metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Sodium bis­­(2-methyl­lactato)borate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bPrincipal, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 April 2019; accepted 29 April 2019; online 3 May 2019)

The asymmetric unit of the title organic–inorganic hybrid salt, poly[[μ4-bis­(2-methyl­lactato)borato]sodium], [Na(C8H12BO6)]n, comprises a sodium cation and a bis­(2-methyl­lactato)borate anion. The sodium cation exhibits a [4 + 1] coordination by borate and carbonyl O atoms of the bis­(2-methyl­lactato)borate anion, leading to a three-dimensional polymeric structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Alkaline cations such as lithium, potassium and sodium, together with different anions, are used in the development of rechargeable batteries. Allen et al. (2012[Allen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.]) have reported the structure of lithium bis­(2-methyl­lactato)borate monohydrate. In our current investigation we have replaced lithium by sodium and report here the growth and structural analysis of sodium bis­(2-methyl­lactato)borate, [Na(C8H12BO6)]n, prepared by the slow evaporation method. Whereas other alkaline bis­(2-methyl­lactato)borate salts crystallize as hydrates (Li as a monohydrate, Allen et al., 2012[Allen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.]; K as a hemihydrate, Gokila et al., 2019a[Gokila, G., Thiruvalluvar, A. A. & Ramachandra Raja, C. (2019a). IUCrData, 4, x190202.]; Rb as a monohydrate; Golika et al., 2019b[Gokila, G., Thiruvalluvar, A. A. & Ramachandra Raja, C. (2019b). IUCrData, 4, x190039.]), the title sodium salt is anhydrous.

The asymmetric unit of the title compound comprises a sodium cation and a bis­(2-methyl­lactato)borate anion (Fig. 1[link]). The sodium cation is surrounded in a pseudo-tetra­hedral manner by four O atoms (O1, O4i, O6iii and O6ii; for symmetry codes: see Table 1[link]) at short distances. The τ4 descriptor (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) amounts to 0.81 (extreme forms 0 for ideal square-planar and 1 for ideal tetra­hedral coordination). However, the coordination sphere around Na1 is augmented by a fifth O atom (O5iii) at a considerably longer distances (Table 1[link]). In the anion, the five-membered ring O2/C1/C2/O3/B1 is essentially planar [r.m.s. deviation 0.0312 Å, with the greatest deviation for O3 of 0.045 (1) Å], whereas ring O4/C6/C5/O5/B1 has a conformation between planar and an envelope form [puckering parameters Q2 = 0.1015 (17) Å, φ2 = 172.9 (9)°]. The dihedral angle between these two rings is 89.81 (9)°. The packing of the three-dimensional polymeric crystal structure is shown in Fig. 2[link].

Table 1
Selected bond lengths (Å)

Na1—O1 2.2262 (12) O5—B1 1.528 (2)
Na1—O4i 2.2733 (12) O4—B1 1.447 (2)
Na1—O6ii 2.3149 (12) O2—B1 1.492 (2)
Na1—O6iii 2.3880 (13) O3—B1 1.417 (2)
Na1—O5iii 2.8768 (12)    
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the asymmetric unit of the title compound showing the atom numbering with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the b axis.

Synthesis and crystallization

The title compound was synthesized by reacting 2-methyl­lactic acid, boric acid and sodium carbonate (molar ratio 4:2:1) in double-distilled water. Slow evaporation of the solvent yielded good quality crystals over a period of about three months.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Na(C8H12BO6)]
Mr 237.98
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.1398 (5), 10.8359 (6), 11.2588 (5)
β (°) 115.687 (3)
V3) 1114.80 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.711, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23270, 2425, 1844
Rint 0.039
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.04
No. of reflections 2425
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Poly[[µ4-bis(2-methyllactato)borato]sodium] top
Crystal data top
[Na(C8H12BO6)]F(000) = 496
Mr = 237.98Dx = 1.418 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.1398 (5) ÅCell parameters from 6833 reflections
b = 10.8359 (6) Åθ = 2.8–24.0°
c = 11.2588 (5) ŵ = 0.15 mm1
β = 115.687 (3)°T = 296 K
V = 1114.80 (10) Å3Block, colourless
Z = 40.20 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2425 independent reflections
Radiation source: fine-focus sealed tube1844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scanθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.711, Tmax = 0.746k = 1313
23270 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.3964P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2425 reflectionsΔρmax = 0.17 e Å3
145 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.18199 (6)0.45991 (6)0.51222 (6)0.03053 (18)
O50.46526 (11)0.77164 (10)0.18007 (11)0.0313 (3)
O40.66535 (11)0.65000 (11)0.30890 (12)0.0350 (3)
O20.46401 (12)0.66651 (10)0.37142 (11)0.0324 (3)
O30.43130 (13)0.54882 (11)0.18818 (12)0.0369 (3)
O60.57136 (12)0.90904 (11)0.10432 (11)0.0366 (3)
O10.30453 (14)0.57492 (12)0.42985 (13)0.0444 (3)
C50.57869 (16)0.81707 (14)0.16973 (15)0.0261 (3)
C60.71409 (16)0.74006 (15)0.24391 (15)0.0286 (4)
C10.36231 (17)0.58448 (15)0.35573 (16)0.0301 (4)
C20.32873 (17)0.50650 (15)0.23385 (17)0.0312 (4)
C70.83631 (19)0.81732 (18)0.34405 (19)0.0463 (5)
H7A0.8678620.8772690.2990500.069*
H7B0.8014780.8587950.4002920.069*
H7C0.9170130.7648260.3962430.069*
C40.3549 (2)0.37084 (17)0.2705 (2)0.0456 (5)
H4A0.2853020.3429450.3012440.068*
H4B0.3438550.3237340.1945350.068*
H4C0.4522530.3601070.3389410.068*
C80.7591 (2)0.67706 (19)0.1464 (2)0.0482 (5)
H8A0.7916160.7380480.1032180.072*
H8B0.8370970.6200280.1925490.072*
H8C0.6768380.6333430.0819690.072*
B10.50800 (19)0.65314 (17)0.26160 (18)0.0283 (4)
C30.1733 (2)0.5293 (2)0.1311 (2)0.0565 (6)
H3A0.1056610.5002020.1636530.085*
H3B0.1588450.6161500.1131990.085*
H3C0.1570030.4860800.0515340.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0254 (3)0.0345 (4)0.0338 (4)0.0025 (3)0.0148 (3)0.0069 (3)
O50.0213 (5)0.0356 (6)0.0378 (6)0.0034 (4)0.0135 (5)0.0119 (5)
O40.0239 (6)0.0373 (7)0.0439 (7)0.0033 (5)0.0147 (5)0.0217 (5)
O20.0357 (6)0.0326 (6)0.0334 (6)0.0093 (5)0.0194 (5)0.0019 (5)
O30.0419 (7)0.0385 (7)0.0406 (7)0.0120 (5)0.0274 (6)0.0075 (5)
O60.0341 (6)0.0336 (6)0.0399 (7)0.0028 (5)0.0140 (5)0.0173 (5)
O10.0528 (8)0.0449 (8)0.0536 (8)0.0071 (6)0.0401 (7)0.0007 (6)
C50.0258 (7)0.0270 (8)0.0257 (8)0.0010 (6)0.0113 (6)0.0038 (6)
C60.0230 (7)0.0302 (8)0.0325 (8)0.0015 (6)0.0120 (7)0.0127 (7)
C10.0283 (8)0.0294 (8)0.0359 (9)0.0004 (6)0.0171 (7)0.0062 (7)
C20.0272 (8)0.0316 (9)0.0379 (9)0.0057 (7)0.0172 (7)0.0021 (7)
C70.0315 (9)0.0516 (12)0.0443 (11)0.0089 (8)0.0058 (8)0.0130 (9)
C40.0492 (11)0.0326 (10)0.0636 (13)0.0076 (8)0.0326 (10)0.0041 (9)
C80.0500 (11)0.0490 (12)0.0569 (12)0.0128 (9)0.0338 (10)0.0137 (10)
B10.0254 (8)0.0307 (10)0.0316 (9)0.0000 (7)0.0151 (8)0.0054 (7)
C30.0344 (10)0.0682 (15)0.0542 (13)0.0007 (10)0.0074 (9)0.0095 (11)
Geometric parameters (Å, º) top
Na1—O12.2262 (12)C6—C71.515 (2)
Na1—O4i2.2733 (12)C6—C81.521 (2)
Na1—O6ii2.3149 (12)C1—C21.519 (2)
Na1—O6iii2.3880 (13)C2—C31.518 (3)
Na1—O5iii2.8768 (12)C2—C41.519 (3)
Na1—C5iii2.9808 (16)C7—H7A0.9600
Na1—Na1iv3.6840 (12)C7—H7B0.9600
O5—C51.3019 (18)C7—H7C0.9600
O5—B11.528 (2)C4—H4A0.9600
O4—C61.4302 (18)C4—H4B0.9600
O4—B11.447 (2)C4—H4C0.9600
O2—C11.3141 (18)C8—H8A0.9600
O2—B11.492 (2)C8—H8B0.9600
O3—B11.417 (2)C8—H8C0.9600
O3—C21.4211 (18)C3—H3A0.9600
O6—C51.2221 (18)C3—H3B0.9600
O1—C11.2141 (19)C3—H3C0.9600
C5—C61.512 (2)
O1—Na1—O4i111.94 (5)O4—C6—C8109.95 (14)
O1—Na1—O6ii108.03 (5)C5—C6—C8109.50 (13)
O4i—Na1—O6ii101.58 (5)C7—C6—C8112.37 (14)
O1—Na1—O6iii124.20 (5)O1—C1—O2123.35 (16)
O4i—Na1—O6iii121.54 (5)O1—C1—C2125.97 (15)
O6ii—Na1—O6iii76.88 (4)O2—C1—C2110.68 (13)
O1—Na1—O5iii106.55 (5)O3—C2—C3110.67 (15)
O4i—Na1—O5iii103.13 (5)O3—C2—C4109.96 (13)
O6ii—Na1—O5iii125.30 (4)C3—C2—C4111.50 (15)
O6iii—Na1—O5iii48.62 (3)O3—C2—C1103.57 (12)
O1—Na1—C5iii119.55 (5)C3—C2—C1110.47 (14)
O4i—Na1—C5iii113.41 (5)C4—C2—C1110.40 (14)
O6ii—Na1—C5iii99.72 (4)C6—C7—H7A109.5
O6iii—Na1—C5iii23.11 (4)C6—C7—H7B109.5
O5iii—Na1—C5iii25.60 (4)H7A—C7—H7B109.5
O1—Na1—Na1iv123.97 (4)C6—C7—H7C109.5
O4i—Na1—Na1iv117.72 (4)H7A—C7—H7C109.5
O6ii—Na1—Na1iv39.15 (3)H7B—C7—H7C109.5
O6iii—Na1—Na1iv37.73 (3)C2—C4—H4A109.5
O5iii—Na1—Na1iv86.25 (3)C2—C4—H4B109.5
C5iii—Na1—Na1iv60.65 (3)H4A—C4—H4B109.5
C5—O5—B1109.88 (11)C2—C4—H4C109.5
C5—O5—Na1v81.67 (8)H4A—C4—H4C109.5
B1—O5—Na1v165.39 (9)H4B—C4—H4C109.5
C6—O4—B1111.48 (11)C6—C8—H8A109.5
C6—O4—Na1i123.86 (9)C6—C8—H8B109.5
B1—O4—Na1i123.86 (9)H8A—C8—H8B109.5
C1—O2—B1108.78 (12)C6—C8—H8C109.5
B1—O3—C2110.42 (12)H8A—C8—H8C109.5
C5—O6—Na1vi148.81 (11)H8B—C8—H8C109.5
C5—O6—Na1v106.82 (10)O3—B1—O4115.76 (14)
Na1vi—O6—Na1v103.12 (4)O3—B1—O2105.97 (12)
C1—O1—Na1148.96 (12)O4—B1—O2112.04 (14)
O6—C5—O5122.47 (14)O3—B1—O5112.26 (14)
O6—C5—C6125.92 (14)O4—B1—O5102.78 (12)
O5—C5—C6111.59 (12)O2—B1—O5107.90 (13)
O6—C5—Na1v50.08 (8)C2—C3—H3A109.5
O5—C5—Na1v72.73 (8)C2—C3—H3B109.5
C6—C5—Na1v171.45 (10)H3A—C3—H3B109.5
O4—C6—C5103.11 (11)C2—C3—H3C109.5
O4—C6—C7110.41 (13)H3A—C3—H3C109.5
C5—C6—C7111.11 (14)H3B—C3—H3C109.5
Na1vi—O6—C5—O5170.73 (14)B1—O3—C2—C4125.15 (15)
Na1v—O6—C5—O57.54 (19)B1—O3—C2—C17.18 (17)
Na1vi—O6—C5—C67.2 (3)O1—C1—C2—O3176.35 (16)
Na1v—O6—C5—C6170.42 (13)O2—C1—C2—O34.00 (17)
Na1vi—O6—C5—Na1v163.2 (2)O1—C1—C2—C365.1 (2)
B1—O5—C5—O6176.78 (15)O2—C1—C2—C3114.54 (16)
Na1v—O5—C5—O66.05 (15)O1—C1—C2—C458.7 (2)
B1—O5—C5—C61.44 (18)O2—C1—C2—C4121.67 (15)
Na1v—O5—C5—C6172.17 (12)C2—O3—B1—O4132.54 (14)
B1—O5—C5—Na1v170.74 (11)C2—O3—B1—O27.69 (17)
B1—O4—C6—C510.23 (17)C2—O3—B1—O5109.88 (14)
Na1i—O4—C6—C5159.78 (10)C6—O4—B1—O3111.76 (16)
B1—O4—C6—C7129.00 (15)Na1i—O4—B1—O378.23 (17)
Na1i—O4—C6—C741.01 (18)C6—O4—B1—O2126.57 (14)
B1—O4—C6—C8106.45 (16)Na1i—O4—B1—O243.44 (18)
Na1i—O4—C6—C883.53 (15)C6—O4—B1—O510.99 (17)
O6—C5—C6—O4176.60 (15)Na1i—O4—B1—O5159.02 (9)
O5—C5—C6—O45.25 (17)C1—O2—B1—O35.00 (17)
O6—C5—C6—C758.3 (2)C1—O2—B1—O4132.13 (14)
O5—C5—C6—C7123.53 (15)C1—O2—B1—O5115.44 (14)
O6—C5—C6—C866.4 (2)C5—O5—B1—O3117.61 (14)
O5—C5—C6—C8111.76 (15)Na1v—O5—B1—O323.2 (4)
Na1—O1—C1—O2157.82 (16)C5—O5—B1—O47.45 (17)
Na1—O1—C1—C222.6 (3)Na1v—O5—B1—O4148.3 (3)
B1—O2—C1—O1179.09 (16)C5—O5—B1—O2125.98 (13)
B1—O2—C1—C20.58 (17)Na1v—O5—B1—O293.2 (4)
B1—O3—C2—C3111.22 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Madras (IITM), Chennai 600 036, Tamilnadu, India, for the single-crystal X-ray diffraction data.

References

First citationAllen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGokila, G., Thiruvalluvar, A. A. & Ramachandra Raja, C. (2019a). IUCrData, 4, x190202.  Google Scholar
First citationGokila, G., Thiruvalluvar, A. A. & Ramachandra Raja, C. (2019b). IUCrData, 4, x190039.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds