organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Dodecan-1-aminium sulfate trihydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Materials Science and Chemical Engineering, Xi'an Technological University, Xi-an 710000, People's Republic of China, and bCollege of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, People's Republic of China
*Correspondence e-mail: 152299845362@163.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 22 April 2019; accepted 15 May 2019; online 21 May 2019)

The asymmetric unit of the title salt, 2C12H28N+·SO42−·3H2O, contains two n-do­decyl­ammonium cations, one sulfate anion and three water mol­ecules. In the crystal, N—H⋯O hydrogen bonds link the cations and anions into layers parallel to (100). These layers are further connected through O—H⋯O hydrogen-bonding inter­actions involving the sulfate ions and the isolated water mol­ecules. The three-dimensional structure can also be considered as the superposition of thin inorganic layers of SO42− anions and thick layers of alkyl­ammonium cations perpendicular to the c axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a part of our studies on new thermal-energy storage materials (Terreros et al., 2000[Terreros, A., Galera-Gómez, P. J. & Lopez-Cabarcos, E. (2000). J. Therm. Anal. Calorim. 61, 341-350.]; Li et al., 1999[Li, W., Zhang, D., Zhang, T., Wang, T., Ruan, D., Xing, D. & Li, H. (1999). Thermochim. Acta, 326, 183-186.]) involving long-chain n-alkyl­ammonium halides or sulfates (Zhang et al., 2011a[Zhang, L., Di, Y. & Dan, W. (2011a). Acta Cryst. E67, o717.],b[Zhang, L., Di, Y. & Dan, W. (2011b). Acta Cryst. E67, o1051.]; Dan et al., 2010[Dan, W., Di, Y., He, D., Yang, W. & Kong, Y. (2010). Acta Cryst. E66, o910.]), we report the synthesis and crystal structure of the title compound dodecan-1-aminium sulfate (trihydrate). n-Do­decyl­amine is a white waxy solid, which is often used in the manufacture of ore-flotation agents, surfactants, fungicides and emulsifiers (Aratono et al., 1998[Aratono, M., Villeneuve, M., Takiue, T., Ikeda, N. & Iyota, H. (1998). J. Colloid Interface Sci. 200, 161-171.]; Törnblom et al., 2000[Törnblom, M., Sitnikov, R. & Henriksson, U. (2000). J. Phys. Chem. B, 104, 1529-1538.]).

The asymmetric unit of the title salt contains two n-do­decyl­ammonium cations, one sulfate anion and three water mol­ecules (Figs. 1[link] and 2[link]). In the crystal, N1—H1A⋯O3, N1—H1C⋯O4ii, N2—H2D⋯O2 and N2—H2E⋯O1iv hydrogen bonds (Table 1[link]) link the cations and anions into layers parallel to (100). These layers are further connected through hydrogen-bonding inter­actions involving the sulfate or the alkyl­ammonium ions with the isolated water mol­ecules: O5—H5C⋯O6, O5—H5D⋯O3i, O6—H6C⋯O1ii, O6—H6D⋯O2iii, O7—H7C⋯O1iv, O7—H7D⋯O4, N1—H1B⋯O5 and N2—H2C⋯O7v (Table 1[link]). The three-dimensional structure can also be considered as the superposition of thin inorganic layers of SO42− anions and thick layers of alkyl­ammonium cations perpendicular to the c axis (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5C⋯O6 0.87 1.87 2.736 (2) 176
O5—H5D⋯O3i 0.87 1.92 2.7729 (19) 166
O6—H6C⋯O1ii 0.87 2.02 2.849 (2) 158
O6—H6D⋯O2iii 0.87 1.93 2.787 (2) 166
O7—H7C⋯O1iv 0.87 1.99 2.8542 (19) 171
O7—H7D⋯O4 0.87 2.00 2.8665 (19) 173
N1—H1A⋯O3 0.91 1.97 2.8331 (19) 158
N1—H1B⋯O5 0.91 1.91 2.775 (2) 158
N1—H1C⋯O4ii 0.91 2.00 2.8947 (19) 167
N2—H2C⋯O7v 0.91 1.99 2.879 (2) 163
N2—H2D⋯O2 0.91 1.83 2.740 (2) 175
N2—H2E⋯O1iv 0.91 2.11 2.9731 (19) 159
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) -x, -y, -z; (v) -x+1, -y, -z.
[Figure 1]
Figure 1
A view of the asymmetric unit of the title compound showing the atom numbering with 30% displacement ellipsoids.
[Figure 2]
Figure 2
The expanded asymmetric unit with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
A packing diagram of the title compound, showing the hydrogen-bonded network (dashed lines).

Synthesis and crystallization

The title compound was synthesized by reacting do­decyl­amine and sulfuric acid (molar ratio 2:1) in anhydrous ethanol. Slow evaporation of the solvent yielded good-quality colourless crystals over a period of about 4–8 weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C12H28N+·SO42−·3H2O
Mr 522.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 6.9477 (4), 10.8782 (7), 20.8769 (11)
α, β, γ (°) 89.110 (3), 87.052 (3), 78.876 (3)
V3) 1546.13 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.05 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.682, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 37596, 6095, 4414
Rint 0.074
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.02
No. of reflections 6095
No. of parameters 317
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.40
Computer programs: SAINT and APEX2 (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SAINT (Bruker, 2016); cell refinement: APEX2 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dodecan-1-aminium sulfate trihydrate top
Crystal data top
2C12H28N+·SO42·3H2OZ = 2
Mr = 522.81F(000) = 584
Triclinic, P1Dx = 1.123 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9477 (4) ÅCell parameters from 8618 reflections
b = 10.8782 (7) Åθ = 3.0–26.4°
c = 20.8769 (11) ŵ = 0.14 mm1
α = 89.110 (3)°T = 150 K
β = 87.052 (3)°Block, colourless
γ = 78.876 (3)°0.05 × 0.04 × 0.03 mm
V = 1546.13 (16) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6095 independent reflections
Radiation source: fine-focus sealed tube4414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 10 pixels mm-1θmax = 26.0°, θmin = 2.1°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1313
Tmin = 0.682, Tmax = 0.745l = 2525
37596 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.063P)2 + 0.384P]
where P = (Fo2 + 2Fc2)/3
6095 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Experimental. SADABS-2016/2 (Bruker, 2016) was used for absorption correction. wR2 was 0.0783 before and 0.0645 after correction. The ratio of minimum to maximum transmission is 0.915. The λ/2 correction factor is not present.'

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed in geometrically calculated positions and constrained to ride on their parent atoms: with methylene C—H distances of 0.99 Å, methyl C—H of 0.98 Å, N—H of 0.87 Å and O–H distances of 0.87 Å, and with Uiso(H) values set at 1.2Ueq(C) for the methylene H atoms and at 1.5Ueq(X) for all other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03120 (7)0.24575 (4)0.01517 (2)0.01780 (13)
O10.1649 (2)0.16044 (12)0.03328 (7)0.0316 (3)
O20.15208 (19)0.20951 (12)0.04928 (6)0.0271 (3)
O30.12134 (19)0.37531 (11)0.03220 (6)0.0229 (3)
O40.01304 (19)0.23874 (11)0.05480 (6)0.0237 (3)
O50.5349 (2)0.51199 (14)0.08846 (7)0.0376 (4)
H5C0.5345700.5794860.0655170.056*
H5D0.6347940.4583890.0726300.056*
O60.5266 (2)0.73077 (14)0.02131 (8)0.0489 (5)
H6C0.4257330.7476830.0025890.073*
H6D0.6262130.7385230.0043890.073*
O70.3276 (2)0.03745 (12)0.09235 (7)0.0285 (3)
H7C0.2782550.0262170.0784130.043*
H7D0.2399910.1026130.0805730.043*
N10.1375 (2)0.50460 (14)0.09193 (6)0.0214 (4)
H1A0.0820170.4582020.0648820.026*
H1B0.2693180.4919220.0829000.026*
H1C0.0844890.5872080.0867560.026*
C10.0992 (3)0.46625 (17)0.15913 (8)0.0209 (4)
H1D0.1564370.3762980.1647120.025*
H1E0.0441990.4778900.1685880.025*
C20.1877 (3)0.54284 (17)0.20554 (8)0.0214 (4)
H2A0.1340730.6329190.1986290.026*
H2B0.3316740.5289160.1967740.026*
C30.1447 (3)0.50849 (17)0.27521 (8)0.0215 (4)
H3A0.0006860.5240690.2840530.026*
H3B0.1954690.4179200.2816850.026*
C40.2360 (3)0.58231 (17)0.32263 (8)0.0215 (4)
H4A0.3806370.5627490.3154240.026*
H4B0.1915630.6729430.3143330.026*
C50.1839 (3)0.55424 (17)0.39228 (8)0.0217 (4)
H5A0.2291090.4636750.4005680.026*
H5B0.0391830.5731300.3993130.026*
C60.2736 (3)0.62850 (17)0.44023 (8)0.0219 (4)
H6A0.4184430.6078570.4341100.026*
H6B0.2311780.7190780.4313220.026*
C70.2159 (3)0.60210 (17)0.50965 (8)0.0208 (4)
H7A0.2588120.5115480.5185020.025*
H7B0.0709500.6222020.5155890.025*
C80.3039 (3)0.67640 (17)0.55819 (8)0.0220 (4)
H8A0.4488370.6562950.5524090.026*
H8B0.2608770.7670080.5494940.026*
C90.2448 (3)0.64894 (17)0.62740 (8)0.0218 (4)
H9A0.2882220.5583170.6359410.026*
H9B0.0997200.6684080.6328950.026*
C100.3299 (3)0.72254 (17)0.67674 (8)0.0223 (4)
H10A0.2864150.8132270.6683660.027*
H10B0.4749970.7030530.6714300.027*
C110.2691 (3)0.69388 (18)0.74583 (8)0.0260 (4)
H11A0.1239580.7123630.7509400.031*
H11B0.3139080.6033340.7542920.031*
C120.3515 (4)0.7679 (2)0.79521 (9)0.0360 (5)
H12A0.3057460.8577380.7877630.054*
H12B0.4952740.7482330.7914330.054*
H12C0.3065120.7455880.8383330.054*
N20.2600 (2)0.03715 (14)0.08399 (7)0.0221 (4)
H2C0.3934110.0535480.0843130.027*
H2D0.2174620.0439940.0721110.027*
H2E0.2204650.0887860.0556260.027*
C130.1763 (3)0.05851 (18)0.14901 (8)0.0231 (4)
H13A0.2193000.1473720.1614650.028*
H13B0.0310880.0406560.1487150.028*
C140.2422 (3)0.02499 (17)0.19741 (8)0.0213 (4)
H14A0.1926000.1137010.1859580.026*
H14B0.3875060.0108030.1953290.026*
C150.1698 (3)0.00091 (17)0.26579 (8)0.0220 (4)
H15A0.0244420.0211410.2685850.026*
H15B0.2110100.0891880.2760690.026*
C160.2479 (3)0.07780 (17)0.31513 (8)0.0225 (4)
H16A0.2021450.1678480.3056450.027*
H16B0.3931870.0602430.3108070.027*
C170.1846 (3)0.05170 (17)0.38432 (8)0.0220 (4)
H17A0.0394910.0728340.3892510.026*
H17B0.2255010.0389240.3933870.026*
C180.2707 (3)0.12524 (17)0.43316 (8)0.0224 (4)
H18A0.2281320.2158530.4243850.027*
H18B0.4157020.1050830.4276770.027*
C190.2107 (3)0.09841 (17)0.50257 (8)0.0215 (4)
H19A0.2523100.0077210.5113400.026*
H19B0.0657650.1193730.5082560.026*
C200.2996 (3)0.17204 (17)0.55121 (8)0.0227 (4)
H20A0.4445420.1512110.5454280.027*
H20B0.2578010.2627230.5424590.027*
C210.2403 (3)0.14526 (17)0.62060 (8)0.0223 (4)
H21A0.0953080.1648520.6262560.027*
H21B0.2840560.0548290.6295990.027*
C220.3268 (3)0.22042 (17)0.66884 (8)0.0213 (4)
H22A0.2842800.3107770.6594060.026*
H22B0.4718170.2001440.6633480.026*
C230.2670 (3)0.19559 (18)0.73848 (8)0.0245 (4)
H23A0.1218900.2136510.7438560.029*
H23B0.3131230.1057980.7484680.029*
C240.3499 (3)0.27414 (19)0.78567 (9)0.0299 (5)
H24A0.3063720.2550060.8294550.045*
H24B0.3031680.3632140.7764830.045*
H24C0.4937120.2548710.7815160.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0174 (2)0.0170 (2)0.0192 (2)0.00339 (18)0.00217 (17)0.00098 (16)
O10.0330 (9)0.0295 (8)0.0378 (8)0.0194 (7)0.0034 (6)0.0052 (6)
O20.0213 (8)0.0305 (8)0.0285 (7)0.0006 (6)0.0089 (6)0.0029 (6)
O30.0251 (8)0.0178 (7)0.0238 (7)0.0007 (6)0.0004 (5)0.0041 (5)
O40.0284 (8)0.0227 (7)0.0177 (7)0.0011 (6)0.0007 (5)0.0024 (5)
O50.0304 (9)0.0377 (9)0.0411 (9)0.0008 (7)0.0118 (7)0.0052 (7)
O60.0251 (9)0.0417 (10)0.0810 (13)0.0096 (8)0.0027 (8)0.0064 (9)
O70.0242 (8)0.0230 (7)0.0377 (8)0.0050 (6)0.0050 (6)0.0011 (6)
N10.0291 (9)0.0206 (8)0.0155 (8)0.0070 (7)0.0032 (6)0.0005 (6)
C10.0274 (11)0.0235 (10)0.0134 (8)0.0090 (8)0.0013 (7)0.0012 (7)
C20.0242 (11)0.0232 (10)0.0180 (9)0.0078 (8)0.0007 (7)0.0016 (7)
C30.0254 (11)0.0249 (10)0.0157 (9)0.0086 (8)0.0014 (7)0.0008 (7)
C40.0247 (11)0.0252 (10)0.0160 (9)0.0079 (8)0.0027 (7)0.0005 (7)
C50.0241 (11)0.0254 (10)0.0170 (9)0.0078 (8)0.0036 (8)0.0005 (8)
C60.0250 (11)0.0239 (10)0.0182 (9)0.0074 (8)0.0021 (8)0.0011 (8)
C70.0244 (11)0.0239 (10)0.0154 (9)0.0076 (8)0.0024 (7)0.0004 (7)
C80.0250 (11)0.0247 (10)0.0173 (9)0.0071 (8)0.0017 (8)0.0007 (7)
C90.0251 (11)0.0243 (10)0.0174 (9)0.0081 (8)0.0005 (8)0.0001 (7)
C100.0277 (11)0.0237 (10)0.0176 (9)0.0097 (8)0.0020 (8)0.0002 (7)
C110.0345 (12)0.0271 (10)0.0187 (9)0.0114 (9)0.0015 (8)0.0003 (8)
C120.0514 (15)0.0404 (13)0.0200 (10)0.0166 (11)0.0056 (10)0.0037 (9)
N20.0227 (9)0.0231 (8)0.0201 (8)0.0019 (7)0.0054 (6)0.0052 (6)
C130.0242 (11)0.0267 (10)0.0201 (9)0.0087 (8)0.0034 (8)0.0009 (8)
C140.0239 (11)0.0221 (10)0.0193 (9)0.0076 (8)0.0031 (8)0.0015 (7)
C150.0242 (11)0.0236 (10)0.0199 (9)0.0083 (8)0.0011 (8)0.0017 (8)
C160.0257 (11)0.0245 (10)0.0192 (9)0.0092 (8)0.0018 (8)0.0007 (8)
C170.0249 (11)0.0247 (10)0.0181 (9)0.0083 (8)0.0020 (8)0.0010 (8)
C180.0259 (11)0.0235 (10)0.0190 (9)0.0074 (8)0.0017 (8)0.0010 (8)
C190.0248 (11)0.0233 (10)0.0179 (9)0.0081 (8)0.0016 (8)0.0033 (7)
C200.0242 (11)0.0263 (10)0.0188 (9)0.0079 (9)0.0015 (8)0.0015 (8)
C210.0261 (11)0.0225 (10)0.0191 (9)0.0069 (8)0.0011 (8)0.0005 (8)
C220.0243 (11)0.0221 (10)0.0178 (9)0.0048 (8)0.0021 (8)0.0014 (7)
C230.0295 (11)0.0234 (10)0.0207 (10)0.0050 (9)0.0017 (8)0.0006 (8)
C240.0393 (13)0.0311 (11)0.0199 (10)0.0072 (10)0.0058 (9)0.0007 (8)
Geometric parameters (Å, º) top
S1—O11.4672 (14)C11—H11B0.9900
S1—O21.4747 (13)C11—C121.518 (3)
S1—O31.4687 (12)C12—H12A0.9800
S1—O41.4773 (13)C12—H12B0.9800
O5—H5C0.8701C12—H12C0.9800
O5—H5D0.8700N2—H2C0.9100
O6—H6C0.8702N2—H2D0.9100
O6—H6D0.8700N2—H2E0.9100
O7—H7C0.8702N2—C131.482 (2)
O7—H7D0.8702C13—H13A0.9900
N1—H1A0.9100C13—H13B0.9900
N1—H1B0.9100C13—C141.514 (2)
N1—H1C0.9100C14—H14A0.9900
N1—C11.483 (2)C14—H14B0.9900
C1—H1D0.9900C14—C151.525 (2)
C1—H1E0.9900C15—H15A0.9900
C1—C21.515 (2)C15—H15B0.9900
C2—H2A0.9900C15—C161.522 (2)
C2—H2B0.9900C16—H16A0.9900
C2—C31.525 (2)C16—H16B0.9900
C3—H3A0.9900C16—C171.527 (2)
C3—H3B0.9900C17—H17A0.9900
C3—C41.521 (2)C17—H17B0.9900
C4—H4A0.9900C17—C181.520 (2)
C4—H4B0.9900C18—H18A0.9900
C4—C51.521 (2)C18—H18B0.9900
C5—H5A0.9900C18—C191.527 (2)
C5—H5B0.9900C19—H19A0.9900
C5—C61.526 (2)C19—H19B0.9900
C6—H6A0.9900C19—C201.528 (2)
C6—H6B0.9900C20—H20A0.9900
C6—C71.522 (2)C20—H20B0.9900
C7—H7A0.9900C20—C211.525 (2)
C7—H7B0.9900C21—H21A0.9900
C7—C81.528 (2)C21—H21B0.9900
C8—H8A0.9900C21—C221.524 (2)
C8—H8B0.9900C22—H22A0.9900
C8—C91.523 (2)C22—H22B0.9900
C9—H9A0.9900C22—C231.526 (2)
C9—H9B0.9900C23—H23A0.9900
C9—C101.524 (2)C23—H23B0.9900
C10—H10A0.9900C23—C241.519 (2)
C10—H10B0.9900C24—H24A0.9800
C10—C111.527 (2)C24—H24B0.9800
C11—H11A0.9900C24—H24C0.9800
O1—S1—O2109.64 (8)C11—C12—H12C109.5
O1—S1—O3110.60 (8)H12A—C12—H12B109.5
O1—S1—O4109.18 (8)H12A—C12—H12C109.5
O2—S1—O4109.78 (8)H12B—C12—H12C109.5
O3—S1—O2108.64 (7)H2C—N2—H2D109.5
O3—S1—O4108.99 (7)H2C—N2—H2E109.5
H5C—O5—H5D104.5H2D—N2—H2E109.5
H6C—O6—H6D104.5C13—N2—H2C109.5
H7C—O7—H7D104.4C13—N2—H2D109.5
H1A—N1—H1B109.5C13—N2—H2E109.5
H1A—N1—H1C109.5N2—C13—H13A109.5
H1B—N1—H1C109.5N2—C13—H13B109.5
C1—N1—H1A109.5N2—C13—C14110.58 (15)
C1—N1—H1B109.5H13A—C13—H13B108.1
C1—N1—H1C109.5C14—C13—H13A109.5
N1—C1—H1D109.5C14—C13—H13B109.5
N1—C1—H1E109.5C13—C14—H14A109.1
N1—C1—C2110.84 (14)C13—C14—H14B109.1
H1D—C1—H1E108.1C13—C14—C15112.56 (15)
C2—C1—H1D109.5H14A—C14—H14B107.8
C2—C1—H1E109.5C15—C14—H14A109.1
C1—C2—H2A109.2C15—C14—H14B109.1
C1—C2—H2B109.2C14—C15—H15A109.0
C1—C2—C3112.01 (15)C14—C15—H15B109.0
H2A—C2—H2B107.9H15A—C15—H15B107.8
C3—C2—H2A109.2C16—C15—C14112.75 (15)
C3—C2—H2B109.2C16—C15—H15A109.0
C2—C3—H3A109.0C16—C15—H15B109.0
C2—C3—H3B109.0C15—C16—H16A108.8
H3A—C3—H3B107.8C15—C16—H16B108.8
C4—C3—C2112.89 (15)C15—C16—C17113.92 (15)
C4—C3—H3A109.0H16A—C16—H16B107.7
C4—C3—H3B109.0C17—C16—H16A108.8
C3—C4—H4A108.9C17—C16—H16B108.8
C3—C4—H4B108.9C16—C17—H17A108.9
H4A—C4—H4B107.7C16—C17—H17B108.9
C5—C4—C3113.23 (15)H17A—C17—H17B107.7
C5—C4—H4A108.9C18—C17—C16113.26 (15)
C5—C4—H4B108.9C18—C17—H17A108.9
C4—C5—H5A108.8C18—C17—H17B108.9
C4—C5—H5B108.8C17—C18—H18A108.8
C4—C5—C6113.65 (15)C17—C18—H18B108.8
H5A—C5—H5B107.7C17—C18—C19113.71 (15)
C6—C5—H5A108.8H18A—C18—H18B107.7
C6—C5—H5B108.8C19—C18—H18A108.8
C5—C6—H6A109.0C19—C18—H18B108.8
C5—C6—H6B109.0C18—C19—H19A108.9
H6A—C6—H6B107.8C18—C19—H19B108.9
C7—C6—C5113.12 (15)C18—C19—C20113.20 (15)
C7—C6—H6A109.0H19A—C19—H19B107.8
C7—C6—H6B109.0C20—C19—H19A108.9
C6—C7—H7A108.8C20—C19—H19B108.9
C6—C7—H7B108.8C19—C20—H20A108.9
C6—C7—C8113.67 (15)C19—C20—H20B108.9
H7A—C7—H7B107.7H20A—C20—H20B107.7
C8—C7—H7A108.8C21—C20—C19113.33 (15)
C8—C7—H7B108.8C21—C20—H20A108.9
C7—C8—H8A109.0C21—C20—H20B108.9
C7—C8—H8B109.0C20—C21—H21A109.0
H8A—C8—H8B107.8C20—C21—H21B109.0
C9—C8—C7113.03 (15)H21A—C21—H21B107.8
C9—C8—H8A109.0C22—C21—C20113.11 (15)
C9—C8—H8B109.0C22—C21—H21A109.0
C8—C9—H9A108.8C22—C21—H21B109.0
C8—C9—H9B108.8C21—C22—H22A108.8
C8—C9—C10114.01 (15)C21—C22—H22B108.8
H9A—C9—H9B107.6C21—C22—C23113.70 (15)
C10—C9—H9A108.8H22A—C22—H22B107.7
C10—C9—H9B108.8C23—C22—H22A108.8
C9—C10—H10A108.9C23—C22—H22B108.8
C9—C10—H10B108.9C22—C23—H23A109.0
C9—C10—C11113.29 (15)C22—C23—H23B109.0
H10A—C10—H10B107.7H23A—C23—H23B107.8
C11—C10—H10A108.9C24—C23—C22112.87 (16)
C11—C10—H10B108.9C24—C23—H23A109.0
C10—C11—H11A108.8C24—C23—H23B109.0
C10—C11—H11B108.8C23—C24—H24A109.5
H11A—C11—H11B107.7C23—C24—H24B109.5
C12—C11—C10113.59 (16)C23—C24—H24C109.5
C12—C11—H11A108.8H24A—C24—H24B109.5
C12—C11—H11B108.8H24A—C24—H24C109.5
C11—C12—H12A109.5H24B—C24—H24C109.5
C11—C12—H12B109.5
N1—C1—C2—C3178.04 (15)N2—C13—C14—C15176.57 (15)
C1—C2—C3—C4178.74 (16)C13—C14—C15—C16175.83 (16)
C2—C3—C4—C5176.60 (16)C14—C15—C16—C17177.64 (16)
C3—C4—C5—C6179.59 (16)C15—C16—C17—C18177.61 (16)
C4—C5—C6—C7178.48 (16)C16—C17—C18—C19179.15 (16)
C5—C6—C7—C8179.69 (16)C17—C18—C19—C20179.50 (16)
C6—C7—C8—C9180.00 (16)C18—C19—C20—C21179.89 (15)
C7—C8—C9—C10179.68 (16)C19—C20—C21—C22179.11 (16)
C8—C9—C10—C11179.98 (16)C20—C21—C22—C23179.40 (16)
C9—C10—C11—C12179.34 (18)C21—C22—C23—C24178.35 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O60.871.872.736 (2)176
O5—H5D···O3i0.871.922.7729 (19)166
O6—H6C···O1ii0.872.022.849 (2)158
O6—H6D···O2iii0.871.932.787 (2)166
O7—H7C···O1iv0.871.992.8542 (19)171
O7—H7D···O40.872.002.8665 (19)173
N1—H1A···O30.911.972.8331 (19)158
N1—H1B···O50.911.912.775 (2)158
N1—H1C···O4ii0.912.002.8947 (19)167
N2—H2C···O7v0.911.992.879 (2)163
N2—H2D···O20.911.832.740 (2)175
N2—H2E···O1iv0.912.112.9731 (19)159
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y, z; (v) x+1, y, z.
 

Funding information

This work was supported financially by the National Natural Science Foundation of China under the contract NSFC No. 21873063.

References

First citationAratono, M., Villeneuve, M., Takiue, T., Ikeda, N. & Iyota, H. (1998). J. Colloid Interface Sci. 200, 161–171.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDan, W., Di, Y., He, D., Yang, W. & Kong, Y. (2010). Acta Cryst. E66, o910.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, W., Zhang, D., Zhang, T., Wang, T., Ruan, D., Xing, D. & Li, H. (1999). Thermochim. Acta, 326, 183–186.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerreros, A., Galera-Gómez, P. J. & Lopez-Cabarcos, E. (2000). J. Therm. Anal. Calorim. 61, 341–350.  CrossRef CAS Google Scholar
First citationTörnblom, M., Sitnikov, R. & Henriksson, U. (2000). J. Phys. Chem. B, 104, 1529–1538.  Web of Science CrossRef Google Scholar
First citationZhang, L., Di, Y. & Dan, W. (2011a). Acta Cryst. E67, o717.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L., Di, Y. & Dan, W. (2011b). Acta Cryst. E67, o1051.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds