organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-{[(2-Hy­dr­oxy­eth­yl)sulfan­yl]meth­yl}quinolin-8-ol

CROSSMARK_Color_square_no_text.svg

aLaboratory of Agro-resources, Polymers and Process Engineering, Ibn Tofaïl University, Faculty of Sciences, Department of Chemistry, PO Box 133, 14000, Kenitra, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V, University Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: brahim_lakhrissi@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 29 April 2019; accepted 3 May 2019; online 10 May 2019)

In the title mol­ecule, C12H13NO2S, the quinolinol unit is planar (r.m.s. deviation = 0.0128 Å). In the crystal, O—H⋯N and O—H⋯S hydrogen bonds together with π-stacking inter­actions form layers parallel to [100] that are associated through C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Organic synthesis is a major tool for the formation of new biologically active mol­ecules, in particular heterocyclic mol­ecules (Rbaa et al., 2018[Rbaa, M., Errahmany, N., El Kacimi, Y., Galai, M., El Faydy, M., Lakhrissi, Y. & Lakhrissi, B. (2018). Anal. Bioanal. Electrochem, 10, 1328-1354.]). 8-Hy­droxy­quinoline is an important heterocyclic nucleus, thanks to its structure which presents various nucleophilic and electrophilic reactive sites that allow the synthesis of new heterocyclic derivatives. Following our inter­est in 8-quinolinol-based biological and anti-corrosion inhibitor compounds (El Faydy et al.,2016[El Faydy, M., Dahaief, N., Rbaa, M., Ounine, K. & Lakhrissi, B. (2016). J. Mater. Environ. Sci. 7, 356-361.]; Rbaa et al. 2017[Rbaa, M., Galai, M., El Faydy, M., El Kacimi, Y., Ebn Touhami, M., Zarrouk, A. & Lakhrissi, B. (2017). Anal. Bioanal. Electrochem. 9, 904-928.]), we have synthesized the title compound by reaction of 5-chloro­methyl­quinoline-8-ol hydro­chloride with thio­ethanol in the presence of tri­ethyl­amine in pure tetra­hydro­furan as a solvent.

The quinolinol unit is planar to within 0.0200 (9) Å (r.m.s. deviation of the fitted atoms = 0.0128 Å) with C8 farthest from the mean plane. The side chain attached to C5 is nearly perpendicular to this plane as indicated by the C4—C5—C10—S1 torsion angle of 99.16 (10)°. There is a hydrogen bond between the oxygen atom of the phenolic ring O1and the nitro­gen atom of the pyridine ring N1 (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.87 2.29 2.7577 (12) 114
O1—H1⋯N1i 0.87 2.19 2.8395 (11) 131
O2—H2⋯S1ii 0.87 2.47 3.2919 (9) 159
C3—H3⋯O1ii 0.955 (16) 2.599 (16) 3.2858 (13) 129.1 (11)
C8—H8⋯O2iii 0.903 (17) 2.529 (17) 3.4252 (14) 171.9 (14)
C9—H9⋯O1i 0.917 (16) 2.525 (16) 3.0446 (13) 116.3 (12)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme and 50% probability ellipsoids. The intra­molecular O—H⋯N hydrogen bond is shown by a dashed line.

In the crystal, the mol­ecules form inversion dimers through O1—H1⋯N1i hydrogen bonds with a R22(10) graph set (Table 1[link] and Fig. 2[link]). These are connected into layers parallel to [100] by O2—H2⋯S1ii hydrogen bonds and π-stacking inter­actions between inversion-related C1–C6 rings [centroid–centroid distance = 3.4044 (6) Å]. In the layers, the hy­droxy­ethyl groups extend on either side, engaging in C7—H7⋯O2ii and C8—H8⋯O2iii hydrogen bonds, which tie the layers together (Table 1[link] and Figs. 2[link]–4[link][link]). C9—H9⋯O1i hydrogen bonds also occur.

[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions. O—H⋯N, C—H⋯O and C—H⋯S hydrogen bonds are shown, respectively, by light-purple, black and gold dashed lines. The π-stacking inter­action is shown by an orange dashed line.
[Figure 3]
Figure 3
Packing viewed along the c-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link].
[Figure 4]
Figure 4
Packing viewed along the a-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link].

Synthesis and crystallization

A mixture of 5-chloro­methyl-8-hy­droxy­quinoline hydro­chloride (0.01 mol), and thio­ethanol (0.02 mol) in 50 ml of absolute tetra­hydro­furan (THF) in the presence of NaHCO3 was refluxed under magnetic stirring for 8 h. The reaction was followed by TLC, after cooling. The reaction mixture was then added to 20 ml of water and then extracted with di­chloro­methane (3 × 20 ml). The organic layers were combined, washed twice with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated to dryness on a rotary evaporator. The product was then purified by silica column chromatography using a mixture of acetone/hexane (85:15, v/v)), and recrystallized from ethanol solution to give crystals suitable for X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H13NO2S
Mr 235.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 11.8362 (7), 11.7958 (7), 7.8459 (5)
β (°) 91.673 (1)
V3) 1094.96 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.44 × 0.43 × 0.23
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.86, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 33009, 2961, 2797
Rint 0.025
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.05
No. of reflections 2961
No. of parameters 191
H-atom treatment Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.56, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5-{[(2-Hydroxyethyl)sulfanyl]methyl}quinolin-8-ol top
Crystal data top
C12H13NO2SF(000) = 496
Mr = 235.29Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.8362 (7) ÅCell parameters from 9809 reflections
b = 11.7958 (7) Åθ = 2.4–29.2°
c = 7.8459 (5) ŵ = 0.28 mm1
β = 91.673 (1)°T = 120 K
V = 1094.96 (12) Å3Thick plate, colourless
Z = 40.44 × 0.43 × 0.23 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2961 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 1.7°
φ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1516
Tmin = 0.86, Tmax = 0.94l = 1010
33009 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.093Only H-atom displacement parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.4352P]
where P = (Fo2 + 2Fc2)/3
2961 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 5 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms attached to oxygen were placed in locations derived from a difference map, their coordinates adjusted to give O—H = 0.87 %A and were included as riding contributions.

The hydrogen atoms attached to oxygen were placed in locations derived from a difference map, their coordinates adjusted to give O—H = 0.87 Å and were included as riding contributions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09756 (2)0.62998 (2)0.68410 (3)0.01569 (9)
O10.54726 (7)0.61574 (7)0.18639 (10)0.01798 (17)
H10.5343020.5685750.1028760.039 (5)*
O20.02097 (7)0.85612 (7)0.79986 (11)0.02225 (18)
H20.0219570.8732720.8880360.065 (7)*
N10.37596 (7)0.46007 (7)0.13362 (11)0.01481 (18)
C10.37994 (8)0.51945 (8)0.28340 (12)0.01271 (19)
C20.46902 (8)0.59965 (9)0.30686 (13)0.01415 (19)
C30.47685 (9)0.66206 (9)0.45413 (13)0.0163 (2)
H30.5355 (13)0.7169 (13)0.4712 (19)0.022 (4)*
C40.39811 (9)0.64610 (9)0.58290 (13)0.0157 (2)
H40.4071 (13)0.6887 (13)0.683 (2)0.021 (3)*
C50.31138 (8)0.56882 (9)0.56841 (12)0.01389 (19)
C60.30114 (8)0.50343 (8)0.41551 (12)0.01284 (19)
C70.21737 (8)0.41920 (9)0.38675 (13)0.0163 (2)
H70.1644 (13)0.4049 (13)0.474 (2)0.021 (4)*
C80.21448 (9)0.35904 (9)0.23679 (14)0.0183 (2)
H80.1620 (14)0.3049 (14)0.216 (2)0.026 (4)*
C90.29511 (9)0.38318 (9)0.11339 (14)0.0173 (2)
H90.2941 (13)0.3434 (13)0.013 (2)0.022 (4)*
C100.23173 (9)0.55471 (9)0.71246 (13)0.0157 (2)
H10A0.2690 (13)0.5808 (13)0.817 (2)0.021 (3)*
H10B0.2087 (13)0.4760 (14)0.7278 (19)0.023 (4)*
C110.14715 (9)0.77525 (9)0.66999 (14)0.0182 (2)
H11A0.1931 (13)0.7926 (14)0.771 (2)0.025 (4)*
H11B0.1940 (14)0.7851 (15)0.568 (2)0.030 (4)*
C120.04781 (10)0.85674 (10)0.65398 (15)0.0210 (2)
H12A0.0778 (13)0.9341 (14)0.633 (2)0.027 (4)*
H12B0.0047 (14)0.8363 (14)0.560 (2)0.025 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01307 (14)0.01642 (14)0.01784 (14)0.00009 (8)0.00495 (9)0.00174 (8)
O10.0179 (4)0.0194 (4)0.0170 (4)0.0042 (3)0.0076 (3)0.0010 (3)
O20.0195 (4)0.0236 (4)0.0240 (4)0.0021 (3)0.0054 (3)0.0036 (3)
N10.0140 (4)0.0165 (4)0.0141 (4)0.0013 (3)0.0028 (3)0.0006 (3)
C10.0118 (4)0.0129 (4)0.0135 (4)0.0023 (3)0.0021 (3)0.0009 (3)
C20.0128 (4)0.0143 (4)0.0155 (4)0.0014 (3)0.0038 (3)0.0025 (3)
C30.0145 (4)0.0160 (4)0.0184 (5)0.0019 (4)0.0024 (4)0.0006 (4)
C40.0152 (5)0.0174 (5)0.0146 (4)0.0014 (4)0.0015 (4)0.0017 (3)
C50.0126 (4)0.0159 (4)0.0132 (4)0.0031 (3)0.0027 (3)0.0008 (3)
C60.0109 (4)0.0140 (4)0.0137 (4)0.0025 (3)0.0023 (3)0.0012 (3)
C70.0130 (4)0.0178 (5)0.0185 (5)0.0003 (4)0.0047 (4)0.0002 (4)
C80.0143 (5)0.0193 (5)0.0215 (5)0.0031 (4)0.0036 (4)0.0030 (4)
C90.0161 (5)0.0192 (5)0.0167 (5)0.0003 (4)0.0035 (4)0.0037 (4)
C100.0152 (4)0.0192 (5)0.0129 (4)0.0022 (4)0.0037 (3)0.0011 (3)
C110.0175 (5)0.0169 (5)0.0205 (5)0.0015 (4)0.0061 (4)0.0018 (4)
C120.0239 (5)0.0186 (5)0.0206 (5)0.0025 (4)0.0042 (4)0.0001 (4)
Geometric parameters (Å, º) top
S1—C111.8158 (11)C5—C61.4284 (13)
S1—C101.8273 (11)C5—C101.5021 (13)
O1—C21.3558 (12)C6—C71.4171 (14)
O1—H10.8698C7—C81.3736 (15)
O2—C121.4239 (14)C7—H70.956 (16)
O2—H20.8701C8—C91.4082 (15)
N1—C91.3246 (14)C8—H80.903 (17)
N1—C11.3677 (13)C9—H90.916 (16)
C1—C21.4245 (14)C10—H10A0.969 (15)
C1—C61.4271 (13)C10—H10B0.976 (16)
C2—C31.3709 (14)C11—C121.5211 (16)
C3—C41.4070 (14)C11—H11A0.967 (16)
C3—H30.955 (16)C11—H11B0.993 (17)
C4—C51.3751 (14)C12—H12A0.994 (17)
C4—H40.934 (16)C12—H12B0.978 (16)
C11—S1—C10100.64 (5)C7—C8—C9118.95 (10)
C2—O1—H1109.1C7—C8—H8121.5 (10)
C12—O2—H2107.7C9—C8—H8119.6 (10)
C9—N1—C1117.41 (9)N1—C9—C8123.90 (10)
N1—C1—C2117.26 (9)N1—C9—H9116.4 (10)
N1—C1—C6123.32 (9)C8—C9—H9119.7 (10)
C2—C1—C6119.41 (9)C5—C10—S1114.64 (7)
O1—C2—C3118.79 (9)C5—C10—H10A108.7 (9)
O1—C2—C1121.39 (9)S1—C10—H10A108.7 (9)
C3—C2—C1119.81 (9)C5—C10—H10B112.5 (9)
C2—C3—C4120.23 (10)S1—C10—H10B103.4 (9)
C2—C3—H3120.8 (9)H10A—C10—H10B108.7 (12)
C4—C3—H3118.9 (9)C12—C11—S1110.55 (8)
C5—C4—C3122.54 (9)C12—C11—H11A110.4 (9)
C5—C4—H4119.4 (9)S1—C11—H11A109.0 (9)
C3—C4—H4118.0 (9)C12—C11—H11B108.0 (10)
C4—C5—C6118.18 (9)S1—C11—H11B110.4 (10)
C4—C5—C10119.65 (9)H11A—C11—H11B108.5 (13)
C6—C5—C10122.16 (9)O2—C12—C11112.90 (9)
C7—C6—C1116.51 (9)O2—C12—H12A110.5 (9)
C7—C6—C5123.65 (9)C11—C12—H12A108.4 (9)
C1—C6—C5119.82 (9)O2—C12—H12B103.7 (10)
C8—C7—C6119.89 (9)C11—C12—H12B112.3 (10)
C8—C7—H7121.4 (9)H12A—C12—H12B109.1 (13)
C6—C7—H7118.7 (9)
C9—N1—C1—C2178.17 (9)C4—C5—C6—C7178.35 (10)
C9—N1—C1—C60.86 (15)C10—C5—C6—C71.01 (15)
N1—C1—C2—O10.60 (14)C4—C5—C6—C10.05 (14)
C6—C1—C2—O1178.47 (9)C10—C5—C6—C1179.31 (9)
N1—C1—C2—C3179.65 (9)C1—C6—C7—C80.74 (15)
C6—C1—C2—C31.28 (15)C5—C6—C7—C8179.09 (10)
O1—C2—C3—C4178.96 (9)C6—C7—C8—C90.43 (16)
C1—C2—C3—C40.80 (15)C1—N1—C9—C80.44 (16)
C2—C3—C4—C50.13 (16)C7—C8—C9—N11.10 (17)
C3—C4—C5—C60.55 (15)C4—C5—C10—S199.16 (10)
C3—C4—C5—C10178.83 (9)C6—C5—C10—S181.48 (11)
N1—C1—C6—C71.44 (14)C11—S1—C10—C560.60 (8)
C2—C1—C6—C7177.57 (9)C10—S1—C11—C12177.29 (8)
N1—C1—C6—C5179.86 (9)S1—C11—C12—O263.58 (11)
C2—C1—C6—C50.85 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.872.292.7577 (12)114
O1—H1···N1i0.872.192.8395 (11)131
O2—H2···S1ii0.872.473.2919 (9)159
C3—H3···O1ii0.955 (16)2.599 (16)3.2858 (13)129.1 (11)
C8—H8···O2iii0.903 (17)2.529 (17)3.4252 (14)171.9 (14)
C9—H9···O1i0.917 (16)2.525 (16)3.0446 (13)116.3 (12)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1.
 

Acknowledgements

We thank Ibn Tofaïl University and Mohammed V University for supporting this study and Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Faydy, M., Dahaief, N., Rbaa, M., Ounine, K. & Lakhrissi, B. (2016). J. Mater. Environ. Sci. 7, 356–361.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRbaa, M., Errahmany, N., El Kacimi, Y., Galai, M., El Faydy, M., Lakhrissi, Y. & Lakhrissi, B. (2018). Anal. Bioanal. Electrochem, 10, 1328–1354.  Google Scholar
First citationRbaa, M., Galai, M., El Faydy, M., El Kacimi, Y., Ebn Touhami, M., Zarrouk, A. & Lakhrissi, B. (2017). Anal. Bioanal. Electrochem. 9, 904–928.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds