organic compounds
Ethylammonium hydrogen oxalate–oxalic acid (2/1)
aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 DIJON, France
*Correspondence e-mail: dlibasse@gmail.com
The reaction between ethylamine and oxalic acid in water in a 1:1 molar ratio afforded the title salt, C2H8N+·C2HO4−·0.5C2H2O4. The hydrogen oxalate anions interact through hydrogen bonding and are organized into a chains propagating along the c-axis direction. The chains are connected to the neighbouring cations and oxalic acid molecules by N—H⋯O and O—H⋯O hydrogen bonds and N⋯O dipole–dipole contacts, leading to a supramolecular three-dimensional network.
Keywords: crystal structure; ammonium carboxylate salt; hydrogen bonding; hydrogen oxalate; oxalic acid.
CCDC reference: 1914197
Structure description
Ammonium carboxylate networks obtained by mixing dicarboxylic acids with et al. 2002; Haynes & Pietersen, 2008; Dziuk et al. 2014a). These compounds exhibit a variety of structures that can lead, through non-covalent interactions (hydrogen bonding, π–π stacking, van der Waals and C—H⋯π contacts), to a large diversity of architectures and topologies. Dicarboxylic acids can act as polydirectional synthons, and via the formation of ammonium, greatly increase the possible of linkages and interactions (Ivasenko & Perepichka, 2011; Yuge et al., 2008; Lemmerer, 2011). To date, many examples of such crystalline networks from oxalic acid and hydrogen oxalate have been described, see for example: Dziuk et al. (2014b,c); Braga et al. (2013); Ejsmont (2006, 2007); Ejsmont & Zaleski (2006a,b); MacDonald et al. (2001). Our group has also contributed to this area by reporting recently two new structures of such compounds (Diallo et al., 2015; Diop et al., 2016). In a continuation of this work, we describe herein the synthesis and structure of the title salt I, isolated from an equimolar mixture of oxalic acid and ethylamine.
is of interest in the field of crystal engineering (BallabhCompound I crystallizes in the monoclinic C2/c with the comprising of one ethylammonium cation (C2H8N+), one hydrogen oxalate anion (C2HO4−) and a half-molecule of oxalic acid (C2H2O4). The three components are linked together by several intermolecular interactions (Table 1 and Fig. 1). The interatomic distances and angles of the ethylammonium cation are in the range of those previously measured for comparable salts (Ejsmont & Zaleski, 2006a; Ejsmont, 2006). Each C2H8N+ cation is involved in N—H⋯O hydrogen bonding with two distinct C2HO4− anions [N—HA⋯O4 = 2.8472 (11) and N—HB⋯O1 = 2.9409 (11) Å] and also with one neutral C2H2O4 molecule [N—HC⋯O6 = 3.0400 (10) Å]. These interactions are reinforced by van der Waals contacts involving C2H8N+, and C2HO4− and C2H2O4, respectively [N⋯O3 = 2.8960 (11) and N⋯O5 = 2.9423 (11) Å]. The hydrogen oxalate anion is twisted with an O3—C2—C1—O2 torsion angle of 168.94 (8)°. The C—C and C—O bond distances [C1—C2 = 1.5570 (13), C1—O1 = 1.2141 (12), C1—O2 = 1.3090 (11), C2—O3 = 1.2415 (11), C2—O4 = 1.2565 (12) Å] are similar to those observed in the literature for other organic salts containing this anion (Barnes, 2003; Essid et al., 2013).
The hydrogen oxalate anions in I are linked into chains running parallel to the c axis by O2—H2⋯O3 hydrogen bonds [2.5717 (9) Å]. Adjacent chains are bridged by neutral oxalic acid molecules whose two OH groups participate in hydrogen-bonding interactions with two distinct hydrogen oxalate anions [O5—H5⋯O4 = 2.5139 (10) Å], resulting in the formation of sheets. These sheets are stacked along the b axis with the ethylammonium cations intercalated between the sheets, generating a three-dimensional network (Fig. 2).
A search on the online portal of the Cambridge Structural Database (WebCSD; Thomas et al., 2010) yielded 188 hits for ethylammonium salts and 25 hits for the hydrogen oxalate–oxalic acid combination.
Synthesis and crystallization
All the chemicals were purchased from Aldrich (Germany) and used without further purification. The title compound was obtained by reacting equimolar amounts of oxalic acid (1.26 g, 0.02 mol) and ethylamine (50% in water, 2.6 ml, 0.02 mol), in 25 ml of water at 298 K. The resulting solution was allowed to evaporate at 338 K, leading after few days to colourless prismatic suitable for X-ray analysis.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1914197
https://doi.org/10.1107/S2414314619006357/bv4024sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619006357/bv4024Isup2.hkl
Data collection: APEX3 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C2H8N+·C2HO4−·0.5C2H2O4 | F(000) = 760 |
Mr = 360.28 | Dx = 1.508 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 21.1667 (8) Å | Cell parameters from 7758 reflections |
b = 6.6243 (3) Å | θ = 3.2–27.5° |
c = 11.3247 (4) Å | µ = 0.14 mm−1 |
β = 91.509 (2)° | T = 100 K |
V = 1587.34 (11) Å3 | Prism, colourless |
Z = 4 | 0.47 × 0.3 × 0.17 mm |
Bruker D8 Venture triumph Mo diffractometer | 1829 independent reflections |
Radiation source: X-ray tube, Siemens KFF Mo 2K-90C | 1624 reflections with I > 2σ(I) |
TRIUMPH curved crystal monochromator | Rint = 0.027 |
Detector resolution: 1024 x 1024 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
φ and ω scans' | h = −27→27 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −8→8 |
Tmin = 0.712, Tmax = 0.746 | l = −14→13 |
14201 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0383P)2 + 1.1891P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
1829 reflections | Δρmax = 0.50 e Å−3 |
113 parameters | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99 Å (ethyl group) with Uiso(H) = 1.2Ueq(C) or O—H = 0.84 Å (hydroxyl), N—H = 0.91 Å (ammonium) and C—H = 0.98 Å (methyl group) with Uiso(H) = 1.5Ueq(O or N or C). |
x | y | z | Uiso*/Ueq | ||
C1 | 0.75227 (4) | −0.01386 (14) | 0.48767 (8) | 0.01041 (19) | |
O1 | 0.80530 (3) | −0.07888 (11) | 0.50554 (6) | 0.01374 (16) | |
C2 | 0.72301 (4) | −0.00320 (14) | 0.36024 (8) | 0.01042 (19) | |
O2 | 0.71415 (3) | 0.05216 (11) | 0.56824 (6) | 0.01410 (17) | |
H2 | 0.731311 | 0.037617 | 0.635430 | 0.021* | |
O3 | 0.76073 (3) | −0.03334 (11) | 0.28000 (6) | 0.01506 (17) | |
O4 | 0.66506 (3) | 0.03493 (11) | 0.34790 (6) | 0.01416 (17) | |
N | 0.61063 (4) | 0.32342 (12) | 0.18905 (7) | 0.01222 (18) | |
HA | 0.626827 | 0.230748 | 0.240865 | 0.018* | |
HB | 0.639850 | 0.352637 | 0.134066 | 0.018* | |
HC | 0.575304 | 0.272353 | 0.152545 | 0.018* | |
C4 | 0.59405 (5) | 0.51142 (15) | 0.25420 (9) | 0.0146 (2) | |
H4A | 0.630646 | 0.555335 | 0.304026 | 0.018* | |
H4B | 0.558307 | 0.484025 | 0.306532 | 0.018* | |
C5 | 0.57599 (5) | 0.67710 (16) | 0.16787 (10) | 0.0199 (2) | |
H5A | 0.612135 | 0.708562 | 0.118768 | 0.030* | |
H5B | 0.563719 | 0.798067 | 0.211491 | 0.030* | |
H5C | 0.540406 | 0.632035 | 0.117391 | 0.030* | |
C3 | 0.52681 (4) | 0.03067 (14) | 0.45853 (8) | 0.0111 (2) | |
O5 | 0.57859 (3) | −0.06835 (11) | 0.48337 (6) | 0.01553 (17) | |
H5 | 0.607761 | −0.025239 | 0.441275 | 0.023* | |
O6 | 0.51865 (3) | 0.15638 (11) | 0.38186 (6) | 0.01596 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0115 (4) | 0.0107 (4) | 0.0091 (4) | −0.0012 (3) | 0.0008 (3) | 0.0006 (3) |
O1 | 0.0110 (3) | 0.0190 (4) | 0.0111 (3) | 0.0022 (3) | −0.0007 (2) | 0.0001 (3) |
C2 | 0.0111 (4) | 0.0109 (4) | 0.0092 (4) | 0.0000 (3) | −0.0002 (3) | 0.0009 (3) |
O2 | 0.0135 (3) | 0.0212 (4) | 0.0076 (3) | 0.0033 (3) | 0.0003 (3) | −0.0010 (3) |
O3 | 0.0112 (3) | 0.0251 (4) | 0.0090 (3) | 0.0026 (3) | 0.0014 (2) | −0.0004 (3) |
O4 | 0.0094 (3) | 0.0218 (4) | 0.0113 (3) | 0.0026 (3) | 0.0007 (2) | 0.0037 (3) |
N | 0.0109 (4) | 0.0143 (4) | 0.0114 (4) | −0.0009 (3) | −0.0008 (3) | 0.0014 (3) |
C4 | 0.0131 (5) | 0.0162 (5) | 0.0145 (5) | 0.0005 (4) | 0.0012 (4) | −0.0009 (4) |
C5 | 0.0187 (5) | 0.0164 (5) | 0.0247 (5) | 0.0010 (4) | 0.0022 (4) | 0.0048 (4) |
C3 | 0.0102 (4) | 0.0130 (4) | 0.0100 (4) | −0.0011 (3) | 0.0003 (3) | −0.0016 (3) |
O5 | 0.0095 (3) | 0.0216 (4) | 0.0157 (4) | 0.0027 (3) | 0.0040 (3) | 0.0060 (3) |
O6 | 0.0126 (3) | 0.0202 (4) | 0.0152 (4) | 0.0001 (3) | 0.0012 (3) | 0.0064 (3) |
C1—O1 | 1.2141 (12) | C4—H4A | 0.9900 |
C1—C2 | 1.5570 (13) | C4—H4B | 0.9900 |
C1—O2 | 1.3090 (11) | C4—C5 | 1.5122 (14) |
C2—O3 | 1.2415 (11) | C5—H5A | 0.9800 |
C2—O4 | 1.2565 (12) | C5—H5B | 0.9800 |
O2—H2 | 0.8400 | C5—H5C | 0.9800 |
N—HA | 0.9100 | C3—C3i | 1.5467 (18) |
N—HB | 0.9100 | C3—O5 | 1.3016 (12) |
N—HC | 0.9100 | C3—O6 | 1.2121 (12) |
N—C4 | 1.4940 (12) | O5—H5 | 0.8400 |
O1—C1—C2 | 120.93 (8) | N—C4—C5 | 110.14 (8) |
O1—C1—O2 | 125.90 (9) | H4A—C4—H4B | 108.1 |
O2—C1—C2 | 113.17 (8) | C5—C4—H4A | 109.6 |
O3—C2—C1 | 115.04 (8) | C5—C4—H4B | 109.6 |
O3—C2—O4 | 126.56 (9) | C4—C5—H5A | 109.5 |
O4—C2—C1 | 118.40 (8) | C4—C5—H5B | 109.5 |
C1—O2—H2 | 109.5 | C4—C5—H5C | 109.5 |
HA—N—HB | 109.5 | H5A—C5—H5B | 109.5 |
HA—N—HC | 109.5 | H5A—C5—H5C | 109.5 |
HB—N—HC | 109.5 | H5B—C5—H5C | 109.5 |
C4—N—HA | 109.5 | O5—C3—C3i | 111.32 (10) |
C4—N—HB | 109.5 | O6—C3—C3i | 121.50 (11) |
C4—N—HC | 109.5 | O6—C3—O5 | 127.18 (9) |
N—C4—H4A | 109.6 | C3—O5—H5 | 109.5 |
N—C4—H4B | 109.6 | ||
O1—C1—C2—O3 | −11.28 (13) | O2—C1—C2—O3 | 168.94 (8) |
O1—C1—C2—O4 | 169.03 (9) | O2—C1—C2—O4 | −10.75 (12) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3ii | 0.84 | 1.74 | 2.5717 (9) | 173 |
N—HA···O4 | 0.91 | 1.94 | 2.8472 (11) | 177 |
N—HB···O1iii | 0.91 | 2.04 | 2.9409 (11) | 172 |
N—HC···O6iv | 0.91 | 2.16 | 3.0400 (10) | 163 |
O5—H5···O4 | 0.84 | 1.68 | 2.5139 (10) | 173 |
Symmetry codes: (ii) x, −y, z+1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+1, y, −z+1/2. |
Acknowledgements
The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Bourgogne Franche-Comté (Dijon, France) for support.
References
Ballabh, A., Trivedi, D. D., Dastidar, P. & Suresh, E. (2002). CrystEngComm, 4, 135–142. Web of Science CSD CrossRef CAS Google Scholar
Barnes, J. C. (2003). Acta Cryst. E59, o931–o933. Web of Science CSD CrossRef IUCr Journals Google Scholar
Braga, D., Chelazzi, L., Ciabatti, I. & Grepionoi, F. (2013). New J. Chem. 37, 97–104. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2014). APEX3, SADABS and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Diallo, W., Gueye, N., Crochet, A., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 473–475. Web of Science CSD CrossRef IUCr Journals Google Scholar
Diop, M. B., Diop, L., Plasseraud, L. & Cattey, H. (2016). Acta Cryst. E72, 1113–1115. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dziuk, B., Ejsmont, K. & Zaleski, J. (2014a). CHEMIK, 68, 391–395. CAS Google Scholar
Dziuk, B., Zarychta, B. & Ejsmont, K. (2014b). Acta Cryst. E70, o852. CSD CrossRef IUCr Journals Google Scholar
Dziuk, B., Zarychta, B. & Ejsmont, K. (2014c). Acta Cryst. E70, o917–o918. CSD CrossRef IUCr Journals Google Scholar
Ejsmont, K. (2006). Acta Cryst. E62, o5852–o5854. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ejsmont, K. (2007). Acta Cryst. E63, o107–o109. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ejsmont, K. & Zaleski, J. (2006a). Acta Cryst. E62, o3879–o3880. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ejsmont, K. & Zaleski, J. (2006b). Acta Cryst. E62, o2512–o2513. Web of Science CSD CrossRef IUCr Journals Google Scholar
Essid, M., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o1279. CSD CrossRef IUCr Journals Google Scholar
Haynes, D. A. & Pietersen, L. K. (2008). CrystEngComm, 10, 518–524. Web of Science CSD CrossRef CAS Google Scholar
Ivasenko, O. & Perepichka, D. F. (2011). Chem. Soc. Rev. 40, 191–206. Web of Science CrossRef CAS PubMed Google Scholar
Lemmerer, A. (2011). Cryst. Growth Des. 11, 583–593. Web of Science CSD CrossRef CAS Google Scholar
MacDonald, J. C., Dorrestein, P. C. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29–38. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362–366. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yuge, T., Sakai, T., Kai, N., Hisaki, I., Miyata, M. & Tohnai, N. (2008). Chem. Eur. J. 14, 2984–2993. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.