organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,3-Di­chloro-3′,4′-di­hy­droxy­biphen­yl

CROSSMARK_Color_square_no_text.svg

aThe University of Iowa, Department of Occupational and Environmental Health, University of Iowa, Research Park, IREH, Iowa City, IA, 52242, USA, and bDepartment of Chemistry, University of Kentucky, 117a Chemistry-Physics Bldg, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 5 May 2019; accepted 8 May 2019; online 14 May 2019)

The title compound [systematic name: 4-(2,3-Dichlorophenyl)benzene-1,2-diol], C12H8Cl2O2, is a putative di­hydroxy­lated metabolite of 2,3-di­chloro­biphenyl (PCB 5). The title structure displays intra­molecular O—H⋯O hydrogen bonding, and the ππ stacking distance between inversion-related chlorinated benzene rings of the title compound is 3.371 (3) Å. The dihedral angle between two benzene rings is 59.39 (8)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Polychlorinated bi­phenyls (PCBs) are a class of environmental pollutants banned under the Stockholm Convention on Persistent Organic Pollutants (Stockholm Convention, 2008[Stockholm Convention (2008). https://www.pops.int/]). Exposure to PCBs is associated with a range of adverse health effects, for example cancer and adverse neurotoxic outcomes (ATSDR, 2000[ATSDR (2000). Toxicological profile for polychlorinated biphenyls (PCBs). https://www. atsdr. cdc. gov/toxprofiles/tp. asp?id=142&tid=26.]; IARC, 2017[IARC (2017). Polychlorinated biphenyls and polybrominated biphenyls. https://monographs. iarc. fr/wp-content/uploads/2018/08/mono107.pdf.]). Cytochrome P450 enzymes oxidize PCB congeners in two steps to di­hydroxy­lated metabolites (Lu et al., 2013[Lu, Z., Kania-Korwel, I., Lehmler, H. J. & Wong, C. S. (2013). Environ. Sci. Technol. 47, 12184-12192.]; McLean et al., 1996[McLean, M. R., Bauer, U., Amaro, A. R. & Robertson, L. W. (1996). Chem. Res. Toxicol. 9, 158-164.]). PCB metabolites with ortho- or para-substituted hydroxyl groups can be further oxidized to reactive and highly toxic PCB quinones (Dhakal et al., 2018[Dhakal, K., Gadupudi, G. S., Lehmler, H. J., Ludewig, G., Duffel, M. W. & Robertson, L. W. (2018). Environ. Sci. Pollut. Res. Int. 25, 16277-16290.]; Grimm et al., 2015[Grimm, F. A., Hu, D., Kania-Korwel, I., Lehmler, H. J., Ludewig, G., Hornbuckle, K. C., Duffel, M. W., Bergman, A. & Robertson, L. W. (2015). Crit. Rev. Toxicol. 45, 245-272.]). Only a few solid-state structures of di­hydroxy­lated PCBs have been reported to date (Lehmler et al., 2001a[Lehmler, H.-J., Robertson, L. W. & Parkin, S. (2001a). Acta Cryst. E57, o590-o591.]; McKinney & Singh, 1988[McKinney, J. D. & Singh, P. (1988). Acta Cryst. C44, 558-562.]). 2,3-Di­chloro-3′,4′-di­hydroxy­biphenyl is a putative metabolite of PCB 5, a minor constituent of technical PCB mixtures, such as Aroclor 1221 (Frame, 1997[Frame, G. M. (1997). Fresenius J. Anal. Chem. 357, 714-722.]). The present study reports the solid-state structure of this di­hydroxy­lated PCB metabolite, thus adding to the number of available crystal structures of this important class of PCB metabolites.

2,3-Di­chloro-3′,4′-di­hydroxy­biphenyl crystallizes in the monoclinic P21/n space group. The dihedral angle between the least-squares planes of the two benzene rings, an important determinant of the three-dimensional structure of PCB derivatives, is 59.39 (8)°. Similarly, the solid-state dihedral angle of other mono ortho-chlorine-substituted PCB derivatives ranges from 47.34 (5) to 59.92 (9)° (Boyarskiy et al., 2010[Boyarskiy, V. P., Boyarskaya, I. A., Savicheva, E. A., Gdaniec, M., Fonari, M. S. & Simonov, Y. A. (2010). J. Mol. Struct. 975, 180-185.]; Kania-Korwel et al. 2004[Kania-Korwel, I., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2004). Acta Cryst. E60, o1652-o1653.]; Lehmler et al. 2001b[Lehmler, H.-J., Parkin, S. & Robertson, L. W. (2001b). Acta Cryst. E57, o111-o112.]; Li et al. 2010[Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010). Environ. Int. 36, 843-848.]; Luthe et al. 2007[Luthe, G., Swenson, D. C. & Robertson, L. W. (2007). Acta Cryst. B63, 319-327.]; van der Sluis et al., 1990[Sluis, P. van der, Moes, G. W. H., Behm, H., Smykalla, C., Beurskens, P. T. & Lenstra, A. T. H. (1990). Acta Cryst. C46, 2169-2171.]; Sutherland & Ali-Adib, 1987[Sutherland, H. H. & Ali-Adib, Z. (1987). Acta Cryst. C43, 1406-1407.]; Vyas et al., 2006[Vyas, S. M., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2006). Acta Cryst. E62, o4162-o4163.]). In the crystal, the title compound displays intra and inter­molecular O—H⋯O hydrogen bonds involving both of the two hy­droxy groups (Figs. 1[link] and 2[link]). The intra­molecular bond distance for O1—H1⋯O2 is 2.763 (2) Å, while that for O2—H2⋯O1 is 2.677 (2) Å, Table 1[link]. The ππ stacking distance between inversion-related C1–C6 rings of the title compound is 3.371 (3) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.79 1.98 2.763 (2) 168
O2—H2O⋯O1 0.79 2.24 2.677 (2) 116
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular hydrogen bond (Table 1[link]) is shown as a dashed line.
[Figure 2]
Figure 2
A packing plot viewed approximately along the c axis. Hydrogen bonds (Table 1[link]) are drawn as solid dashed lines, and the ππ inter­actions are depicted as dashed open lines between the centroids of stacked rings.

Synthesis and crystallization

The title compound was synthesized via a Suzuki cross-coupling reaction of 4-bromo-1,2-di­meth­oxy­benzene with 2,3-di­chloro­phenyl­boronic acid in the presence of Pd(PPh3)4, and a 2 M aqueous solution of Na2CO3 followed by de­methyl­ation with BBr3 (Bauer et al., 1995[Bauer, U., Amaro, A. R. & Robertson, L. W. (1995). Chem. Res. Toxicol. 8, 92-95.]; Lehmler & Robertson, 2001[Lehmler, H.-J. & Robertson, L. W. (2001). Chemosphere, 45, 1119-1127.]). Crystals suitable for crystal-structure analysis were obtained by recrystallization of the title compound from diethyl ether: hexa­nes (approximately 1:3, v/v) as previously described (Bauer et al., 1995[Bauer, U., Amaro, A. R. & Robertson, L. W. (1995). Chem. Res. Toxicol. 8, 92-95.]; Lehmler & Robertson, 2001[Lehmler, H.-J. & Robertson, L. W. (2001). Chemosphere, 45, 1119-1127.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H8Cl2O2
Mr 255.08
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 6.8542 (4), 19.9526 (11), 7.6704 (4)
β (°) 95.762 (3)
V3) 1043.7 (1)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.60
Crystal size (mm) 0.25 × 0.15 × 0.10
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 2006[Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, Crystallography of biological macromolecules, edited by M. G. Rossmann & E. Arnold, ch. 11.4, pp. 226-235. Chester, England: International Union of Crystallography.])
Tmin, Tmax 0.865, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 6305, 1834, 1333
Rint 0.078
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.074, 1.05
No. of reflections 1834
No. of parameters 149
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.35
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). Collect Nonius BV, Delft, The Netherlands.]), SCALEPACK and DENZO-SMN (Otwinowski & Minor, 2006[Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, Crystallography of biological macromolecules, edited by M. G. Rossmann & E. Arnold, ch. 11.4, pp. 226-235. Chester, England: International Union of Crystallography.]), SHELXS, XP in SHELXTL and SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CIFFIX (Parkin, 2013[Parkin, S. (2013). CIFFIX. https://xray.uky.edu/people/parkin/programs/ciffix.]).

Structural data


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 2006); data reduction: DENZO-SMN (Otwinowski & Minor, 2006); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX (Sheldrick, 2008) and CIFFIX (Parkin, 2013).

4-(2,3-Dichlorophenyl)benzene-1,2-diol top
Crystal data top
C12H8Cl2O2F(000) = 520
Mr = 255.08Dx = 1.623 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.8542 (4) ÅCell parameters from 7512 reflections
b = 19.9526 (11) Åθ = 1.0–25.3°
c = 7.6704 (4) ŵ = 0.60 mm1
β = 95.762 (3)°T = 90 K
V = 1043.7 (1) Å3Block, colourless
Z = 40.25 × 0.15 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1834 independent reflections
Radiation source: fine-focus sealed-tube1333 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.078
φ and ω scans at fixed χ = 55°θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 2006)
h = 88
Tmin = 0.865, Tmax = 0.942k = 2323
6305 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0177P)2 + 0.1242P]
where P = (Fo2 + 2Fc2)/3
1834 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3278 (3)0.25608 (9)0.0075 (2)0.0178 (5)
H1O0.257 (3)0.2624 (10)0.067 (3)0.027*
O20.6024 (3)0.23958 (9)0.2285 (2)0.0175 (5)
H2O0.497 (4)0.2241 (11)0.228 (2)0.026*
Cl10.74285 (10)0.52729 (3)0.06782 (8)0.0204 (2)
Cl20.77595 (10)0.63119 (3)0.37417 (9)0.0218 (2)
C10.7234 (3)0.43053 (13)0.3178 (3)0.0113 (6)
C20.7451 (3)0.49894 (13)0.2822 (3)0.0131 (7)
C30.7609 (3)0.54586 (12)0.4169 (3)0.0143 (7)
C40.7593 (3)0.52551 (13)0.5897 (3)0.0166 (7)
H40.7736220.5574860.6818820.020*
C50.7366 (3)0.45841 (13)0.6266 (3)0.0159 (7)
H50.7334440.4441690.7444430.019*
C60.7184 (3)0.41181 (13)0.4922 (3)0.0154 (7)
H60.7020200.3658560.5196510.018*
C1'0.6972 (4)0.37913 (12)0.1762 (3)0.0113 (6)
C2'0.5271 (4)0.33991 (12)0.1597 (3)0.0136 (7)
H2'0.4333270.3448120.2419550.016*
C3'0.4945 (4)0.29424 (13)0.0252 (3)0.0124 (7)
C4'0.6346 (4)0.28487 (13)0.0917 (3)0.0116 (7)
C5'0.8067 (4)0.32105 (13)0.0734 (3)0.0146 (7)
H5'0.9041340.3135500.1510690.018*
C6'0.8374 (4)0.36868 (12)0.0594 (3)0.0145 (7)
H6'0.9548960.3942550.0704200.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0186 (12)0.0175 (11)0.0187 (12)0.0056 (10)0.0087 (9)0.0050 (9)
O20.0185 (13)0.0189 (12)0.0158 (11)0.0048 (9)0.0055 (10)0.0055 (9)
Cl10.0275 (5)0.0166 (4)0.0177 (4)0.0023 (3)0.0051 (3)0.0032 (3)
Cl20.0258 (5)0.0112 (4)0.0286 (5)0.0007 (3)0.0040 (4)0.0003 (3)
C10.0078 (15)0.0107 (16)0.0158 (17)0.0006 (12)0.0029 (12)0.0023 (13)
C20.0096 (16)0.0192 (17)0.0107 (16)0.0020 (13)0.0018 (13)0.0009 (13)
C30.0112 (17)0.0107 (16)0.0210 (18)0.0000 (13)0.0019 (13)0.0001 (14)
C40.0128 (17)0.0161 (17)0.0207 (18)0.0000 (13)0.0012 (13)0.0086 (15)
C50.0154 (17)0.0208 (18)0.0112 (16)0.0019 (14)0.0001 (13)0.0015 (14)
C60.0181 (17)0.0107 (16)0.0176 (17)0.0000 (13)0.0026 (13)0.0020 (14)
C1'0.0141 (16)0.0083 (15)0.0112 (16)0.0031 (13)0.0001 (13)0.0052 (12)
C2'0.0174 (17)0.0115 (16)0.0130 (16)0.0019 (13)0.0067 (13)0.0007 (13)
C3'0.0117 (16)0.0113 (16)0.0141 (16)0.0000 (13)0.0017 (13)0.0024 (13)
C4'0.0190 (17)0.0070 (15)0.0084 (15)0.0038 (13)0.0001 (13)0.0000 (13)
C5'0.0120 (17)0.0199 (17)0.0124 (16)0.0015 (14)0.0034 (13)0.0022 (14)
C6'0.0142 (16)0.0131 (17)0.0161 (17)0.0027 (13)0.0006 (13)0.0044 (13)
Geometric parameters (Å, º) top
O1—C3'1.375 (3)C5—C61.385 (3)
O1—H1O0.79 (2)C5—H50.9500
O2—C4'1.386 (3)C6—H60.9500
O2—H2O0.79 (2)C1'—C6'1.394 (3)
Cl1—C21.737 (3)C1'—C2'1.399 (3)
Cl2—C31.739 (3)C2'—C3'1.378 (3)
C1—C61.393 (3)C2'—H2'0.9500
C1—C21.403 (3)C3'—C4'1.391 (3)
C1—C1'1.492 (3)C4'—C5'1.378 (3)
C2—C31.391 (3)C5'—C6'1.394 (3)
C3—C41.387 (3)C5'—H5'0.9500
C4—C51.380 (3)C6'—H6'0.9500
C4—H40.9500
C3'—O1—H1O109.5C1—C6—H6119.1
C4'—O2—H2O109.5C6'—C1'—C2'118.7 (2)
C6—C1—C2117.5 (2)C6'—C1'—C1122.0 (2)
C6—C1—C1'120.2 (2)C2'—C1'—C1119.3 (2)
C2—C1—C1'122.3 (2)C3'—C2'—C1'120.6 (2)
C3—C2—C1120.8 (2)C3'—C2'—H2'119.7
C3—C2—Cl1118.5 (2)C1'—C2'—H2'119.7
C1—C2—Cl1120.7 (2)O1—C3'—C2'124.9 (2)
C4—C3—C2120.4 (2)O1—C3'—C4'115.0 (2)
C4—C3—Cl2118.2 (2)C2'—C3'—C4'120.1 (2)
C2—C3—Cl2121.4 (2)C5'—C4'—O2119.2 (2)
C5—C4—C3119.4 (2)C5'—C4'—C3'120.2 (2)
C5—C4—H4120.3O2—C4'—C3'120.5 (2)
C3—C4—H4120.3C4'—C5'—C6'119.8 (2)
C4—C5—C6120.2 (2)C4'—C5'—H5'120.1
C4—C5—H5119.9C6'—C5'—H5'120.1
C6—C5—H5119.9C5'—C6'—C1'120.6 (2)
C5—C6—C1121.7 (2)C5'—C6'—H6'119.7
C5—C6—H6119.1C1'—C6'—H6'119.7
C6—C1—C2—C30.1 (4)C6—C1—C1'—C2'57.1 (3)
C1'—C1—C2—C3177.2 (2)C2—C1—C1'—C2'120.0 (3)
C6—C1—C2—Cl1177.37 (18)C6'—C1'—C2'—C3'3.2 (4)
C1'—C1—C2—Cl10.2 (4)C1—C1'—C2'—C3'176.9 (2)
C1—C2—C3—C41.2 (4)C1'—C2'—C3'—O1176.3 (2)
Cl1—C2—C3—C4178.69 (19)C1'—C2'—C3'—C4'2.5 (4)
C1—C2—C3—Cl2176.86 (19)O1—C3'—C4'—C5'179.1 (2)
Cl1—C2—C3—Cl20.6 (3)C2'—C3'—C4'—C5'0.2 (4)
C2—C3—C4—C51.7 (4)O1—C3'—C4'—O20.3 (3)
Cl2—C3—C4—C5176.45 (19)C2'—C3'—C4'—O2179.3 (2)
C3—C4—C5—C60.9 (4)O2—C4'—C5'—C6'177.4 (2)
C4—C5—C6—C10.4 (4)C3'—C4'—C5'—C6'2.1 (4)
C2—C1—C6—C50.9 (4)C4'—C5'—C6'—C1'1.3 (4)
C1'—C1—C6—C5178.1 (2)C2'—C1'—C6'—C5'1.3 (4)
C6—C1—C1'—C6'122.7 (3)C1—C1'—C6'—C5'178.9 (2)
C2—C1—C1'—C6'60.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.791.982.763 (2)168
O2—H2O···O10.792.242.677 (2)116
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The KappaCCD diffractometer was funded by the University of Kentucky.

Funding information

Funding for this research was provided by: National Institute of Environmental Health Sciences (grant Nos. P42 ES013661; P30 ES005605 and R21 ES027169).

References

First citationATSDR (2000). Toxicological profile for polychlorinated biphenyls (PCBs). https://www. atsdr. cdc. gov/toxprofiles/tp. asp?id=142&tid=26.  Google Scholar
First citationBauer, U., Amaro, A. R. & Robertson, L. W. (1995). Chem. Res. Toxicol. 8, 92–95.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBoyarskiy, V. P., Boyarskaya, I. A., Savicheva, E. A., Gdaniec, M., Fonari, M. S. & Simonov, Y. A. (2010). J. Mol. Struct. 975, 180–185.  Web of Science CSD CrossRef CAS Google Scholar
First citationDhakal, K., Gadupudi, G. S., Lehmler, H. J., Ludewig, G., Duffel, M. W. & Robertson, L. W. (2018). Environ. Sci. Pollut. Res. Int. 25, 16277–16290.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFrame, G. M. (1997). Fresenius J. Anal. Chem. 357, 714–722.  CrossRef CAS Web of Science Google Scholar
First citationGrimm, F. A., Hu, D., Kania-Korwel, I., Lehmler, H. J., Ludewig, G., Hornbuckle, K. C., Duffel, M. W., Bergman, A. & Robertson, L. W. (2015). Crit. Rev. Toxicol. 45, 245–272.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIARC (2017). Polychlorinated biphenyls and polybrominated biphenyls. https://monographs. iarc. fr/wp-content/uploads/2018/08/mono107.pdf.  Google Scholar
First citationKania-Korwel, I., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2004). Acta Cryst. E60, o1652–o1653.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLehmler, H.-J., Parkin, S. & Robertson, L. W. (2001b). Acta Cryst. E57, o111–o112.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLehmler, H.-J. & Robertson, L. W. (2001). Chemosphere, 45, 1119–1127.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLehmler, H.-J., Robertson, L. W. & Parkin, S. (2001a). Acta Cryst. E57, o590–o591.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010). Environ. Int. 36, 843–848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLu, Z., Kania-Korwel, I., Lehmler, H. J. & Wong, C. S. (2013). Environ. Sci. Technol. 47, 12184–12192.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLuthe, G., Swenson, D. C. & Robertson, L. W. (2007). Acta Cryst. B63, 319–327.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinney, J. D. & Singh, P. (1988). Acta Cryst. C44, 558–562.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcLean, M. R., Bauer, U., Amaro, A. R. & Robertson, L. W. (1996). Chem. Res. Toxicol. 9, 158–164.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (1998). Collect Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, Crystallography of biological macromolecules, edited by M. G. Rossmann & E. Arnold, ch. 11.4, pp. 226–235. Chester, England: International Union of Crystallography.  Google Scholar
First citationParkin, S. (2013). CIFFIX. https://xray.uky.edu/people/parkin/programs/ciffixGoogle Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSluis, P. van der, Moes, G. W. H., Behm, H., Smykalla, C., Beurskens, P. T. & Lenstra, A. T. H. (1990). Acta Cryst. C46, 2169–2171.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationStockholm Convention (2008). https://www.pops.int/  Google Scholar
First citationSutherland, H. H. & Ali-Adib, Z. (1987). Acta Cryst. C43, 1406–1407.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVyas, S. M., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2006). Acta Cryst. E62, o4162–o4163.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds