organic compounds
2-Amino-6-chloropyridinium 3-carboxy-4-hydroxybenzenesulfonate
aPG and Research Department of Physics, Government Arts College for Men (Autonomous), Nandanam, Chennai 600 035, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Annai Violet Arts and Science College, Chennai 600 053, India
*Correspondence e-mail: agsv71@yahoo.com
In the 3-carboxy-4-hydroxybenzenesulfonate anion of the title salt, C5H6ClN2+·C7H5O6S−, an intramolecular O—H⋯O hydrogen bond with an S(6) ring motif is observed. In the crystal, the anions are linked into a chain structure running along [10] via an O—H⋯O hydrogen bond formed between the carboxy and sulfonate groups. The 2-amino-6-chloropyridinium cations bridge the anion chains via N—H⋯O and C—H⋯O hydrogen bonds, forming a sheet parallel to the ab plane. In the sheet, a C—H⋯Cl interaction between the cations is also observed.
Keywords: crystal structure; hydrogen bond; 2-amino-6-chloropyridinium; 3-carboxy-4-hydroxybenzenesulfonate.
CCDC reference: 1912046
Structure description
Pyridine heterocycles and their derivatives have many applications in the fields of photo-chemical, electrochemical and catalytic processes (Katritzky et al., 1996). Some pyridine derivatives possess non-linear optical (NLO) properties (Rajkumar et al., 2015). 2-Aminopyridine derivatives are used in the synthesis of pharmaceutical drugs, especially for the treatment of neurological ailments (Schwid et al., 1997). Several crystal structures of 2-aminopyridine co-crystals with carboxylic acid derivatives have been already reported (Hemamalini et al., 2014). As part of our studies in this area, we now describe the synthesis and structure of the title salt.
In the 2-amino-6-chloropyridinium cation of the title compound, protonation at atom N1 leads to a slight increase in the C1—N1—C5 angle [121.72 (6)° compared with 116.8 (1)° in unprotonated 2-amino-6-chloropyridine (Hemamalini et al., 2014)]. The 3-carboxy-4-hydroxybenzene sulfonate anion contains an intramolecular O—H⋯O hydrogen bond (O3—H1O3⋯O2; Table 1) with an S(6) ring motif (Fig. 1). In the crystal, the anions are linked into a chain structure running along [10] via an O—H⋯O hydrogen bond formed between the carboxy and sulfonate groups (O1—H1O1⋯O6i; symmetry code as in Table 1). The 2-amino-6-chloropyridinium cations bridge the anion chains via N—H⋯O and C—H⋯O hydrogen bonds (N1—H1N1⋯O5, N2—H1N2⋯O6, N2—H2N2⋯O4ii and C4—H4⋯O5ii; Table 1), forming a sheet parallel to the ab plane. In the sheet, a C—H⋯Cl interaction (C3—H3⋯Cl1ii; Table 1) between the cations is also observed. The sheets are further linked via another C—H⋯O (C2—H2⋯O3iii; Table 1) hydrogen bond, forming a three-dimensional network (Fig. 2).
Synthesis and crystallization
A hot methanol solution (20 ml) of 2-amino-6-chloropyridine (34 mg, Aldrich) and sulfosalicylic acid (54 mg, Merck) was allowed to cool slowly to room temperature and single crystals of the title compound appeared after a few days.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1912046
https://doi.org/10.1107/S2414314619005662/is4031sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619005662/is4031Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314619005662/is4031Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C5H6ClN2+·C7H5O6S− | F(000) = 1424 |
Mr = 346.74 | Dx = 1.642 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9829 reflections |
a = 16.0043 (3) Å | θ = 2.6–37.6° |
b = 7.4649 (2) Å | µ = 0.45 mm−1 |
c = 23.5799 (5) Å | T = 100 K |
β = 95.161 (1)° | Block, colourless |
V = 2805.68 (11) Å3 | 0.39 × 0.28 × 0.21 mm |
Z = 8 |
Bruker SMART APEXII CCD area detector diffractometer | 7386 independent reflections |
Radiation source: fine-focus sealed tube | 6997 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
φ and ω scans | θmax = 37.6°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −27→27 |
Tmin = 0.842, Tmax = 0.911 | k = −11→12 |
26502 measured reflections | l = −40→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | All H-atom parameters refined |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0359P)2 + 1.5791P] where P = (Fo2 + 2Fc2)/3 |
7386 reflections | (Δ/σ)max = 0.001 |
243 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat [Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107] operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.849 (14)–0.890 (15) Å, O—H = 0.850 (16)–0.870 (17) Å and C—H = 0.931 (14)–0.987 (13) Å]. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.194955 (9) | 0.60531 (2) | 0.120818 (6) | 0.01019 (3) | |
O1 | −0.11147 (3) | 0.84652 (9) | 0.08056 (2) | 0.01856 (10) | |
O2 | −0.14331 (3) | 0.87680 (8) | −0.01363 (2) | 0.01719 (10) | |
O3 | −0.03230 (4) | 0.78169 (9) | −0.08199 (2) | 0.01771 (10) | |
O4 | 0.24938 (3) | 0.76081 (8) | 0.12876 (2) | 0.01497 (9) | |
O5 | 0.14455 (3) | 0.57579 (7) | 0.16888 (2) | 0.01358 (8) | |
O6 | 0.24046 (3) | 0.44196 (7) | 0.10735 (2) | 0.01408 (8) | |
C6 | 0.04546 (4) | 0.71656 (9) | 0.06802 (3) | 0.01147 (9) | |
C7 | 0.12440 (4) | 0.64976 (9) | 0.06087 (3) | 0.01058 (9) | |
C8 | 0.15093 (4) | 0.62660 (9) | 0.00621 (3) | 0.01268 (10) | |
C9 | 0.09758 (4) | 0.67148 (10) | −0.04112 (3) | 0.01408 (10) | |
C10 | 0.01735 (4) | 0.73936 (9) | −0.03450 (3) | 0.01221 (10) | |
C11 | −0.00912 (4) | 0.76231 (9) | 0.02035 (3) | 0.01131 (9) | |
C12 | −0.09384 (4) | 0.83327 (9) | 0.02688 (3) | 0.01288 (10) | |
N1 | 0.13605 (4) | 0.27027 (8) | 0.23152 (3) | 0.01344 (9) | |
N2 | 0.19616 (4) | 0.11253 (9) | 0.16085 (3) | 0.01786 (11) | |
Cl1 | 0.079291 (13) | 0.48895 (2) | 0.305211 (8) | 0.01915 (4) | |
C1 | 0.09741 (4) | 0.27792 (9) | 0.28073 (3) | 0.01322 (10) | |
C2 | 0.07675 (5) | 0.12856 (10) | 0.30926 (3) | 0.01542 (11) | |
C3 | 0.09926 (5) | −0.03714 (10) | 0.28634 (3) | 0.01780 (12) | |
C4 | 0.13957 (5) | −0.04791 (10) | 0.23772 (3) | 0.01718 (12) | |
C5 | 0.15832 (4) | 0.11192 (9) | 0.20889 (3) | 0.01376 (10) | |
H2 | 0.0514 (8) | 0.1360 (19) | 0.3432 (6) | 0.021 (3)* | |
H3 | 0.0891 (10) | −0.145 (2) | 0.3046 (7) | 0.032 (4)* | |
H4 | 0.1526 (8) | −0.1600 (19) | 0.2225 (6) | 0.023 (3)* | |
H6 | 0.0274 (8) | 0.7370 (19) | 0.1064 (6) | 0.019 (3)* | |
H8 | 0.2071 (8) | 0.5821 (17) | 0.0021 (5) | 0.015 (3)* | |
H9 | 0.1142 (9) | 0.656 (2) | −0.0780 (6) | 0.024 (3)* | |
H1O1 | −0.1623 (11) | 0.888 (2) | 0.0808 (7) | 0.041 (4)* | |
H1O3 | −0.0781 (10) | 0.820 (2) | −0.0709 (7) | 0.032 (4)* | |
H1N1 | 0.1436 (8) | 0.3713 (18) | 0.2134 (6) | 0.019 (3)* | |
H1N2 | 0.2102 (9) | 0.215 (2) | 0.1449 (6) | 0.028 (4)* | |
H2N2 | 0.2116 (9) | 0.0121 (19) | 0.1485 (6) | 0.023 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.00848 (6) | 0.01208 (6) | 0.01013 (6) | 0.00212 (4) | 0.00147 (4) | −0.00012 (4) |
O1 | 0.01210 (19) | 0.0300 (3) | 0.0140 (2) | 0.00791 (19) | 0.00350 (16) | 0.00012 (19) |
O2 | 0.01249 (19) | 0.0226 (3) | 0.0160 (2) | 0.00428 (17) | −0.00103 (16) | 0.00197 (18) |
O3 | 0.0150 (2) | 0.0267 (3) | 0.01119 (19) | 0.00370 (19) | −0.00049 (16) | 0.00279 (18) |
O4 | 0.01189 (18) | 0.0154 (2) | 0.0174 (2) | −0.00116 (16) | 0.00033 (15) | −0.00181 (17) |
O5 | 0.01388 (19) | 0.0164 (2) | 0.01106 (18) | 0.00364 (16) | 0.00411 (15) | 0.00170 (15) |
O6 | 0.01187 (18) | 0.0148 (2) | 0.0160 (2) | 0.00497 (16) | 0.00341 (15) | 0.00015 (16) |
C6 | 0.0094 (2) | 0.0145 (2) | 0.0107 (2) | 0.00190 (18) | 0.00201 (17) | 0.00037 (18) |
C7 | 0.0090 (2) | 0.0127 (2) | 0.0102 (2) | 0.00151 (17) | 0.00168 (16) | −0.00005 (18) |
C8 | 0.0110 (2) | 0.0160 (3) | 0.0115 (2) | 0.00172 (19) | 0.00298 (17) | −0.00057 (19) |
C9 | 0.0128 (2) | 0.0192 (3) | 0.0105 (2) | 0.0021 (2) | 0.00293 (18) | −0.0003 (2) |
C10 | 0.0115 (2) | 0.0147 (2) | 0.0104 (2) | 0.00023 (19) | 0.00100 (17) | 0.00095 (18) |
C11 | 0.0092 (2) | 0.0137 (2) | 0.0112 (2) | 0.00139 (18) | 0.00165 (17) | 0.00063 (18) |
C12 | 0.0102 (2) | 0.0148 (3) | 0.0137 (2) | 0.00172 (19) | 0.00169 (18) | 0.00027 (19) |
N1 | 0.0151 (2) | 0.0119 (2) | 0.0135 (2) | 0.00114 (17) | 0.00169 (17) | 0.00032 (17) |
N2 | 0.0211 (3) | 0.0158 (3) | 0.0177 (2) | 0.0036 (2) | 0.0074 (2) | 0.0010 (2) |
Cl1 | 0.02752 (9) | 0.01356 (7) | 0.01658 (7) | 0.00355 (6) | 0.00307 (6) | −0.00200 (5) |
C1 | 0.0145 (2) | 0.0129 (2) | 0.0120 (2) | 0.00098 (19) | −0.00034 (18) | −0.00142 (19) |
C2 | 0.0197 (3) | 0.0146 (3) | 0.0119 (2) | −0.0017 (2) | 0.0009 (2) | −0.0006 (2) |
C3 | 0.0260 (3) | 0.0134 (3) | 0.0142 (3) | −0.0020 (2) | 0.0023 (2) | 0.0003 (2) |
C4 | 0.0236 (3) | 0.0126 (3) | 0.0155 (3) | 0.0008 (2) | 0.0027 (2) | −0.0003 (2) |
C5 | 0.0145 (2) | 0.0132 (2) | 0.0136 (2) | 0.00182 (19) | 0.00097 (19) | −0.00013 (19) |
S1—O4 | 1.4532 (6) | C10—C11 | 1.4072 (9) |
S1—O5 | 1.4656 (5) | C11—C12 | 1.4765 (9) |
S1—O6 | 1.4696 (5) | N1—C5 | 1.3577 (9) |
S1—C7 | 1.7595 (6) | N1—C1 | 1.3643 (9) |
O1—C12 | 1.3252 (9) | N1—H1N1 | 0.881 (14) |
O1—H1O1 | 0.870 (17) | N2—C5 | 1.3317 (9) |
O2—C12 | 1.2283 (8) | N2—H1N2 | 0.890 (15) |
O3—C10 | 1.3509 (8) | N2—H2N2 | 0.849 (14) |
O3—H1O3 | 0.850 (16) | Cl1—C1 | 1.7115 (7) |
C6—C7 | 1.3824 (9) | C1—C2 | 1.3583 (10) |
C6—C11 | 1.4024 (9) | C2—C3 | 1.4095 (11) |
C6—H6 | 0.987 (13) | C2—H2 | 0.931 (14) |
C7—C8 | 1.4036 (9) | C3—C4 | 1.3676 (11) |
C8—C9 | 1.3840 (9) | C3—H3 | 0.932 (17) |
C8—H8 | 0.972 (13) | C4—C5 | 1.4186 (10) |
C9—C10 | 1.4020 (9) | C4—H4 | 0.941 (14) |
C9—H9 | 0.939 (14) | ||
O4—S1—O5 | 112.69 (3) | C10—C11—C12 | 119.65 (6) |
O4—S1—O6 | 112.81 (3) | O2—C12—O1 | 123.05 (6) |
O5—S1—O6 | 111.12 (3) | O2—C12—C11 | 123.20 (6) |
O4—S1—C7 | 106.66 (3) | O1—C12—C11 | 113.75 (6) |
O5—S1—C7 | 106.94 (3) | C5—N1—C1 | 121.72 (6) |
O6—S1—C7 | 106.12 (3) | C5—N1—H1N1 | 120.1 (9) |
C12—O1—H1O1 | 108.1 (11) | C1—N1—H1N1 | 118.1 (9) |
C10—O3—H1O3 | 106.5 (11) | C5—N2—H1N2 | 121.0 (10) |
C7—C6—C11 | 120.03 (6) | C5—N2—H2N2 | 117.2 (9) |
C7—C6—H6 | 120.9 (8) | H1N2—N2—H2N2 | 121.3 (13) |
C11—C6—H6 | 119.0 (8) | C2—C1—N1 | 122.41 (6) |
C6—C7—C8 | 120.77 (6) | C2—C1—Cl1 | 122.16 (5) |
C6—C7—S1 | 119.84 (5) | N1—C1—Cl1 | 115.40 (5) |
C8—C7—S1 | 119.29 (5) | C1—C2—C3 | 116.65 (7) |
C9—C8—C7 | 119.68 (6) | C1—C2—H2 | 121.4 (9) |
C9—C8—H8 | 120.8 (7) | C3—C2—H2 | 121.9 (9) |
C7—C8—H8 | 119.5 (7) | C4—C3—C2 | 121.94 (7) |
C8—C9—C10 | 120.16 (6) | C4—C3—H3 | 116.9 (10) |
C8—C9—H9 | 120.8 (9) | C2—C3—H3 | 121.2 (10) |
C10—C9—H9 | 119.0 (9) | C3—C4—C5 | 119.23 (7) |
O3—C10—C9 | 117.94 (6) | C3—C4—H4 | 120.6 (9) |
O3—C10—C11 | 122.00 (6) | C5—C4—H4 | 120.1 (9) |
C9—C10—C11 | 120.05 (6) | N2—C5—N1 | 119.14 (6) |
C6—C11—C10 | 119.32 (6) | N2—C5—C4 | 122.85 (7) |
C6—C11—C12 | 121.03 (6) | N1—C5—C4 | 118.01 (6) |
C11—C6—C7—C8 | −0.09 (10) | O3—C10—C11—C12 | 0.52 (10) |
C11—C6—C7—S1 | 176.17 (5) | C9—C10—C11—C12 | −179.78 (6) |
O4—S1—C7—C6 | −96.71 (6) | C6—C11—C12—O2 | 179.20 (7) |
O5—S1—C7—C6 | 24.08 (6) | C10—C11—C12—O2 | −1.06 (11) |
O6—S1—C7—C6 | 142.77 (6) | C6—C11—C12—O1 | −0.49 (10) |
O4—S1—C7—C8 | 79.60 (6) | C10—C11—C12—O1 | 179.25 (6) |
O5—S1—C7—C8 | −159.60 (5) | C5—N1—C1—C2 | −1.85 (10) |
O6—S1—C7—C8 | −40.91 (6) | C5—N1—C1—Cl1 | 176.41 (5) |
C6—C7—C8—C9 | 0.15 (10) | N1—C1—C2—C3 | 1.66 (10) |
S1—C7—C8—C9 | −176.13 (6) | Cl1—C1—C2—C3 | −176.49 (6) |
C7—C8—C9—C10 | −0.15 (11) | C1—C2—C3—C4 | −0.26 (11) |
C8—C9—C10—O3 | 179.81 (7) | C2—C3—C4—C5 | −0.94 (12) |
C8—C9—C10—C11 | 0.10 (11) | C1—N1—C5—N2 | −179.76 (7) |
C7—C6—C11—C10 | 0.03 (10) | C1—N1—C5—C4 | 0.55 (10) |
C7—C6—C11—C12 | 179.77 (6) | C3—C4—C5—N2 | −178.87 (7) |
O3—C10—C11—C6 | −179.74 (6) | C3—C4—C5—N1 | 0.80 (11) |
C9—C10—C11—C6 | −0.04 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O6i | 0.871 (17) | 1.775 (17) | 2.6061 (7) | 158.7 (16) |
O3—H1O3···O2 | 0.850 (16) | 1.829 (16) | 2.6027 (8) | 150.5 (16) |
N1—H1N1···O5 | 0.881 (14) | 1.854 (14) | 2.7272 (8) | 171.4 (13) |
N2—H1N2···O6 | 0.890 (15) | 1.992 (15) | 2.8814 (8) | 178.6 (15) |
N2—H2N2···O4ii | 0.849 (14) | 2.038 (14) | 2.8823 (9) | 173.1 (14) |
C2—H2···O3iii | 0.931 (14) | 2.389 (14) | 3.2978 (9) | 165.2 (12) |
C3—H3···Cl1ii | 0.934 (15) | 2.737 (15) | 3.5834 (8) | 151.1 (13) |
C4—H4···O5ii | 0.941 (14) | 2.340 (14) | 3.2489 (9) | 162.2 (11) |
Symmetry codes: (i) x−1/2, y+1/2, z; (ii) x, y−1, z; (iii) x, −y+1, z+1/2. |
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hemamalini, M., Loh, W.-S., Quah, C. K. & Fun, H.-K. (2014). Chem. Cent. J. 8, 31. Web of Science CSD CrossRef PubMed Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Rajkumar, M. A., NizamMohideen, M., Xavier, S. S. J., Anbarasu, S. & Devarajan, D. P. A. (2015). Acta Cryst. E71, 231–233. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.