inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Redetermination of the crystal structure of BaTeO3(H2O), including the localization of the hydrogen atoms

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: Matthias.Weil@tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 May 2019; accepted 27 May 2019; online 31 May 2019)

The redetermination of the crystal structure of barium oxidotellurate(IV) monohydrate allowed the localization of the hydrogen atoms that were not determined in the previous study [Nielsen, Hazell & Rasmussen (1971[Nielsen, B. R., Hazell, R. G. & Rasmussen, S. E. (1971). Acta Chem. Scand. 25, 3037-3042.]). Acta Chem. Scand. 25, 3037–3042], thus making an unambiguous assignment of the hydrogen-bonding scheme possible. The crystal structure shows a layered arrangement parallel to (001), consisting of edge-sharing [BaO6(H2O)] polyhedra and flanked by isolated [TeO3] trigonal pyramids on the top and bottom. O—H⋯O hydrogen bonds of medium strength link adjacent layers along [001].

3D view (loading...)
[Scheme 3D1]

Structure description

In a recent project it was shown that sulfate or selenate anions can be incorporated into oxidotellurates(IV) of calcium, cadmium or strontium (Weil & Shirkhanlou, 2017[Weil, M. & Shirkhanlou, M. (2017). Z. Anorg. Allg. Chem. 643, 330-339.]). In order to expand this series to larger divalent metals, similar experiments with barium were started. Instead of the desired barium compounds with mixed oxidochalcogenate anions, high-quality crystals of BaTeO3(H2O) were frequently obtained under the given hydro­thermal conditions. The crystal structure of BaTeO3(H2O) was determined nearly fifty years ago (Nielsen et al., 1971[Nielsen, B. R., Hazell, R. G. & Rasmussen, S. E. (1971). Acta Chem. Scand. 25, 3037-3042.]), however without localization of the hydrogen atoms. For an unambiguous assignment of the hydrogen-bonding scheme, a redetermination of this structure with modern CCD-based diffraction data seemed appropriate. In fact, alongside more precise data in terms of bond lengths and angles (Table 1[link]), the current redetermination clearly revealed the positions of the hydrogen atoms of the water mol­ecule (O4). Numerical data for the hydrogen-bonding inter­actions are collated in Table 2[link].

Table 1
Comparison of selected bond lengths (Å) from the current and the previous (Nielsen et al., 1971[Nielsen, B. R., Hazell, R. G. & Rasmussen, S. E. (1971). Acta Chem. Scand. 25, 3037-3042.]) refinement of BaTeO3(H2O)

  current refinement previous refinementa
Ba—O2i 2.6755 (17) 2.667 (8)
Ba—O1ii 2.6905 (16) 2.675 (8)
Ba—O3iii 2.7064 (15) 2.688 (7)
Ba—O1iv 2.7867 (16) 2.780 (6)
Ba—O4iv 2.792 (2) 2.786 (6)
Ba—O1v 2.7980 (15) 2.781 (6)
Ba—O3iv 2.8461 (17) 2.823 (6)
Te—O2 1.8571 (16) 1.847 (7)
Te—O3 1.8632 (16) 1.859 (6)
Te—O1 1.8644 (15) 1.858 (6)
O2—Te1—O3 102.18 (8) 102.7 (3)
O2—Te1—O1 99.12 (8) 98.8 (3)
O3—Te1—O1 96.48 (7) 96.5 (3)
Notes (a) a = 8.58 (2), b = 7.53 (2), c = 7.70 (2) Å; β = 106.03 (20)°, T = 298 K; R = 0.039. Symmetry codes: (i) x, y + 1, z; (ii) −x + [{1\over 2}], y + [{1\over 2}], −z; (iii) x + [{1\over 2}], −y + [{1\over 2}], z; (iv) −x, −y + 1, −z; (v) x + [{1\over 2}], −y + [{3\over 2}], z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O3i 0.85 (1) 1.86 (1) 2.679 (3) 164 (4)
O4—H2⋯O2ii 0.85 (1) 1.93 (1) 2.761 (3) 167 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1].

The crystal structure comprises Ba2+ cations with a coord­ination number of seven by oxygen atoms, and isolated trigonal–pyramidal TeO32– anions. The coordination sphere of the alkaline earth cation is irregular with a Ba—O bond-length distribution from 2.6755 (17) to 2.8461 (17) Å. The Te—O bond lengths and O—Te—O angles are typical for TeIV bonded to three oxygen atoms (Christy et al., 2016[Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Miner. Mag. 80, 415-545.]). In the crystal structure, [BaO6(H2O)] polyhedra share edges and are linked into layers extending parallel to (001). The [TeO3] trigonal pyramids flank these layers on both sides with the free-electron pair pointing into the inter­layer space (Fig. 1[link]). Adjacent layers are held together along [001] by O—H⋯O hydrogen bonds involving one of the water hydrogen atoms (H2). The other hydrogen atom (H1) is engaged in an intra­layer hydrogen bond. Judging by the O⋯O contact distances (Table 2[link]), both hydrogen bonds are of medium strength.

[Figure 1]
Figure 1
The crystal structure of BaTeO3(H2O) in a projection along [0[\overline{1}]0]. Displacement ellipsoids are drawn at the 74% probability level. [TeO3] trigonal pyramids are red, hydrogen atoms are of arbitrary size and O—H⋯O hydrogen-bonding inter­actions are shown as green lines.

Synthesis and crystallization

Ba(OH)2·8H2O, H2SeO4 (96%wt), TeO2 and KOH were mixed in a stoichiometric ratio of 2:1:1:2 (overall load ca 0.3 g) and were placed in a Teflon container with an 8 ml capacity that was filled to about two-thirds of its volume with water. The container was sealed with a Teflon lid, transferred to a steel autoclave and heated at 483 K for one week. A few colourless transparent crystals with a plate-like form of BaTeO3(H2O) were separated from microcrystalline material that consisted of BaSeO4 as the main phase and unknown phase(s) as minor products, as revealed by powder X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The same non-standard setting P21/a of space group No. 14 (standard setting P21/c) and atom-labelling scheme as given in the original structure study (Nielsen et al., 1971[Nielsen, B. R., Hazell, R. G. & Rasmussen, S. E. (1971). Acta Chem. Scand. 25, 3037-3042.]) were used. The published atomic coordinates were taken as starting parameters for the refinement. The two H atoms bonded to O4 were clearly discernible from a difference Fourier map. The corresponding O—H distances were treated with restraints d(O—H) = 0.85 (1) Å, and an independent Uiso parameter was refined for each H atom.

Table 3
Experimental details

Crystal data
Chemical formula BaTeO3(H2O)
Mr 330.96
Crystal system, space group Monoclinic, P21/a
Temperature (K) 296
a, b, c (Å) 8.6061 (2), 7.5820 (1), 7.7252 (2)
β (°) 105.8800 (11)
V3) 484.84 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 13.98
Crystal size (mm) 0.18 × 0.09 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.541, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 24774, 3003, 2535
Rint 0.048
(sin θ/λ)max−1) 0.904
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.042, 1.01
No. of reflections 3003
No. of parameters 63
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.36, −1.03
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: coordinates from previous model; program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Barium oxidotellurate(IV) monohydrate top
Crystal data top
BaTeO3(H2O)F(000) = 568
Mr = 330.96Dx = 4.534 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71069 Å
a = 8.6061 (2) ÅCell parameters from 8647 reflections
b = 7.5820 (1) Åθ = 2.7–39.9°
c = 7.7252 (2) ŵ = 13.98 mm1
β = 105.8800 (11)°T = 296 K
V = 484.84 (2) Å3Plate, colourless
Z = 40.18 × 0.09 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
2535 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 40.0°, θmin = 2.7°
Tmin = 0.541, Tmax = 0.748h = 1515
24774 measured reflectionsk = 1313
3003 independent reflectionsl = 1313
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.013P)2 + 0.3124P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3003 reflectionsΔρmax = 1.36 e Å3
63 parametersΔρmin = 1.03 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba0.33203 (2)0.84905 (2)0.11771 (2)0.01402 (3)
Te0.00420 (2)0.18710 (2)0.28883 (2)0.01247 (3)
O10.0478 (2)0.31565 (19)0.0749 (2)0.0166 (3)
O20.2033 (2)0.0987 (2)0.2807 (2)0.0234 (3)
O30.1331 (2)0.0024 (2)0.2030 (2)0.0198 (3)
O40.1377 (3)0.6040 (3)0.3567 (3)0.0361 (5)
H10.210 (3)0.553 (5)0.319 (5)0.047 (11)*
H20.172 (4)0.608 (5)0.4705 (14)0.048 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.01206 (5)0.01126 (5)0.01810 (6)0.00019 (3)0.00307 (4)0.00052 (4)
Te0.01224 (6)0.01311 (5)0.01221 (5)0.00006 (4)0.00361 (4)0.00102 (4)
O10.0191 (7)0.0155 (6)0.0155 (7)0.0003 (5)0.0055 (6)0.0029 (5)
O20.0145 (7)0.0298 (8)0.0266 (9)0.0050 (6)0.0065 (6)0.0042 (7)
O30.0192 (7)0.0147 (6)0.0248 (8)0.0040 (5)0.0050 (6)0.0002 (6)
O40.0224 (9)0.0602 (14)0.0215 (9)0.0147 (9)0.0012 (7)0.0131 (10)
Geometric parameters (Å, º) top
Ba—O2i2.6755 (17)Ba—O3iv2.8461 (17)
Ba—O1ii2.6905 (16)Te—O21.8571 (16)
Ba—O3iii2.7064 (15)Te—O31.8632 (16)
Ba—O1iv2.7867 (16)Te—O11.8644 (15)
Ba—O4v2.792 (2)O4—H10.846 (10)
Ba—O1v2.7980 (15)O4—H20.849 (10)
O2i—Ba—O1ii139.83 (5)O4v—Ba—O3iv139.19 (5)
O2i—Ba—O3iii127.23 (5)O1v—Ba—O3iv71.32 (5)
O1ii—Ba—O3iii89.77 (5)O2—Te—O3102.18 (8)
O2i—Ba—O1iv98.76 (5)O2—Te—O199.12 (8)
O1ii—Ba—O1iv107.47 (5)O3—Te—O196.48 (7)
O3iii—Ba—O1iv73.59 (5)Te—O1—Bavi120.32 (7)
O2i—Ba—O4v92.01 (7)Te—O1—Baiv101.64 (6)
O1ii—Ba—O4v73.13 (6)Bavi—O1—Baiv112.62 (6)
O3iii—Ba—O4v86.63 (6)Te—O1—Bavii112.15 (7)
O1iv—Ba—O4v160.17 (6)Bavi—O1—Bavii108.25 (5)
O2i—Ba—O1v68.09 (5)Baiv—O1—Bavii99.87 (5)
O1ii—Ba—O1v71.75 (5)Te—O2—Baviii140.90 (9)
O3iii—Ba—O1v153.03 (5)Te—O3—Baix148.51 (8)
O1iv—Ba—O1v130.01 (4)Te—O3—Baiv99.59 (6)
O4v—Ba—O1v69.54 (6)Baix—O3—Baiv100.63 (5)
O2i—Ba—O3iv83.85 (5)Bavii—O4—H1119 (2)
O1ii—Ba—O3iv84.18 (5)Bavii—O4—H2133 (3)
O3iii—Ba—O3iv127.51 (4)H1—O4—H2107 (3)
O1iv—Ba—O3iv59.15 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y+1, z; (v) x+1/2, y+3/2, z; (vi) x+1/2, y1/2, z; (vii) x1/2, y+3/2, z; (viii) x, y1, z; (ix) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O3iii0.85 (1)1.86 (1)2.679 (3)164 (4)
O4—H2···O2x0.85 (1)1.93 (1)2.761 (3)167 (4)
Symmetry codes: (iii) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, z+1.
Comparison of selected bond lengths (Å) from the current and the previous (Nielsen et al., 1971) refinement of BaTeO3(H2O) top
current refinementprevious refinementa
Ba—O2i2.6755 (17)2.667 (8)
Ba—O1ii2.6905 (16)2.675 (8)
Ba—O3iii2.7064 (15)2.688 (7)
Ba—O1iv2.7867 (16)2.780 (6)
Ba—O4iv2.792 (2)2.786 (6)
Ba—O1v2.7980 (15)2.781 (6)
Ba—O3iv2.8461 (17)2.823 (6)
Te—O21.8571 (16)1.847 (7)
Te—O31.8632 (16)1.859 (6)
Te—O11.8644 (15)1.858 (6)
O2—Te1—O3102.18 (8)102.7 (3)
O2—Te1—O199.12 (8)98.8 (3)
O3—Te1—O196.48 (7)96.5 (3)
Notes (a) a = 8.58 (2), b = 7.53 (2), c = 7.70 (2) Å; β = 106.03 (20)°, T = 298 K; R = 0.039. Symmetry codes: (i) x, y + 1, z; (ii) -x + 1/2, y + 1/2, -z; (iii) x + 1/2, -y + 1/2, z; (iv) -x, -y + 1, -z; (v) x + 1/2, -y + 3/2, z.
 

Acknowledgements

The X-ray centre of TU Wien is acknowledged for financial support and providing access to the single-crystal X-ray diffractometer.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristy, A. G., Mills, S. J. & Kampf, A. R. (2016). Miner. Mag. 80, 415–545.  Web of Science CrossRef CAS Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationNielsen, B. R., Hazell, R. G. & Rasmussen, S. E. (1971). Acta Chem. Scand. 25, 3037–3042.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeil, M. & Shirkhanlou, M. (2017). Z. Anorg. Allg. Chem. 643, 330–339.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds