26—C25—H25119.7
C16—C15—H15119.4C24—C25—H25119.7
C17—C16—C15119.5 (7)C25—C26—C27120.2 (7)
C17—C16—H16120.2C25—C26—H26119.9
C15—C16—H16120.2C27—C26—H26119.9
C18—C17—C16120.2 (7)C28—C27—C26119.1 (7)
C18—C17—H17119.9C28—C27—H27120.5
C16—C17—H17119.9C26—C27—H27120.5
C17—C18—C19120.3 (8)C29—C28—C27120.4 (7)
C17—C18—H18119.9C29—C28—H28119.8
C19—C18—H18119.9C27—C28—H28119.8
C18—C19—C14120.1 (7)C28—C29—C24120.5 (7)
C18—C19—H19120.0C28—C29—H29119.8
C14—C19—H19120.0C24—C29—H29119.8
C110—N13—Co1169.8 (5)C210—N23—Co2165.6 (6)
N13—C110—S1177.3 (6)N23—C210—S2178.9 (6)
N12—N11—C12—C124178.5 (5)N22—N21—C22—C221177.7 (6)
Co1—N11—C12—C1240.2 (9)Co2—N21—C22—C2218.0 (9)
N12—N11—C12—C1210.8 (9)N22—N21—C22—C2242.6 (10)
Co1—N11—C12—C121177.6 (4)Co2—N21—C22—C224172.3 (5)
N11—C12—C121—C12281.0 (8)N21—C22—C221—C22297.9 (7)
C124—C12—C121—C12296.8 (7)C224—C22—C221—C22282.4 (8)
C12—C121—C122—C123171.4 (6)C22—C221—C222—C223175.2 (7)
N11—C12—C124—C12598.8 (7)N21—C22—C224—C22588.3 (8)
C121—C12—C124—C12583.3 (8)C221—C22—C224—C22591.4 (7)
C12—C124—C125—C126170.3 (6)C22—C224—C225—C226176.1 (6)
C12—N11—N12—C11163.7 (6)C22—N21—N22—C21170.0 (6)
Co1—N11—N12—C1115.0 (6)Co2—N21—N22—C212.1 (6)
Co1—O11—C11—O12169.3 (5)Co2—O21—C21—O22174.5 (5)
Co1—O11—C11—N129.6 (8)Co2—O21—C21—N223.8 (8)
N11—N12—C11—O114.6 (10)N21—N22—C21—O214.1 (10)
N11—N12—C11—O12176.3 (5)N21—N22—C21—O22174.3 (5)
O11—C11—O12—C133.3 (9)O21—C21—O22—C232.1 (10)
N12—C11—O12—C13177.7 (5)N22—C21—O22—C23179.5 (6)
C11—O12—C13—C14173.5 (5)C21—O22—C23—C24176.2 (6)
O12—C13—C14—C158.2 (9)O22—C23—C24—C2512.5 (9)
O12—C13—C14—C19172.4 (6)O22—C23—C24—C29169.4 (6)
C19—C14—C15—C161.3 (10)C29—C24—C25—C261.9 (10)
C13—C14—C15—C16178.1 (7)C23—C24—C25—C26180.0 (7)
C14—C15—C16—C170.6 (11)C24—C25—C26—C272.3 (10)
C15—C16—C17—C180.4 (11)C25—C26—C27—C281.8 (11)
C16—C17—C18—C190.8 (11)C26—C27—C28—C291.0 (11)
C17—C18—C19—C140.2 (11)C27—C28—C29—C240.7 (12)
C15—C14—C19—C180.9 (10)C25—C24—C29—C281.1 (11)
C13—C14—C19—C18178.5 (7)C23—C24—C29—C28179.3 (7)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C24–C29 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N12—H12···S1iii0.85 (8)2.47 (8)3.298 (6)166 (7)
C121—H12B···S1iii0.992.933.786 (7)146
N22—H22···S2iv0.96 (8)2.55 (8)3.480 (6)164 (6)
C25—H25···S2iv0.952.943.811 (7)153
C124—H12I···O11i0.992.483.259 (9)135
C221—H22A···O21ii0.992.383.229 (8)144
C13—H13B···Cg60.992.603.464 (7)145
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

PN acknowledges the University Grants Commission (UGC–BSR), New Delhi, for the award of a BSR Senior Research Fellowship. We also thank the University of Otago for the purchase of the diffractometer and the Chemistry Department of the University of Otago for support of the work of JS.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNithya, P., Helena, S., Simpson, J., Ilanchelian, M., Muthusankar, A. & Govindarajan, S. (2016). J. Photochem. Photobiol. B, 165, 220–231.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017). J. Therm. Anal. Calorim. 129, 1001–1019.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds