organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-N′-Hy­dr­oxy-N,N-di­methyl-2-(3-nitro­phen­yl)­acetimidamide

CROSSMARK_Color_square_no_text.svg

aNational Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, People's Republic of China, and bAnhui Engineering Technology Research Center for Extraction and Isolation of Active Components, Anhui Academy of Science and Technology, Hefei 230031, People's Republic of China
*Correspondence e-mail: zh1986@iccas.ac.cn

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 March 2019; accepted 1 May 2019; online 14 May 2019)

In the crystal of the title compound, C10H13N2O3, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(6) loops. The dimers are linked by weak C—H⋯O and C—H⋯π inter­actions, resulting in a three-dimensional network. A short NO2⋯NO2 contact [3.107 (2) Å] is also seen.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Amidoxime, also referred to as N-hy­droxy amidine, is a well-known amphoteric functional group that has been frequently grafted onto various surfaces for the recovery and removal of UVI from aqueous media (e.g. sea water) owing to its high sorption capacity and fast sorption rate for uranium and its own low environmental effects (Saeed et al., 2008[Saeed, K., Haider, S., Oh, T.-J. & Park, S.-Y. (2008). J. Membr. Sci. 322, 400-405.]; Yuan et al., 2016[Yuan, D., Chen, L., Xiong, X., Yuan, L., Liao, S. & Wang, Y. (2016). Chem. Eng. J. 285, 358-367.]; Zhao et al., 2014[Zhao, Y., Li, J., Zhao, L., Zhang, S., Huang, Y., Wu, X. & Wang, X. (2014). Chem. Eng. J. 235, 275-283.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

The title compound crystallizes in the triclinic P[\overline{1}] space group with one mol­ecule in the asymmetric unit (Fig. 1[link]). The bond lengths and angles are comparable to its known analogues (e.g. Röhrig et al., 2017[Röhrig, U., Zoete, V. & Michielin, O. (2017). Biochemistry, 56, 4323-4325.]) and the C8—N2—O3—H3 grouping has an anti conformation (torsion angle = −169°).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

In the crystal, the mol­ecules are linked into a three-dimensional network by a combination of N—H⋯O, C—H⋯O and C—H⋯π (Table 1[link], Fig. 2[link]) inter­actions. Inversion dimers linked by pairwise N—H⋯O bonds generate a classic R22(6) loop and the weak inter­actions link the dimers into a three-dimensional network. A short NO2⋯NO2 contact [O2⋯O2(−x, 2 − y, −z) = 3.017 (2) Å] is also observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2i 0.82 2.11 2.8292 (19) 146
C10—H10C⋯O2ii 0.96 2.51 3.288 (3) 139
C10—H10BCg1 0.96 2.85 3.718 (3) 151
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y-1, z+1.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the c-axis direction. Hydrogen bonds are drawn as dashed lines.

Synthesis and crystallization

To a solution of 1-(2,2-di­fluoro­vin­yl)-3-nitro­benzene (1 mmol) in N,N-di­methyl­formamide (DMF, 10 ml) were added hydroxyl­amine hydro­chloride (350 mg, 5 mmol), tri­ethyl­amine (505 mg, 5 mmol) and powdery 4 Å mol­ecular sieve (Gao et al., 2018[Gao, F.-T., Fang, Z., Su, R.-R., Rui, P.-X. & Hu, X.-G. (2018). Org. Biomol. Chem. 16, 9211-9217.]). After stirring at room temperature for six h, di­methyl­amine (1 mmol, 40wt% water solution) was added and the resulting reaction mixture was stirred overnight. The reaction mixture was then added to cold water (50 ml) and the crude product was precipitated out. The crude product was purified by flash column chromatography [silica gel (#100–200), PE:EA = 10:1 to 5:1] to afford the title compound (27 mg, 12%) and colourless blocks were obtained by the slow evaporation of a petroleum ether/ethyl­acetate (v:v = 10:1) solution.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H13N3O3
Mr 223.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.7740 (6), 8.4772 (5), 9.6599 (7)
α, β, γ (°) 66.595 (6), 77.917 (6), 76.113 (6)
V3) 562.49 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.25 × 0.22 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.976, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 6503, 2097, 1722
Rint 0.034
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.157, 1.08
No. of reflections 2097
No. of parameters 148
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-N'-Hydroxy-N,N-dimethyl-2-(3-nitrophenyl)acetimidamide top
Crystal data top
C10H13N3O3Z = 2
Mr = 223.23F(000) = 236
Triclinic, P1Dx = 1.318 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7740 (6) ÅCell parameters from 2839 reflections
b = 8.4772 (5) Åθ = 4.1–28.1°
c = 9.6599 (7) ŵ = 0.10 mm1
α = 66.595 (6)°T = 293 K
β = 77.917 (6)°Block, colourless
γ = 76.113 (6)°0.25 × 0.22 × 0.12 mm
V = 562.49 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2097 independent reflections
Radiation source: fine-focus sealed tube1722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 99
Tmin = 0.976, Tmax = 0.988k = 1010
6503 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.085P)2 + 0.0695P]
where P = (Fo2 + 2Fc2)/3
2097 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2028 (2)1.0701 (2)0.00206 (19)0.0528 (5)
O20.1524 (2)1.07407 (18)0.11426 (17)0.0637 (5)
O10.1824 (3)1.1983 (2)0.0307 (2)0.0957 (7)
C20.2750 (2)0.7507 (2)0.08584 (18)0.0391 (4)
H20.21070.75510.01290.047*
C30.3558 (2)0.5920 (2)0.18285 (18)0.0382 (4)
C10.2920 (2)0.9027 (2)0.09979 (19)0.0407 (4)
C40.4542 (3)0.5915 (3)0.2875 (2)0.0483 (5)
H40.51030.48560.35190.058*
C60.3873 (3)0.9029 (3)0.2038 (2)0.0504 (5)
H60.39581.00690.21090.060*
C50.4703 (3)0.7449 (3)0.2977 (2)0.0557 (5)
H50.53740.74170.36830.067*
C80.2728 (2)0.2961 (2)0.32899 (19)0.0404 (4)
C70.3362 (3)0.4217 (2)0.17492 (19)0.0473 (5)
H7A0.25160.44600.10510.057*
H7B0.45050.36810.13570.057*
N20.3767 (2)0.16518 (18)0.41274 (17)0.0453 (4)
O30.55854 (18)0.15786 (19)0.34362 (18)0.0665 (5)
H30.61760.06400.39000.100*
N30.0994 (2)0.3282 (2)0.38795 (19)0.0583 (5)
C100.0425 (4)0.2126 (4)0.5410 (3)0.0842 (8)
H10A0.03440.10250.53870.126*
H10B0.07220.26450.57820.126*
H10C0.12800.19470.60700.126*
C90.0412 (3)0.4295 (4)0.2971 (3)0.0848 (8)
H9A0.00170.52600.21410.127*
H9B0.14000.47260.35840.127*
H9C0.07960.35760.25790.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0528 (10)0.0383 (9)0.0583 (10)0.0045 (7)0.0095 (8)0.0092 (8)
O20.0677 (10)0.0513 (9)0.0571 (9)0.0024 (7)0.0219 (7)0.0022 (7)
O10.1332 (18)0.0386 (9)0.1205 (15)0.0089 (9)0.0488 (13)0.0320 (9)
C20.0387 (10)0.0398 (10)0.0346 (8)0.0017 (7)0.0061 (7)0.0116 (7)
C30.0347 (9)0.0367 (9)0.0356 (8)0.0014 (7)0.0007 (7)0.0102 (7)
C10.0390 (10)0.0351 (9)0.0401 (9)0.0046 (7)0.0014 (7)0.0084 (7)
C40.0432 (10)0.0466 (11)0.0431 (10)0.0056 (8)0.0117 (8)0.0022 (8)
C60.0540 (12)0.0489 (11)0.0503 (11)0.0186 (9)0.0032 (9)0.0166 (9)
C50.0571 (13)0.0636 (13)0.0488 (11)0.0222 (10)0.0172 (9)0.0111 (9)
C80.0478 (11)0.0308 (9)0.0410 (9)0.0010 (7)0.0087 (8)0.0144 (7)
C70.0591 (12)0.0357 (10)0.0402 (9)0.0032 (8)0.0065 (8)0.0131 (8)
N20.0419 (9)0.0355 (8)0.0483 (9)0.0013 (6)0.0071 (7)0.0085 (6)
O30.0435 (8)0.0507 (9)0.0762 (10)0.0071 (6)0.0023 (7)0.0045 (7)
N30.0421 (10)0.0573 (10)0.0576 (10)0.0055 (8)0.0053 (7)0.0110 (8)
C100.0610 (15)0.0939 (19)0.0661 (14)0.0061 (13)0.0136 (12)0.0117 (13)
C90.0521 (14)0.0740 (16)0.108 (2)0.0076 (12)0.0260 (14)0.0152 (14)
Geometric parameters (Å, º) top
N1—O21.213 (2)C8—N31.357 (2)
N1—O11.214 (2)C8—C71.509 (2)
N1—C11.472 (2)C7—H7A0.9700
C2—C31.386 (2)C7—H7B0.9700
C2—C11.387 (2)N2—O31.429 (2)
C2—H20.9300O3—H30.8200
C3—C41.387 (3)N3—C91.434 (3)
C3—C71.521 (2)N3—C101.458 (3)
C1—C61.368 (3)C10—H10A0.9600
C4—C51.379 (3)C10—H10B0.9600
C4—H40.9300C10—H10C0.9600
C6—C51.378 (3)C9—H9A0.9600
C6—H60.9300C9—H9B0.9600
C5—H50.9300C9—H9C0.9600
C8—N21.292 (2)
O2—N1—O1122.95 (17)C8—C7—C3111.66 (14)
O2—N1—C1118.80 (15)C8—C7—H7A109.3
O1—N1—C1118.24 (18)C3—C7—H7A109.3
C3—C2—C1118.62 (16)C8—C7—H7B109.3
C3—C2—H2120.7C3—C7—H7B109.3
C1—C2—H2120.7H7A—C7—H7B107.9
C4—C3—C2118.85 (16)C8—N2—O3111.70 (14)
C4—C3—C7120.66 (15)N2—O3—H3109.5
C2—C3—C7120.50 (16)C8—N3—C9123.55 (18)
C6—C1—C2122.78 (17)C8—N3—C10117.97 (17)
C6—C1—N1119.16 (16)C9—N3—C10115.5 (2)
C2—C1—N1118.06 (16)N3—C10—H10A109.5
C5—C4—C3121.24 (17)N3—C10—H10B109.5
C5—C4—H4119.4H10A—C10—H10B109.5
C3—C4—H4119.4N3—C10—H10C109.5
C1—C6—C5118.26 (18)H10A—C10—H10C109.5
C1—C6—H6120.9H10B—C10—H10C109.5
C5—C6—H6120.9N3—C9—H9A109.5
C6—C5—C4120.23 (18)N3—C9—H9B109.5
C6—C5—H5119.9H9A—C9—H9B109.5
C4—C5—H5119.9N3—C9—H9C109.5
N2—C8—N3117.67 (16)H9A—C9—H9C109.5
N2—C8—C7123.72 (16)H9B—C9—H9C109.5
N3—C8—C7118.47 (15)
C1—C2—C3—C41.6 (2)C1—C6—C5—C41.0 (3)
C1—C2—C3—C7178.20 (15)C3—C4—C5—C60.4 (3)
C3—C2—C1—C60.9 (3)N2—C8—C7—C3101.67 (19)
C3—C2—C1—N1178.90 (14)N3—C8—C7—C373.9 (2)
O2—N1—C1—C6164.10 (17)C4—C3—C7—C851.8 (2)
O1—N1—C1—C616.2 (3)C2—C3—C7—C8128.00 (17)
O2—N1—C1—C216.1 (3)N3—C8—N2—O3173.71 (15)
O1—N1—C1—C2163.65 (19)C7—C8—N2—O31.9 (2)
C2—C3—C4—C51.0 (3)N2—C8—N3—C9159.9 (2)
C7—C3—C4—C5178.82 (17)C7—C8—N3—C924.3 (3)
C2—C1—C6—C50.4 (3)N2—C8—N3—C100.2 (3)
N1—C1—C6—C5179.78 (16)C7—C8—N3—C10176.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···N2i0.822.112.8292 (19)146
C10—H10C···O2ii0.962.513.288 (3)139
C10—H10B···Cg10.962.853.718 (3)151
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z+1.
 

Funding information

Funding for this research was provided by: Natural Science Foundation of China (No. 21502076), Natural Science Foundation of Jiangxi Province (No. 20161BAB213068), Hundred–Talent Program (Hefei) and Outstanding Young Talent Program of Jiangxi Province (No. 20171BCB23039). .

References

First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, F.-T., Fang, Z., Su, R.-R., Rui, P.-X. & Hu, X.-G. (2018). Org. Biomol. Chem. 16, 9211–9217.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRöhrig, U., Zoete, V. & Michielin, O. (2017). Biochemistry, 56, 4323–4325.  Web of Science PubMed Google Scholar
First citationSaeed, K., Haider, S., Oh, T.-J. & Park, S.-Y. (2008). J. Membr. Sci. 322, 400–405.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, D., Chen, L., Xiong, X., Yuan, L., Liao, S. & Wang, Y. (2016). Chem. Eng. J. 285, 358–367.  Web of Science CrossRef CAS Google Scholar
First citationZhao, Y., Li, J., Zhao, L., Zhang, S., Huang, Y., Wu, X. & Wang, X. (2014). Chem. Eng. J. 235, 275–283.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds