organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3-Bis{[(2,6-di­methyl­phen­yl)sulfan­yl]meth­yl}benzene

CROSSMARK_Color_square_no_text.svg

aCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501, San José, Costa Rica, and bEscuela de Química, Universidad de Costa Rica, 11501, San José, Costa Rica
*Correspondence e-mail: leslie.pineda@ucr.ac.cr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 April 2019; accepted 12 May 2019; online 24 May 2019)

The structure of the title compound, C24H26S2, an example of a pincer ligand with an SCS-chelation motif, illustrates the steric effects of the methyl groups in the thio­phenyl rings at the 2- and 6-positions, forcing a dissimilar spatial orientation of the thio­phenyl rings relative to the central aryl group [dihedral angles = 33.58 (7) and 40.49 (7)°]. In the crystal, weak S⋯S contacts [3.4009 (7) Å] link the mol­ecules into inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thermodynamic and kinetic stabilization are widely used synthetic concepts for the mol­ecular design of highly reactive species. While the first approach harnesses the mesomeric effect of neighboring heteroatoms, the attachment of electron-donating or -withdrawing substituents or complexation with a transition metal, the second technique takes advantage of steric protection by bulky groups (Tokitoh & Okazaki, 2001[Tokitoh, N. & Okazaki, R. (2001). Adv. Organomet. Chem. 47, 121-166.]; Albrecht et al., 2001[Albrecht, M., Kocks, B. M., Spek, A. L. & van Koten, G. (2001). J. Organomet. Chem. 624, 271-286.]). In this context, pincer-type ligands consisting of a planar aryl backbone (common framework) and two neutral donor groups, result in an ECE chelating environment (E = 2-electron donor atom; C = ipso carbon atom of the aromatic scaffold). Such tridentate ligands have been commonly employed to generate versatile organic and organometallic systems rich in electrons with tunable features, leading to several applications in homogeneous catalysis, activation of strong bonds or as potential therapeutic and pharmaceutical agents (Morales-Morales & Jensen, 2007[Morales-Morales, D. & Jensen, C. (2007). Editors. The Chemistry of Pincer Compounds. Amsterdam: Elsevier Science.]). For instance, monoanionic aromatic ligands containing one or two ortho-pendant functional group(s), bearing intra­molecularly coordinating chelating ligands (Dostál et al., 2006[Dostál, L., Císařová, I., Jambor, R., Růžička, A., Jirásko, R. & Holeček, J. (2006). Organometallics, 25, 4366-4373.]) (E = N, P, O, S, Se) and bonded with aryl or aliphatic substituents, stabilized both transition-metal and main-group complexes affording direct metal-to-carbon σ-bonds, and delivering hypervalent or hypercoordinated compounds (Jambor et al., 2002[Jambor, R., Dostál, L., Růžička, A., Císařová, I., Brus, J., Holčapek, M. & Holeček, J. (2002). Organometallics, 21, 3996-4004.]). In effect, the modification of the electronic properties by donor atoms enhances the nucleophilicity significantly, along with changes in the spatial arrangement by the stereochemical configuration and rigidity of the carbon chain connecting these donor atoms (van Koten et al., 1989[Koten, G. van (1989). Pure & Appl. Chem. 61, 1681-1694.]), as well the solubility (Šimon et al., 2010[Šimon, P., de Proft, F., Jambor, R., Růžička, A. & Dostál, L. (2010). Angew. Chem. Int. Ed. 49, 5468-5471.]). As part of our studies in this area, we now report the synthesis and structure of the title compound, C24H26S2.

The crystal structure of the title compound has monoclinic symmetry with one mol­ecule in the asymmetric unit: the central phenyl ring (C1–C6) is bonded to methyl­ene moieties (C7 and C16) at the 2- and 6-positions and these latter fragments further act as bridges to the thio­phenyl rings (Fig. 1[link]). The thio­phenyl rings are each flanked by a pair of methyl groups (C14, C15, C23, and C24) at the 2- and 6-positions, and show dissimilar spatial orientations, being farther away from each other in relation to the central aryl backbone. Such an arrangement is likely due to steric effects of the methyl groups and the rotation around the Cm—S (m = methyl­ene) bond. The bond lengths C7—S2 and C16—S1 are 1.839 (2) and 1.834 (2) Å, respectively. The corresponding methyl­ene/thio­phenyl units (C7—S2—C8 and C16—S1—C17) exhibit bond angles of 100.76 (7) and 101.96 (7)°, respectively. In the crystal, weak S2⋯S2i contacts [3.4009 (7) Å; symmetry code: (i) 1 – x, 1 – y, 1 – z] are observed between the mol­ecules, leading to the formation of inversion dimers (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Partial packing diagram for the title compound. S2⋯S2 inter­actions are shown as blue dashed lines.

Synthesis and crystallization

All manipulations were carried out using standard Schlenk techniques or in a glovebox (Lab MBraun workstation) under a nitro­gen atmosphere. All reagents and solvents were procured from commercial sources. Anhydrous solvents were dried as reported in the literature.

The title compound was synthesized according to a literature procedure (Romero et al., 1996[Romero, I., Sánchez-Castelló, G., Teixidor, F., Whitaker, C., Rius, J., Miravitlles, C., Flor, T., Escriche, L. & Casabó, J. (1996). Polyhedron, 15, 2057-2065.]) with some modifications. In a three-neck flask, a solution of 85% KOH solution in n-butanol (100 mL) [KOH (1.88 g, 28.50 mmol) as pellets was dried under vacuum for 1 h and dissolved in n-butanol (100 mL)] and 2,6-di­methyl­thio­phenol (3.80 mL, 28.50 mmol) were mixed and refluxed for 30 min under nitro­gen protection, giving a light-yellow solution. While the reaction mixture was still hot, a colourless solution of 1,3-bis­(bromo­meth­yl)benzene (3.75 g, 14.25 mmol) in n-butanol (90 mL) was added, and it was further refluxed for 1 h. At this stage, the reaction mixture turned off-white due to the formation of KBr, which was afterward filtered off while still hot. The resulting filtrate was allowed to stand in a water bath at ambient temperature to crystallize slowly. On cooling, after 2 d a white crystalline solid of the title compound was precipitated. It was filtered off, washed with distilled water to dissolve any remaining KBr (2 × 100 mL) and cold n-butanol (2 × 20 mL), and dried under vacuum. Yield: 2.42 g (45%) m.p. 357–358 K, 1H NMR (400 MHz, CDCl3, 298 K): δ 7.08–7.15 (m, 7H), 6.96 (d, 2H), 6.69 (s, 1H), (3.70 (s, 4H), 2.40 p.p.m. (s, 6H). 13C NMR NMR (400 MHz, CDCl3, 298 K): δ 143.5, 138.3, 132.9, 129.3, 128.4, 128.3, 128.0, 127.3, 39.6, 21.8 p.p.m. 1H NMR and 13C NMR are given in the supporting information Colourless blocks of the title compound were grown from a warm saturated n-butanol solution upon cooling in a water bath at ambient temperature.

Refinement

Crystal data, data collection ans structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C24H26S2
Mr 378.57
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.4487 (2), 23.7284 (5), 10.4078 (2)
β (°) 104.698 (1)
V3) 2018.22 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.40
Crystal size (mm) 0.25 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.630, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 30031, 3679, 3342
Rint 0.038
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.05
No. of reflections 3679
No. of parameters 239
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.] and Mecury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011 and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

1,3-Bis{[(2,6-dimethylphenyl)sulfanyl]methyl}benzene top
Crystal data top
C24H26S2F(000) = 808
Mr = 378.57Dx = 1.246 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 8.4487 (2) ÅCell parameters from 9984 reflections
b = 23.7284 (5) Åθ = 3.7–68.2°
c = 10.4078 (2) ŵ = 2.40 mm1
β = 104.698 (1)°T = 100 K
V = 2018.22 (8) Å3Block, colourless
Z = 40.25 × 0.15 × 0.10 mm
Data collection top
Bruker D8 Venture
diffractometer
3679 independent reflections
Radiation source: Incoatec microsource3342 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.038
Detector resolution: 10.4167 pixels mm-1θmax = 68.3°, θmin = 3.7°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2828
Tmin = 0.630, Tmax = 0.753l = 1212
30031 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.036P)2 + 0.9617P]
where P = (Fo2 + 2Fc2)/3
3679 reflections(Δ/σ)max = 0.002
239 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed geometrically and refined using a riding-atom model approximation, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C). A rotating model was used for the methyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05299 (4)0.78989 (2)0.46396 (3)0.02099 (10)
C10.26784 (17)0.68696 (6)0.52695 (14)0.0184 (3)
H10.21660.67670.43790.022*
S20.52713 (4)0.57105 (2)0.50641 (3)0.02155 (10)
C20.17461 (17)0.71129 (6)0.60489 (14)0.0192 (3)
C50.50961 (18)0.69337 (6)0.70751 (15)0.0215 (3)
H50.62370.68770.74260.026*
C40.41787 (19)0.71745 (6)0.78570 (15)0.0237 (3)
H40.46950.72830.87430.028*
C30.25039 (19)0.72598 (6)0.73568 (15)0.0223 (3)
H30.18780.74180.79070.027*
C60.43510 (17)0.67737 (6)0.57694 (14)0.0188 (3)
C70.53111 (18)0.64828 (6)0.49341 (15)0.0223 (3)
H7A0.64610.66130.52090.027*
H7B0.48630.65920.39940.027*
C80.63461 (17)0.56138 (6)0.67620 (14)0.0182 (3)
C90.54664 (17)0.55204 (6)0.77163 (15)0.0201 (3)
C100.63401 (19)0.54523 (6)0.90400 (15)0.0238 (3)
H100.57630.53930.97020.029*
C110.80332 (19)0.54693 (6)0.94022 (15)0.0253 (3)
H110.86080.54231.03070.03*
C120.88842 (18)0.55536 (6)0.84522 (15)0.0235 (3)
H121.00460.55630.87090.028*
C130.80697 (17)0.56250 (6)0.71206 (15)0.0199 (3)
C140.90487 (19)0.57030 (7)0.61095 (17)0.0291 (4)
H14A0.86240.54520.53520.044*
H14B1.01990.56130.65140.044*
H14C0.8960.60950.58040.044*
C150.36202 (18)0.54935 (7)0.73663 (17)0.0275 (3)
H15A0.31680.5860.70220.041*
H15B0.32550.540.81620.041*
H15C0.3240.52030.66880.041*
C160.00542 (18)0.72194 (6)0.54890 (15)0.0222 (3)
H16A0.06050.72020.62220.027*
H16B0.05120.69140.48540.027*
C170.00375 (17)0.83831 (6)0.59923 (14)0.0180 (3)
C180.11909 (17)0.84889 (6)0.67253 (14)0.0206 (3)
C190.0832 (2)0.88954 (6)0.77240 (15)0.0248 (3)
H190.15940.89680.82360.03*
C200.0622 (2)0.91949 (7)0.79792 (15)0.0277 (4)
H200.08540.94690.86660.033*
C210.17354 (19)0.90944 (6)0.72361 (15)0.0250 (3)
H210.2720.93070.74080.03*
C220.14412 (17)0.86870 (6)0.62377 (14)0.0202 (3)
C230.26849 (18)0.85884 (7)0.54506 (17)0.0275 (4)
H23A0.21620.86320.45020.041*
H23B0.31270.82060.56190.041*
H23C0.35750.88630.57190.041*
C240.28224 (19)0.81941 (7)0.64360 (18)0.0321 (4)
H24A0.34670.82980.55450.048*
H24B0.34110.83070.70940.048*
H24C0.26510.77850.64810.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02004 (18)0.02104 (19)0.01986 (18)0.00211 (13)0.00130 (14)0.00266 (14)
C10.0220 (7)0.0146 (7)0.0173 (7)0.0007 (5)0.0023 (6)0.0011 (5)
S20.02313 (19)0.02071 (19)0.01796 (18)0.00424 (14)0.00004 (14)0.00098 (14)
C20.0221 (7)0.0133 (7)0.0223 (7)0.0008 (5)0.0057 (6)0.0014 (6)
C50.0212 (7)0.0170 (7)0.0234 (7)0.0019 (6)0.0001 (6)0.0029 (6)
C40.0324 (8)0.0190 (8)0.0166 (7)0.0020 (6)0.0003 (6)0.0006 (6)
C30.0304 (8)0.0173 (7)0.0206 (7)0.0007 (6)0.0091 (6)0.0010 (6)
C60.0219 (7)0.0142 (7)0.0205 (7)0.0001 (5)0.0056 (6)0.0037 (5)
C70.0226 (7)0.0225 (8)0.0215 (7)0.0028 (6)0.0049 (6)0.0050 (6)
C80.0186 (7)0.0145 (7)0.0198 (7)0.0015 (5)0.0019 (6)0.0014 (6)
C90.0207 (7)0.0149 (7)0.0248 (7)0.0006 (5)0.0059 (6)0.0008 (6)
C100.0340 (8)0.0189 (8)0.0205 (7)0.0004 (6)0.0106 (6)0.0005 (6)
C110.0327 (8)0.0185 (8)0.0199 (7)0.0019 (6)0.0023 (6)0.0012 (6)
C120.0196 (7)0.0182 (7)0.0283 (8)0.0001 (6)0.0019 (6)0.0003 (6)
C130.0192 (7)0.0147 (7)0.0253 (8)0.0008 (5)0.0045 (6)0.0010 (6)
C140.0222 (8)0.0301 (9)0.0368 (9)0.0034 (6)0.0109 (7)0.0082 (7)
C150.0209 (8)0.0289 (9)0.0349 (9)0.0004 (6)0.0110 (7)0.0003 (7)
C160.0216 (7)0.0168 (7)0.0281 (8)0.0015 (6)0.0064 (6)0.0030 (6)
C170.0184 (7)0.0165 (7)0.0174 (7)0.0026 (5)0.0014 (6)0.0018 (5)
C180.0214 (7)0.0182 (7)0.0219 (7)0.0034 (6)0.0048 (6)0.0037 (6)
C190.0346 (8)0.0220 (8)0.0189 (7)0.0062 (6)0.0088 (6)0.0031 (6)
C200.0422 (9)0.0184 (8)0.0185 (7)0.0012 (7)0.0006 (7)0.0001 (6)
C210.0261 (8)0.0197 (8)0.0237 (8)0.0033 (6)0.0038 (6)0.0046 (6)
C220.0187 (7)0.0184 (7)0.0213 (7)0.0017 (6)0.0007 (6)0.0059 (6)
C230.0187 (7)0.0276 (9)0.0359 (9)0.0005 (6)0.0066 (7)0.0040 (7)
C240.0234 (8)0.0324 (9)0.0443 (10)0.0013 (7)0.0155 (7)0.0036 (8)
Geometric parameters (Å, º) top
S1—C171.7827 (14)C12—H120.95
S1—C161.8337 (15)C13—C141.506 (2)
C1—C21.391 (2)C14—H14A0.98
C1—C61.395 (2)C14—H14B0.98
C1—H10.95C14—H14C0.98
S2—C81.7848 (14)C15—H15A0.98
S2—C71.8385 (15)C15—H15B0.98
C2—C31.394 (2)C15—H15C0.98
C2—C161.506 (2)C16—H16A0.99
C5—C41.382 (2)C16—H16B0.99
C5—C61.398 (2)C17—C181.404 (2)
C5—H50.95C17—C221.409 (2)
C4—C31.393 (2)C18—C191.394 (2)
C4—H40.95C18—C241.506 (2)
C3—H30.95C19—C201.385 (2)
C6—C71.499 (2)C19—H190.95
C7—H7A0.99C20—C211.381 (2)
C7—H7B0.99C20—H200.95
C8—C91.401 (2)C21—C221.395 (2)
C8—C131.409 (2)C21—H210.95
C9—C101.397 (2)C22—C231.506 (2)
C9—C151.510 (2)C23—H23A0.98
C10—C111.384 (2)C23—H23B0.98
C10—H100.95C23—H23C0.98
C11—C121.377 (2)C24—H24A0.98
C11—H110.95C24—H24B0.98
C12—C131.392 (2)C24—H24C0.98
C17—S1—C16101.96 (7)H14A—C14—H14B109.5
C2—C1—C6121.33 (13)C13—C14—H14C109.5
C2—C1—H1119.3H14A—C14—H14C109.5
C6—C1—H1119.3H14B—C14—H14C109.5
C8—S2—C7100.76 (7)C9—C15—H15A109.5
C1—C2—C3119.04 (13)C9—C15—H15B109.5
C1—C2—C16120.64 (13)H15A—C15—H15B109.5
C3—C2—C16120.31 (13)C9—C15—H15C109.5
C4—C5—C6120.23 (14)H15A—C15—H15C109.5
C4—C5—H5119.9H15B—C15—H15C109.5
C6—C5—H5119.9C2—C16—S1114.23 (10)
C5—C4—C3120.55 (14)C2—C16—H16A108.7
C5—C4—H4119.7S1—C16—H16A108.7
C3—C4—H4119.7C2—C16—H16B108.7
C4—C3—C2120.01 (14)S1—C16—H16B108.7
C4—C3—H3120.0H16A—C16—H16B107.6
C2—C3—H3120.0C18—C17—C22121.05 (13)
C1—C6—C5118.82 (14)C18—C17—S1119.29 (11)
C1—C6—C7120.31 (13)C22—C17—S1119.45 (11)
C5—C6—C7120.82 (13)C19—C18—C17118.62 (14)
C6—C7—S2113.18 (10)C19—C18—C24119.04 (14)
C6—C7—H7A108.9C17—C18—C24122.30 (14)
S2—C7—H7A108.9C20—C19—C18120.84 (15)
C6—C7—H7B108.9C20—C19—H19119.6
S2—C7—H7B108.9C18—C19—H19119.6
H7A—C7—H7B107.8C21—C20—C19120.05 (14)
C9—C8—C13120.92 (13)C21—C20—H20120.0
C9—C8—S2119.61 (11)C19—C20—H20120.0
C13—C8—S2119.47 (11)C20—C21—C22121.25 (14)
C10—C9—C8118.34 (13)C20—C21—H21119.4
C10—C9—C15119.19 (14)C22—C21—H21119.4
C8—C9—C15122.47 (13)C21—C22—C17118.17 (14)
C11—C10—C9121.07 (14)C21—C22—C23119.73 (14)
C11—C10—H10119.5C17—C22—C23122.09 (13)
C9—C10—H10119.5C22—C23—H23A109.5
C12—C11—C10120.03 (14)C22—C23—H23B109.5
C12—C11—H11120.0H23A—C23—H23B109.5
C10—C11—H11120.0C22—C23—H23C109.5
C11—C12—C13121.08 (14)H23A—C23—H23C109.5
C11—C12—H12119.5H23B—C23—H23C109.5
C13—C12—H12119.5C18—C24—H24A109.5
C12—C13—C8118.55 (14)C18—C24—H24B109.5
C12—C13—C14119.35 (13)H24A—C24—H24B109.5
C8—C13—C14122.09 (13)C18—C24—H24C109.5
C13—C14—H14A109.5H24A—C24—H24C109.5
C13—C14—H14B109.5H24B—C24—H24C109.5
C6—C1—C2—C30.4 (2)C11—C12—C13—C14178.63 (14)
C6—C1—C2—C16179.32 (13)C9—C8—C13—C121.4 (2)
C6—C5—C4—C30.1 (2)S2—C8—C13—C12179.45 (11)
C5—C4—C3—C21.4 (2)C9—C8—C13—C14177.68 (14)
C1—C2—C3—C41.5 (2)S2—C8—C13—C141.43 (19)
C16—C2—C3—C4178.22 (13)C1—C2—C16—S187.22 (15)
C2—C1—C6—C50.8 (2)C3—C2—C16—S192.49 (15)
C2—C1—C6—C7176.71 (13)C17—S1—C16—C270.83 (12)
C4—C5—C6—C11.0 (2)C16—S1—C17—C1882.68 (12)
C4—C5—C6—C7176.56 (13)C16—S1—C17—C22102.54 (12)
C1—C6—C7—S286.79 (15)C22—C17—C18—C191.2 (2)
C5—C6—C7—S290.70 (15)S1—C17—C18—C19175.88 (11)
C8—S2—C7—C665.52 (12)C22—C17—C18—C24176.53 (14)
C7—S2—C8—C999.48 (12)S1—C17—C18—C241.8 (2)
C7—S2—C8—C1381.39 (12)C17—C18—C19—C200.8 (2)
C13—C8—C9—C101.6 (2)C24—C18—C19—C20176.95 (14)
S2—C8—C9—C10179.31 (11)C18—C19—C20—C210.3 (2)
C13—C8—C9—C15178.71 (14)C19—C20—C21—C221.1 (2)
S2—C8—C9—C150.41 (19)C20—C21—C22—C170.8 (2)
C8—C9—C10—C110.8 (2)C20—C21—C22—C23179.86 (14)
C15—C9—C10—C11179.46 (14)C18—C17—C22—C210.4 (2)
C9—C10—C11—C120.1 (2)S1—C17—C22—C21175.08 (11)
C10—C11—C12—C130.2 (2)C18—C17—C22—C23178.95 (13)
C11—C12—C13—C80.5 (2)S1—C17—C22—C234.27 (19)
 

Acknowledgements

Rectoría and Vicerrectoría de Investigación, Universidad de Costa Rica are acknowledged for funding the purchase of a D8 Venture SC XRD. CELEQ is thanked for supplying liquid nitro­gen for the X-ray measurements.

Funding information

Funding for this research was provided by: Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica (scholarship to Bruno Garita-Salazar); Vicerrectoría de Investigación, Universidad de Costa Rica (grant No. 804-B7-274).

References

First citationAlbrecht, M., Kocks, B. M., Spek, A. L. & van Koten, G. (2001). J. Organomet. Chem. 624, 271–286.  CSD CrossRef CAS Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDostál, L., Císařová, I., Jambor, R., Růžička, A., Jirásko, R. & Holeček, J. (2006). Organometallics, 25, 4366–4373.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJambor, R., Dostál, L., Růžička, A., Císařová, I., Brus, J., Holčapek, M. & Holeček, J. (2002). Organometallics, 21, 3996–4004.  CSD CrossRef CAS Google Scholar
First citationKoten, G. van (1989). Pure & Appl. Chem. 61, 1681–1694.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorales-Morales, D. & Jensen, C. (2007). Editors. The Chemistry of Pincer Compounds. Amsterdam: Elsevier Science.  Google Scholar
First citationRomero, I., Sánchez-Castelló, G., Teixidor, F., Whitaker, C., Rius, J., Miravitlles, C., Flor, T., Escriche, L. & Casabó, J. (1996). Polyhedron, 15, 2057–2065.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationŠimon, P., de Proft, F., Jambor, R., Růžička, A. & Dostál, L. (2010). Angew. Chem. Int. Ed. 49, 5468–5471.  Google Scholar
First citationTokitoh, N. & Okazaki, R. (2001). Adv. Organomet. Chem. 47, 121–166.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds