organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-6-chloro­pyridinium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aPG and Research Department of Physics, Government Arts College for Men (Autonomous), Nandanam, Chennai 600 035, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Annai Violet Arts and Science College, Chennai 600 053, India
*Correspondence e-mail: agsv71@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 4 April 2019; accepted 24 April 2019; online 10 May 2019)

In the 3-carb­oxy-4-hy­droxy­benzene­sulfonate anion of the title salt, C5H6ClN2+·C7H5O6S, an intra­molecular O—H⋯O hydrogen bond with an S(6) ring motif is observed. In the crystal, the anions are linked into a chain structure running along [1[\overline{1}]0] via an O—H⋯O hydrogen bond formed between the carb­oxy and sulfonate groups. The 2-amino-6-chloro­pyridinium cations bridge the anion chains via N—H⋯O and C—H⋯O hydrogen bonds, forming a sheet parallel to the ab plane. In the sheet, a C—H⋯Cl inter­action between the cations is also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine heterocycles and their derivatives have many applications in the fields of photo-chemical, electrochemical and catalytic processes (Katritzky et al., 1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). Some pyridine derivatives possess non-linear optical (NLO) properties (Rajkumar et al., 2015[Rajkumar, M. A., NizamMohideen, M., Xavier, S. S. J., Anbarasu, S. & Devarajan, D. P. A. (2015). Acta Cryst. E71, 231-233.]). 2-Amino­pyridine derivatives are used in the synthesis of pharmaceutical drugs, especially for the treatment of neurological ailments (Schwid et al., 1997[Schwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-821.]). Several crystal structures of 2-amino­pyridine co-crystals with carb­oxy­lic acid derivatives have been already reported (Hemamalini et al., 2014[Hemamalini, M., Loh, W.-S., Quah, C. K. & Fun, H.-K. (2014). Chem. Cent. J. 8, 31.]). As part of our studies in this area, we now describe the synthesis and structure of the title salt.

In the 2-amino-6-chloro­pyridinium cation of the title compound, protonation at atom N1 leads to a slight increase in the C1—N1—C5 angle [121.72 (6)° compared with 116.8 (1)° in unprotonated 2-amino-6-chloropyridine (Hemamalini et al., 2014[Hemamalini, M., Loh, W.-S., Quah, C. K. & Fun, H.-K. (2014). Chem. Cent. J. 8, 31.])]. The 3-carb­oxy-4-hy­droxy­benzene sulfonate anion contains an intra­molecular O—H⋯O hydrogen bond (O3—H1O3⋯O2; Table 1[link]) with an S(6) ring motif (Fig. 1[link]). In the crystal, the anions are linked into a chain structure running along [1[\overline{1}]0] via an O—H⋯O hydrogen bond formed between the carb­oxy and sulfonate groups (O1—H1O1⋯O6i; symmetry code as in Table 1[link]). The 2-amino-6-chloro­pyridinium cations bridge the anion chains via N—H⋯O and C—H⋯O hydrogen bonds (N1—H1N1⋯O5, N2—H1N2⋯O6, N2—H2N2⋯O4ii and C4—H4⋯O5ii; Table 1[link]), forming a sheet parallel to the ab plane. In the sheet, a C—H⋯Cl inter­action (C3—H3⋯Cl1ii; Table 1[link]) between the cations is also observed. The sheets are further linked via another C—H⋯O (C2—H2⋯O3iii; Table 1[link]) hydrogen bond, forming a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O6i 0.871 (17) 1.775 (17) 2.6061 (7) 158.7 (16)
O3—H1O3⋯O2 0.850 (16) 1.829 (16) 2.6027 (8) 150.5 (16)
N1—H1N1⋯O5 0.881 (14) 1.854 (14) 2.7272 (8) 171.4 (13)
N2—H1N2⋯O6 0.890 (15) 1.992 (15) 2.8814 (8) 178.6 (15)
N2—H2N2⋯O4ii 0.849 (14) 2.038 (14) 2.8823 (9) 173.1 (14)
C2—H2⋯O3iii 0.931 (14) 2.389 (14) 3.2978 (9) 165.2 (12)
C3—H3⋯Cl1ii 0.934 (15) 2.737 (15) 3.5834 (8) 151.1 (13)
C4—H4⋯O5ii 0.941 (14) 2.340 (14) 3.2489 (9) 162.2 (11)
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) x, y-1, z; (iii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A packing diagram of the title compound, showing the hydrogen-bonded network (dashed lines).

Synthesis and crystallization

A hot methanol solution (20 ml) of 2-amino-6-chloro­pyridine (34 mg, Aldrich) and sulfosalicylic acid (54 mg, Merck) was allowed to cool slowly to room temperature and single crystals of the title compound appeared after a few days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C5H6ClN2+·C7H5O6S
Mr 346.74
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 16.0043 (3), 7.4649 (2), 23.5799 (5)
β (°) 95.161 (1)
V3) 2805.68 (11)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.45
Crystal size (mm) 0.39 × 0.28 × 0.21
 
Data collection
Diffractometer Bruker SMART APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.842, 0.911
No. of measured, independent and observed [I > 2σ(I)] reflections 26502, 7386, 6997
Rint 0.016
(sin θ/λ)max−1) 0.858
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.14
No. of reflections 7386
No. of parameters 243
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.58, −0.41
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

2-Amino-6-chloropyridinium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C5H6ClN2+·C7H5O6SF(000) = 1424
Mr = 346.74Dx = 1.642 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9829 reflections
a = 16.0043 (3) Åθ = 2.6–37.6°
b = 7.4649 (2) ŵ = 0.45 mm1
c = 23.5799 (5) ÅT = 100 K
β = 95.161 (1)°Block, colourless
V = 2805.68 (11) Å30.39 × 0.28 × 0.21 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area detector
diffractometer
7386 independent reflections
Radiation source: fine-focus sealed tube6997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 37.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2727
Tmin = 0.842, Tmax = 0.911k = 1112
26502 measured reflectionsl = 4027
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079All H-atom parameters refined
S = 1.14 w = 1/[σ2(Fo2) + (0.0359P)2 + 1.5791P]
where P = (Fo2 + 2Fc2)/3
7386 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat [Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107] operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.849 (14)–0.890 (15) Å, O—H = 0.850 (16)–0.870 (17) Å and C—H = 0.931 (14)–0.987 (13) Å].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.194955 (9)0.60531 (2)0.120818 (6)0.01019 (3)
O10.11147 (3)0.84652 (9)0.08056 (2)0.01856 (10)
O20.14331 (3)0.87680 (8)0.01363 (2)0.01719 (10)
O30.03230 (4)0.78169 (9)0.08199 (2)0.01771 (10)
O40.24938 (3)0.76081 (8)0.12876 (2)0.01497 (9)
O50.14455 (3)0.57579 (7)0.16888 (2)0.01358 (8)
O60.24046 (3)0.44196 (7)0.10735 (2)0.01408 (8)
C60.04546 (4)0.71656 (9)0.06802 (3)0.01147 (9)
C70.12440 (4)0.64976 (9)0.06087 (3)0.01058 (9)
C80.15093 (4)0.62660 (9)0.00621 (3)0.01268 (10)
C90.09758 (4)0.67148 (10)0.04112 (3)0.01408 (10)
C100.01735 (4)0.73936 (9)0.03450 (3)0.01221 (10)
C110.00912 (4)0.76231 (9)0.02035 (3)0.01131 (9)
C120.09384 (4)0.83327 (9)0.02688 (3)0.01288 (10)
N10.13605 (4)0.27027 (8)0.23152 (3)0.01344 (9)
N20.19616 (4)0.11253 (9)0.16085 (3)0.01786 (11)
Cl10.079291 (13)0.48895 (2)0.305211 (8)0.01915 (4)
C10.09741 (4)0.27792 (9)0.28073 (3)0.01322 (10)
C20.07675 (5)0.12856 (10)0.30926 (3)0.01542 (11)
C30.09926 (5)0.03714 (10)0.28634 (3)0.01780 (12)
C40.13957 (5)0.04791 (10)0.23772 (3)0.01718 (12)
C50.15832 (4)0.11192 (9)0.20889 (3)0.01376 (10)
H20.0514 (8)0.1360 (19)0.3432 (6)0.021 (3)*
H30.0891 (10)0.145 (2)0.3046 (7)0.032 (4)*
H40.1526 (8)0.1600 (19)0.2225 (6)0.023 (3)*
H60.0274 (8)0.7370 (19)0.1064 (6)0.019 (3)*
H80.2071 (8)0.5821 (17)0.0021 (5)0.015 (3)*
H90.1142 (9)0.656 (2)0.0780 (6)0.024 (3)*
H1O10.1623 (11)0.888 (2)0.0808 (7)0.041 (4)*
H1O30.0781 (10)0.820 (2)0.0709 (7)0.032 (4)*
H1N10.1436 (8)0.3713 (18)0.2134 (6)0.019 (3)*
H1N20.2102 (9)0.215 (2)0.1449 (6)0.028 (4)*
H2N20.2116 (9)0.0121 (19)0.1485 (6)0.023 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.00848 (6)0.01208 (6)0.01013 (6)0.00212 (4)0.00147 (4)0.00012 (4)
O10.01210 (19)0.0300 (3)0.0140 (2)0.00791 (19)0.00350 (16)0.00012 (19)
O20.01249 (19)0.0226 (3)0.0160 (2)0.00428 (17)0.00103 (16)0.00197 (18)
O30.0150 (2)0.0267 (3)0.01119 (19)0.00370 (19)0.00049 (16)0.00279 (18)
O40.01189 (18)0.0154 (2)0.0174 (2)0.00116 (16)0.00033 (15)0.00181 (17)
O50.01388 (19)0.0164 (2)0.01106 (18)0.00364 (16)0.00411 (15)0.00170 (15)
O60.01187 (18)0.0148 (2)0.0160 (2)0.00497 (16)0.00341 (15)0.00015 (16)
C60.0094 (2)0.0145 (2)0.0107 (2)0.00190 (18)0.00201 (17)0.00037 (18)
C70.0090 (2)0.0127 (2)0.0102 (2)0.00151 (17)0.00168 (16)0.00005 (18)
C80.0110 (2)0.0160 (3)0.0115 (2)0.00172 (19)0.00298 (17)0.00057 (19)
C90.0128 (2)0.0192 (3)0.0105 (2)0.0021 (2)0.00293 (18)0.0003 (2)
C100.0115 (2)0.0147 (2)0.0104 (2)0.00023 (19)0.00100 (17)0.00095 (18)
C110.0092 (2)0.0137 (2)0.0112 (2)0.00139 (18)0.00165 (17)0.00063 (18)
C120.0102 (2)0.0148 (3)0.0137 (2)0.00172 (19)0.00169 (18)0.00027 (19)
N10.0151 (2)0.0119 (2)0.0135 (2)0.00114 (17)0.00169 (17)0.00032 (17)
N20.0211 (3)0.0158 (3)0.0177 (2)0.0036 (2)0.0074 (2)0.0010 (2)
Cl10.02752 (9)0.01356 (7)0.01658 (7)0.00355 (6)0.00307 (6)0.00200 (5)
C10.0145 (2)0.0129 (2)0.0120 (2)0.00098 (19)0.00034 (18)0.00142 (19)
C20.0197 (3)0.0146 (3)0.0119 (2)0.0017 (2)0.0009 (2)0.0006 (2)
C30.0260 (3)0.0134 (3)0.0142 (3)0.0020 (2)0.0023 (2)0.0003 (2)
C40.0236 (3)0.0126 (3)0.0155 (3)0.0008 (2)0.0027 (2)0.0003 (2)
C50.0145 (2)0.0132 (2)0.0136 (2)0.00182 (19)0.00097 (19)0.00013 (19)
Geometric parameters (Å, º) top
S1—O41.4532 (6)C10—C111.4072 (9)
S1—O51.4656 (5)C11—C121.4765 (9)
S1—O61.4696 (5)N1—C51.3577 (9)
S1—C71.7595 (6)N1—C11.3643 (9)
O1—C121.3252 (9)N1—H1N10.881 (14)
O1—H1O10.870 (17)N2—C51.3317 (9)
O2—C121.2283 (8)N2—H1N20.890 (15)
O3—C101.3509 (8)N2—H2N20.849 (14)
O3—H1O30.850 (16)Cl1—C11.7115 (7)
C6—C71.3824 (9)C1—C21.3583 (10)
C6—C111.4024 (9)C2—C31.4095 (11)
C6—H60.987 (13)C2—H20.931 (14)
C7—C81.4036 (9)C3—C41.3676 (11)
C8—C91.3840 (9)C3—H30.932 (17)
C8—H80.972 (13)C4—C51.4186 (10)
C9—C101.4020 (9)C4—H40.941 (14)
C9—H90.939 (14)
O4—S1—O5112.69 (3)C10—C11—C12119.65 (6)
O4—S1—O6112.81 (3)O2—C12—O1123.05 (6)
O5—S1—O6111.12 (3)O2—C12—C11123.20 (6)
O4—S1—C7106.66 (3)O1—C12—C11113.75 (6)
O5—S1—C7106.94 (3)C5—N1—C1121.72 (6)
O6—S1—C7106.12 (3)C5—N1—H1N1120.1 (9)
C12—O1—H1O1108.1 (11)C1—N1—H1N1118.1 (9)
C10—O3—H1O3106.5 (11)C5—N2—H1N2121.0 (10)
C7—C6—C11120.03 (6)C5—N2—H2N2117.2 (9)
C7—C6—H6120.9 (8)H1N2—N2—H2N2121.3 (13)
C11—C6—H6119.0 (8)C2—C1—N1122.41 (6)
C6—C7—C8120.77 (6)C2—C1—Cl1122.16 (5)
C6—C7—S1119.84 (5)N1—C1—Cl1115.40 (5)
C8—C7—S1119.29 (5)C1—C2—C3116.65 (7)
C9—C8—C7119.68 (6)C1—C2—H2121.4 (9)
C9—C8—H8120.8 (7)C3—C2—H2121.9 (9)
C7—C8—H8119.5 (7)C4—C3—C2121.94 (7)
C8—C9—C10120.16 (6)C4—C3—H3116.9 (10)
C8—C9—H9120.8 (9)C2—C3—H3121.2 (10)
C10—C9—H9119.0 (9)C3—C4—C5119.23 (7)
O3—C10—C9117.94 (6)C3—C4—H4120.6 (9)
O3—C10—C11122.00 (6)C5—C4—H4120.1 (9)
C9—C10—C11120.05 (6)N2—C5—N1119.14 (6)
C6—C11—C10119.32 (6)N2—C5—C4122.85 (7)
C6—C11—C12121.03 (6)N1—C5—C4118.01 (6)
C11—C6—C7—C80.09 (10)O3—C10—C11—C120.52 (10)
C11—C6—C7—S1176.17 (5)C9—C10—C11—C12179.78 (6)
O4—S1—C7—C696.71 (6)C6—C11—C12—O2179.20 (7)
O5—S1—C7—C624.08 (6)C10—C11—C12—O21.06 (11)
O6—S1—C7—C6142.77 (6)C6—C11—C12—O10.49 (10)
O4—S1—C7—C879.60 (6)C10—C11—C12—O1179.25 (6)
O5—S1—C7—C8159.60 (5)C5—N1—C1—C21.85 (10)
O6—S1—C7—C840.91 (6)C5—N1—C1—Cl1176.41 (5)
C6—C7—C8—C90.15 (10)N1—C1—C2—C31.66 (10)
S1—C7—C8—C9176.13 (6)Cl1—C1—C2—C3176.49 (6)
C7—C8—C9—C100.15 (11)C1—C2—C3—C40.26 (11)
C8—C9—C10—O3179.81 (7)C2—C3—C4—C50.94 (12)
C8—C9—C10—C110.10 (11)C1—N1—C5—N2179.76 (7)
C7—C6—C11—C100.03 (10)C1—N1—C5—C40.55 (10)
C7—C6—C11—C12179.77 (6)C3—C4—C5—N2178.87 (7)
O3—C10—C11—C6179.74 (6)C3—C4—C5—N10.80 (11)
C9—C10—C11—C60.04 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O6i0.871 (17)1.775 (17)2.6061 (7)158.7 (16)
O3—H1O3···O20.850 (16)1.829 (16)2.6027 (8)150.5 (16)
N1—H1N1···O50.881 (14)1.854 (14)2.7272 (8)171.4 (13)
N2—H1N2···O60.890 (15)1.992 (15)2.8814 (8)178.6 (15)
N2—H2N2···O4ii0.849 (14)2.038 (14)2.8823 (9)173.1 (14)
C2—H2···O3iii0.931 (14)2.389 (14)3.2978 (9)165.2 (12)
C3—H3···Cl1ii0.934 (15)2.737 (15)3.5834 (8)151.1 (13)
C4—H4···O5ii0.941 (14)2.340 (14)3.2489 (9)162.2 (11)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y1, z; (iii) x, y+1, z+1/2.
 

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHemamalini, M., Loh, W.-S., Quah, C. K. & Fun, H.-K. (2014). Chem. Cent. J. 8, 31.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationRajkumar, M. A., NizamMohideen, M., Xavier, S. S. J., Anbarasu, S. & Devarajan, D. P. A. (2015). Acta Cryst. E71, 231–233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds