organic compounds
2,3-Dichloro-3′,4′-dihydroxybiphenyl
aThe University of Iowa, Department of Occupational and Environmental Health, University of Iowa, Research Park, IREH, Iowa City, IA, 52242, USA, and bDepartment of Chemistry, University of Kentucky, 117a Chemistry-Physics Bldg, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu
The title compound [systematic name: 4-(2,3-Dichlorophenyl)benzene-1,2-diol], C12H8Cl2O2, is a putative dihydroxylated metabolite of 2,3-dichlorobiphenyl (PCB 5). The title structure displays intramolecular O—H⋯O hydrogen bonding, and the π–π stacking distance between inversion-related chlorinated benzene rings of the title compound is 3.371 (3) Å. The dihedral angle between two benzene rings is 59.39 (8)°.
Keywords: crystal structure; polychlorinated biphenyls (PCBs); metabolites; hydroxylated compound.
CCDC reference: 1914945
Structure description
Polychlorinated biphenyls (PCBs) are a class of environmental pollutants banned under the ). Exposure to PCBs is associated with a range of adverse health effects, for example cancer and adverse neurotoxic outcomes (ATSDR, 2000; IARC, 2017). enzymes oxidize PCB congeners in two steps to dihydroxylated metabolites (Lu et al., 2013; McLean et al., 1996). PCB metabolites with ortho- or para-substituted hydroxyl groups can be further oxidized to reactive and highly toxic PCB (Dhakal et al., 2018; Grimm et al., 2015). Only a few solid-state structures of dihydroxylated PCBs have been reported to date (Lehmler et al., 2001a; McKinney & Singh, 1988). 2,3-Dichloro-3′,4′-dihydroxybiphenyl is a putative metabolite of PCB 5, a minor constituent of technical PCB mixtures, such as Aroclor 1221 (Frame, 1997). The present study reports the solid-state structure of this dihydroxylated PCB metabolite, thus adding to the number of available crystal structures of this important class of PCB metabolites.
on Persistent Organic Pollutants (Stockholm Convention, 20082,3-Dichloro-3′,4′-dihydroxybiphenyl crystallizes in the monoclinic P21/n The dihedral angle between the least-squares planes of the two benzene rings, an important determinant of the three-dimensional structure of PCB derivatives, is 59.39 (8)°. Similarly, the solid-state dihedral angle of other mono ortho-chlorine-substituted PCB derivatives ranges from 47.34 (5) to 59.92 (9)° (Boyarskiy et al., 2010; Kania-Korwel et al. 2004; Lehmler et al. 2001b; Li et al. 2010; Luthe et al. 2007; van der Sluis et al., 1990; Sutherland & Ali-Adib, 1987; Vyas et al., 2006). In the crystal, the title compound displays intra and intermolecular O—H⋯O hydrogen bonds involving both of the two hydroxy groups (Figs. 1 and 2). The intramolecular bond distance for O1—H1⋯O2 is 2.763 (2) Å, while that for O2—H2⋯O1 is 2.677 (2) Å, Table 1. The π–π stacking distance between inversion-related C1–C6 rings of the title compound is 3.371 (3) Å.
Synthesis and crystallization
The title compound was synthesized via a Suzuki cross-coupling reaction of 4-bromo-1,2-dimethoxybenzene with 2,3-dichlorophenylboronic acid in the presence of Pd(PPh3)4, and a 2 M aqueous solution of Na2CO3 followed by demethylation with BBr3 (Bauer et al., 1995; Lehmler & Robertson, 2001). Crystals suitable for crystal-structure analysis were obtained by recrystallization of the title compound from diethyl ether: hexanes (approximately 1:3, v/v) as previously described (Bauer et al., 1995; Lehmler & Robertson, 2001).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1914945
https://doi.org/10.1107/S241431461900662X/sj4205sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461900662X/sj4205Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461900662X/sj4205Isup3.cml
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 2006); data reduction: DENZO-SMN (Otwinowski & Minor, 2006); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX (Sheldrick, 2008) and CIFFIX (Parkin, 2013).C12H8Cl2O2 | F(000) = 520 |
Mr = 255.08 | Dx = 1.623 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8542 (4) Å | Cell parameters from 7512 reflections |
b = 19.9526 (11) Å | θ = 1.0–25.3° |
c = 7.6704 (4) Å | µ = 0.60 mm−1 |
β = 95.762 (3)° | T = 90 K |
V = 1043.7 (1) Å3 | Block, colourless |
Z = 4 | 0.25 × 0.15 × 0.10 mm |
Nonius KappaCCD diffractometer | 1834 independent reflections |
Radiation source: fine-focus sealed-tube | 1333 reflections with I > 2σ(I) |
Detector resolution: 9.1 pixels mm-1 | Rint = 0.078 |
φ and ω scans at fixed χ = 55° | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 2006) | h = −8→8 |
Tmin = 0.865, Tmax = 0.942 | k = −23→23 |
6305 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.074 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0177P)2 + 0.1242P] where P = (Fo2 + 2Fc2)/3 |
1834 reflections | (Δ/σ)max = 0.001 |
149 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998). Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3278 (3) | 0.25608 (9) | −0.0075 (2) | 0.0178 (5) | |
H1O | 0.257 (3) | 0.2624 (10) | 0.067 (3) | 0.027* | |
O2 | 0.6024 (3) | 0.23958 (9) | −0.2285 (2) | 0.0175 (5) | |
H2O | 0.497 (4) | 0.2241 (11) | −0.228 (2) | 0.026* | |
Cl1 | 0.74285 (10) | 0.52729 (3) | 0.06782 (8) | 0.0204 (2) | |
Cl2 | 0.77595 (10) | 0.63119 (3) | 0.37417 (9) | 0.0218 (2) | |
C1 | 0.7234 (3) | 0.43053 (13) | 0.3178 (3) | 0.0113 (6) | |
C2 | 0.7451 (3) | 0.49894 (13) | 0.2822 (3) | 0.0131 (7) | |
C3 | 0.7609 (3) | 0.54586 (12) | 0.4169 (3) | 0.0143 (7) | |
C4 | 0.7593 (3) | 0.52551 (13) | 0.5897 (3) | 0.0166 (7) | |
H4 | 0.773622 | 0.557486 | 0.681882 | 0.020* | |
C5 | 0.7366 (3) | 0.45841 (13) | 0.6266 (3) | 0.0159 (7) | |
H5 | 0.733444 | 0.444169 | 0.744443 | 0.019* | |
C6 | 0.7184 (3) | 0.41181 (13) | 0.4922 (3) | 0.0154 (7) | |
H6 | 0.702020 | 0.365856 | 0.519651 | 0.018* | |
C1' | 0.6972 (4) | 0.37913 (12) | 0.1762 (3) | 0.0113 (6) | |
C2' | 0.5271 (4) | 0.33991 (12) | 0.1597 (3) | 0.0136 (7) | |
H2' | 0.433327 | 0.344812 | 0.241955 | 0.016* | |
C3' | 0.4945 (4) | 0.29424 (13) | 0.0252 (3) | 0.0124 (7) | |
C4' | 0.6346 (4) | 0.28487 (13) | −0.0917 (3) | 0.0116 (7) | |
C5' | 0.8067 (4) | 0.32105 (13) | −0.0734 (3) | 0.0146 (7) | |
H5' | 0.904134 | 0.313550 | −0.151069 | 0.018* | |
C6' | 0.8374 (4) | 0.36868 (12) | 0.0594 (3) | 0.0145 (7) | |
H6' | 0.954896 | 0.394255 | 0.070420 | 0.017* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0186 (12) | 0.0175 (11) | 0.0187 (12) | −0.0056 (10) | 0.0087 (9) | −0.0050 (9) |
O2 | 0.0185 (13) | 0.0189 (12) | 0.0158 (11) | −0.0048 (9) | 0.0055 (10) | −0.0055 (9) |
Cl1 | 0.0275 (5) | 0.0166 (4) | 0.0177 (4) | −0.0023 (3) | 0.0051 (3) | 0.0032 (3) |
Cl2 | 0.0258 (5) | 0.0112 (4) | 0.0286 (5) | −0.0007 (3) | 0.0040 (4) | −0.0003 (3) |
C1 | 0.0078 (15) | 0.0107 (16) | 0.0158 (17) | 0.0006 (12) | 0.0029 (12) | −0.0023 (13) |
C2 | 0.0096 (16) | 0.0192 (17) | 0.0107 (16) | 0.0020 (13) | 0.0018 (13) | 0.0009 (13) |
C3 | 0.0112 (17) | 0.0107 (16) | 0.0210 (18) | 0.0000 (13) | 0.0019 (13) | −0.0001 (14) |
C4 | 0.0128 (17) | 0.0161 (17) | 0.0207 (18) | 0.0000 (13) | 0.0012 (13) | −0.0086 (15) |
C5 | 0.0154 (17) | 0.0208 (18) | 0.0112 (16) | 0.0019 (14) | −0.0001 (13) | 0.0015 (14) |
C6 | 0.0181 (17) | 0.0107 (16) | 0.0176 (17) | 0.0000 (13) | 0.0026 (13) | 0.0020 (14) |
C1' | 0.0141 (16) | 0.0083 (15) | 0.0112 (16) | 0.0031 (13) | −0.0001 (13) | 0.0052 (12) |
C2' | 0.0174 (17) | 0.0115 (16) | 0.0130 (16) | 0.0019 (13) | 0.0067 (13) | 0.0007 (13) |
C3' | 0.0117 (16) | 0.0113 (16) | 0.0141 (16) | 0.0000 (13) | 0.0017 (13) | 0.0024 (13) |
C4' | 0.0190 (17) | 0.0070 (15) | 0.0084 (15) | 0.0038 (13) | 0.0001 (13) | 0.0000 (13) |
C5' | 0.0120 (17) | 0.0199 (17) | 0.0124 (16) | 0.0015 (14) | 0.0034 (13) | 0.0022 (14) |
C6' | 0.0142 (16) | 0.0131 (17) | 0.0161 (17) | −0.0027 (13) | 0.0006 (13) | 0.0044 (13) |
O1—C3' | 1.375 (3) | C5—C6 | 1.385 (3) |
O1—H1O | 0.79 (2) | C5—H5 | 0.9500 |
O2—C4' | 1.386 (3) | C6—H6 | 0.9500 |
O2—H2O | 0.79 (2) | C1'—C6' | 1.394 (3) |
Cl1—C2 | 1.737 (3) | C1'—C2' | 1.399 (3) |
Cl2—C3 | 1.739 (3) | C2'—C3' | 1.378 (3) |
C1—C6 | 1.393 (3) | C2'—H2' | 0.9500 |
C1—C2 | 1.403 (3) | C3'—C4' | 1.391 (3) |
C1—C1' | 1.492 (3) | C4'—C5' | 1.378 (3) |
C2—C3 | 1.391 (3) | C5'—C6' | 1.394 (3) |
C3—C4 | 1.387 (3) | C5'—H5' | 0.9500 |
C4—C5 | 1.380 (3) | C6'—H6' | 0.9500 |
C4—H4 | 0.9500 | ||
C3'—O1—H1O | 109.5 | C1—C6—H6 | 119.1 |
C4'—O2—H2O | 109.5 | C6'—C1'—C2' | 118.7 (2) |
C6—C1—C2 | 117.5 (2) | C6'—C1'—C1 | 122.0 (2) |
C6—C1—C1' | 120.2 (2) | C2'—C1'—C1 | 119.3 (2) |
C2—C1—C1' | 122.3 (2) | C3'—C2'—C1' | 120.6 (2) |
C3—C2—C1 | 120.8 (2) | C3'—C2'—H2' | 119.7 |
C3—C2—Cl1 | 118.5 (2) | C1'—C2'—H2' | 119.7 |
C1—C2—Cl1 | 120.7 (2) | O1—C3'—C2' | 124.9 (2) |
C4—C3—C2 | 120.4 (2) | O1—C3'—C4' | 115.0 (2) |
C4—C3—Cl2 | 118.2 (2) | C2'—C3'—C4' | 120.1 (2) |
C2—C3—Cl2 | 121.4 (2) | C5'—C4'—O2 | 119.2 (2) |
C5—C4—C3 | 119.4 (2) | C5'—C4'—C3' | 120.2 (2) |
C5—C4—H4 | 120.3 | O2—C4'—C3' | 120.5 (2) |
C3—C4—H4 | 120.3 | C4'—C5'—C6' | 119.8 (2) |
C4—C5—C6 | 120.2 (2) | C4'—C5'—H5' | 120.1 |
C4—C5—H5 | 119.9 | C6'—C5'—H5' | 120.1 |
C6—C5—H5 | 119.9 | C5'—C6'—C1' | 120.6 (2) |
C5—C6—C1 | 121.7 (2) | C5'—C6'—H6' | 119.7 |
C5—C6—H6 | 119.1 | C1'—C6'—H6' | 119.7 |
C6—C1—C2—C3 | 0.1 (4) | C6—C1—C1'—C2' | 57.1 (3) |
C1'—C1—C2—C3 | 177.2 (2) | C2—C1—C1'—C2' | −120.0 (3) |
C6—C1—C2—Cl1 | −177.37 (18) | C6'—C1'—C2'—C3' | −3.2 (4) |
C1'—C1—C2—Cl1 | −0.2 (4) | C1—C1'—C2'—C3' | 176.9 (2) |
C1—C2—C3—C4 | 1.2 (4) | C1'—C2'—C3'—O1 | −176.3 (2) |
Cl1—C2—C3—C4 | 178.69 (19) | C1'—C2'—C3'—C4' | 2.5 (4) |
C1—C2—C3—Cl2 | −176.86 (19) | O1—C3'—C4'—C5' | 179.1 (2) |
Cl1—C2—C3—Cl2 | 0.6 (3) | C2'—C3'—C4'—C5' | 0.2 (4) |
C2—C3—C4—C5 | −1.7 (4) | O1—C3'—C4'—O2 | −0.3 (3) |
Cl2—C3—C4—C5 | 176.45 (19) | C2'—C3'—C4'—O2 | −179.3 (2) |
C3—C4—C5—C6 | 0.9 (4) | O2—C4'—C5'—C6' | 177.4 (2) |
C4—C5—C6—C1 | 0.4 (4) | C3'—C4'—C5'—C6' | −2.1 (4) |
C2—C1—C6—C5 | −0.9 (4) | C4'—C5'—C6'—C1' | 1.3 (4) |
C1'—C1—C6—C5 | −178.1 (2) | C2'—C1'—C6'—C5' | 1.3 (4) |
C6—C1—C1'—C6' | −122.7 (3) | C1—C1'—C6'—C5' | −178.9 (2) |
C2—C1—C1'—C6' | 60.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2i | 0.79 | 1.98 | 2.763 (2) | 168 |
O2—H2O···O1 | 0.79 | 2.24 | 2.677 (2) | 116 |
Symmetry code: (i) x−1/2, −y+1/2, z+1/2. |
Acknowledgements
The KappaCCD diffractometer was funded by the University of Kentucky.
Funding information
Funding for this research was provided by: National Institute of Environmental Health Sciences (grant Nos. P42 ES013661; P30 ES005605 and R21 ES027169).
References
ATSDR (2000). Toxicological profile for polychlorinated biphenyls (PCBs). https://www. atsdr. cdc. gov/toxprofiles/tp. asp?id=142&tid=26. Google Scholar
Bauer, U., Amaro, A. R. & Robertson, L. W. (1995). Chem. Res. Toxicol. 8, 92–95. CrossRef CAS PubMed Web of Science Google Scholar
Boyarskiy, V. P., Boyarskaya, I. A., Savicheva, E. A., Gdaniec, M., Fonari, M. S. & Simonov, Y. A. (2010). J. Mol. Struct. 975, 180–185. Web of Science CSD CrossRef CAS Google Scholar
Dhakal, K., Gadupudi, G. S., Lehmler, H. J., Ludewig, G., Duffel, M. W. & Robertson, L. W. (2018). Environ. Sci. Pollut. Res. Int. 25, 16277–16290. Web of Science CrossRef CAS PubMed Google Scholar
Frame, G. M. (1997). Fresenius J. Anal. Chem. 357, 714–722. CrossRef CAS Web of Science Google Scholar
Grimm, F. A., Hu, D., Kania-Korwel, I., Lehmler, H. J., Ludewig, G., Hornbuckle, K. C., Duffel, M. W., Bergman, A. & Robertson, L. W. (2015). Crit. Rev. Toxicol. 45, 245–272. Web of Science CrossRef CAS PubMed Google Scholar
IARC (2017). Polychlorinated biphenyls and polybrominated biphenyls. https://monographs. iarc. fr/wp-content/uploads/2018/08/mono107.pdf. Google Scholar
Kania-Korwel, I., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2004). Acta Cryst. E60, o1652–o1653. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lehmler, H.-J., Parkin, S. & Robertson, L. W. (2001b). Acta Cryst. E57, o111–o112. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lehmler, H.-J. & Robertson, L. W. (2001). Chemosphere, 45, 1119–1127. Web of Science CrossRef PubMed CAS Google Scholar
Lehmler, H.-J., Robertson, L. W. & Parkin, S. (2001a). Acta Cryst. E57, o590–o591. CSD CrossRef IUCr Journals Google Scholar
Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010). Environ. Int. 36, 843–848. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lu, Z., Kania-Korwel, I., Lehmler, H. J. & Wong, C. S. (2013). Environ. Sci. Technol. 47, 12184–12192. Web of Science CrossRef CAS PubMed Google Scholar
Luthe, G., Swenson, D. C. & Robertson, L. W. (2007). Acta Cryst. B63, 319–327. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McKinney, J. D. & Singh, P. (1988). Acta Cryst. C44, 558–562. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
McLean, M. R., Bauer, U., Amaro, A. R. & Robertson, L. W. (1996). Chem. Res. Toxicol. 9, 158–164. CrossRef CAS PubMed Web of Science Google Scholar
Nonius (1998). Collect Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, Crystallography of biological macromolecules, edited by M. G. Rossmann & E. Arnold, ch. 11.4, pp. 226–235. Chester, England: International Union of Crystallography. Google Scholar
Parkin, S. (2013). CIFFIX. https://xray.uky.edu/people/parkin/programs/ciffix. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sluis, P. van der, Moes, G. W. H., Behm, H., Smykalla, C., Beurskens, P. T. & Lenstra, A. T. H. (1990). Acta Cryst. C46, 2169–2171. CSD CrossRef Web of Science IUCr Journals Google Scholar
Stockholm Convention (2008). https://www.pops.int/ Google Scholar
Sutherland, H. H. & Ali-Adib, Z. (1987). Acta Cryst. C43, 1406–1407. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Vyas, S. M., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2006). Acta Cryst. E62, o4162–o4163. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.