metal-organic compounds
Dichlorido{N,N,N′-trimethyl-N′-(1H-pyrazol-1-yl-κN2)methyl]ethane-1,2-diamine-κ2N,N′}copper(II) methanol monosolvate
aDepartment of Chemistry, M.S.J. Govt. (PG) College Bharatpur, Bharatpur, Rajasthan 321001, India, bCMP College Allahabad, a constitution college of Allahabad University, Allahabad, Uttar Pradesh 211002, India, cDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar 842001, India, dDepartment of Chemistry, Taras Shevchenko National University, Volodymyrska str., 64, 01601 Kyiv, Ukraine, and eOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Kurupelit, Samsun, Turkey
*Correspondence e-mail: tiskenderov@ukr.net
In the title compound, [CuCl2(C9H18N4)]·CH3OH, the central CuII ion is coordinated by three N atoms from the pyrazole derivative ligand and two chloride co-ligands. The coordination geometry around the CuII ion is distorted trigonal–bipyramidal. In the crystal, the molecules are linked by C—H⋯O, C—H⋯Cl and O—H⋯Cl hydrogen bonds, forming a three-dimensional framework with the lattice solvent molecule.
Keywords: crystal structure; pyrazole; copper; methanol solvate; ethylenediamine.
CCDC reference: 1915926
Structure description
Rigid ligands including pyrazole are some of the most desirable ligands to biologists and bioinorganic chemists for specific functions, such as catalysis and fluxional behaviour (Zhang et al., 2009; Arroyo et al., 2000), and also in electrochemistry (Morin et al., 2011). Recently, there has been considerable interest in the use of multifunctional ligands containing substituted pyrazole groups because of their potential applications in catalysis, and their ability to form complexes that mimic structural and catalytic functions in metalloproteins (García-Antón et al., 2003; Mukherjee, 2000; Pal et al., 2005; Shaw et al., 2004). In particular, the research field dealing with copper complexes embraces a wide range of topics, such as metastasis development (Turski et al., 2009; Finney et al., 2009), anticancer activity, and other aspects of bioinorganic chemistry.
As part of our continuing interest in coordination chemistry (Kumar et al., 2018, 2019; Faizi et al., 2014, 2018), we report herein the synthesis and structure of the title complex, [Cu(C9H18N4)Cl2]·CH4O. In this mononuclear copper(II) compound (Fig. 1), the CuCl2 group is bonded to a tridentate ligand, N,N,N′-trimethyl-N′-pyrazol-1-ylmethyl-ethane-1,2-diamine (TPED), and the is completed by a methanol solvate molecule. The central CuII ion is coordinated by the tridentate N-chelating TPED ligand and two Cl− ions in a distorted trigonal–bipyramidal geometry, with the chloride ligands and the central ethylenediamine N atom (N3) occupying the equatorial positions [Cu—Cl = 2.4630 (15) and 2.2914 (15) Å; Cu—N = 2.125 (4) Å], while the coordinating pyrazole N atom and the terminal ethylenediamine N atom (N4) are placed in axial positions [Cu—N = 1.991 (4) and 2.043 (4) Å]. In the crystal, the molecules are linked by weak O—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds, forming a three dimensional network (Table 1; Figs. 2 and 3).
Synthesis and crystallization
[CuII(TPED)Cl2]·CH3OH: To a solution of TPED (0.050 g, 0.27 mmol) in 5 ml of methanol, solid CuCl2·2H2O (0.046 g, 0.27 mmol) was added portionwise. The colour of the solution changed from light yellow to blue. The solution was stirred for 1 h at 298 K. The blue solid that formed was filtered and washed with a methanol/diethyl ether mixture (1:3 v/v). The resulting blue solid was recrystallized by diffusion of diethyl ether into a solution of the complex in methanol, and the crystals were dried in vacuo. Yield: 0.072 g, 70%. C10H22Cl2CuN4O: calculated C 34.44, H 6.36, N 16.06; found C 34.94, H 6.86, N 16.78. UV–Vis [λmax, nm (∊, M−1cm−1 in methanol)]: 680 (310), 290 (8900), 235 (16 800).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1915926
https://doi.org/10.1107/S2414314619006928/bh4046sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619006928/bh4046Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[CuCl2(C9H18N4)]·CH4O | Z = 2 |
Mr = 348.75 | F(000) = 362 |
Triclinic, P1 | Dx = 1.526 Mg m−3 |
a = 7.240 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.260 (5) Å | Cell parameters from 2494 reflections |
c = 11.649 (5) Å | θ = 2.7–24.6° |
α = 87.438 (5)° | µ = 1.79 mm−1 |
β = 78.987 (5)° | T = 296 K |
γ = 81.887 (5)° | Prism, blue |
V = 758.8 (7) Å3 | 0.18 × 0.14 × 0.10 mm |
Bruker SMART APEX CCD area detector diffractometer | 2599 independent reflections |
Radiation source: fine-focus sealed tube | 2169 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
phi and ω scans | θmax = 25.1°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −8→7 |
Tmin = 0.281, Tmax = 0.397 | k = −8→11 |
3864 measured reflections | l = −13→13 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.158 | w = 1/[σ2(Fo2) + (0.1044P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2599 reflections | Δρmax = 1.53 e Å−3 |
168 parameters | Δρmin = −0.61 e Å−3 |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.45726 (7) | 0.39934 (6) | 0.79843 (4) | 0.0189 (2) | |
Cl1 | 0.21622 (15) | 0.35638 (12) | 0.94918 (10) | 0.0218 (3) | |
Cl2 | 0.34205 (16) | 0.33139 (13) | 0.62524 (10) | 0.0254 (3) | |
O1 | 0.3144 (6) | 0.0068 (4) | 0.6629 (4) | 0.0446 (10) | |
N1 | 0.6201 (5) | 0.2174 (4) | 0.8341 (3) | 0.0221 (9) | |
N2 | 0.8060 (5) | 0.2307 (4) | 0.8190 (3) | 0.0224 (9) | |
N3 | 0.7305 (5) | 0.4460 (4) | 0.7149 (3) | 0.0198 (8) | |
N4 | 0.3760 (5) | 0.6189 (4) | 0.7857 (3) | 0.0196 (8) | |
C1 | 0.6077 (7) | 0.0801 (5) | 0.8671 (4) | 0.0269 (11) | |
H1 | 0.494998 | 0.039437 | 0.883402 | 0.032* | |
C2 | 0.7861 (7) | 0.0041 (6) | 0.8744 (5) | 0.0309 (12) | |
H2 | 0.815459 | −0.093094 | 0.896052 | 0.037* | |
C3 | 0.9082 (7) | 0.1060 (5) | 0.8423 (5) | 0.0298 (12) | |
H3 | 1.039138 | 0.090345 | 0.837685 | 0.036* | |
C4 | 0.8589 (6) | 0.3763 (5) | 0.7913 (4) | 0.0228 (10) | |
H4A | 0.990186 | 0.370218 | 0.751313 | 0.027* | |
H4B | 0.843582 | 0.431497 | 0.862068 | 0.027* | |
C5 | 0.7883 (7) | 0.3862 (5) | 0.5963 (4) | 0.0248 (11) | |
H5A | 0.703672 | 0.432445 | 0.547367 | 0.037* | |
H5B | 0.915497 | 0.404192 | 0.564350 | 0.037* | |
H5C | 0.783268 | 0.283036 | 0.600084 | 0.037* | |
C6 | 0.7179 (7) | 0.6079 (5) | 0.7113 (4) | 0.0252 (11) | |
H6A | 0.813789 | 0.638607 | 0.648547 | 0.030* | |
H6B | 0.739459 | 0.642035 | 0.784564 | 0.030* | |
C7 | 0.5209 (6) | 0.6717 (5) | 0.6914 (4) | 0.0203 (10) | |
H7A | 0.507902 | 0.777404 | 0.691491 | 0.024* | |
H7B | 0.502552 | 0.642083 | 0.615938 | 0.024* | |
C8 | 0.3699 (7) | 0.6894 (5) | 0.8977 (4) | 0.0240 (11) | |
H8A | 0.275110 | 0.653142 | 0.956793 | 0.036* | |
H8B | 0.491658 | 0.667867 | 0.920385 | 0.036* | |
H8C | 0.338952 | 0.793064 | 0.888771 | 0.036* | |
C9 | 0.1845 (6) | 0.6579 (5) | 0.7540 (4) | 0.0238 (11) | |
H9A | 0.183045 | 0.613796 | 0.681219 | 0.036* | |
H9B | 0.090260 | 0.623030 | 0.814238 | 0.036* | |
H9C | 0.157198 | 0.762008 | 0.746184 | 0.036* | |
C10 | 0.2343 (11) | −0.0099 (7) | 0.5611 (6) | 0.0552 (18) | |
H10A | 0.099346 | 0.018269 | 0.579087 | 0.083* | |
H10B | 0.261222 | −0.109953 | 0.537796 | 0.083* | |
H10C | 0.288970 | 0.050910 | 0.498446 | 0.083* | |
H1O | 0.340 (12) | 0.100 (4) | 0.660 (8) | 0.09 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0138 (4) | 0.0291 (4) | 0.0137 (4) | −0.0029 (2) | −0.0019 (2) | −0.0033 (2) |
Cl1 | 0.0148 (6) | 0.0331 (7) | 0.0169 (6) | −0.0028 (5) | −0.0014 (4) | −0.0012 (5) |
Cl2 | 0.0205 (6) | 0.0397 (7) | 0.0172 (6) | −0.0054 (5) | −0.0045 (5) | −0.0061 (5) |
O1 | 0.051 (3) | 0.035 (2) | 0.048 (3) | −0.004 (2) | −0.011 (2) | 0.002 (2) |
N1 | 0.015 (2) | 0.034 (2) | 0.017 (2) | −0.0042 (17) | −0.0016 (16) | −0.0066 (17) |
N2 | 0.016 (2) | 0.032 (2) | 0.018 (2) | 0.0005 (17) | −0.0003 (16) | −0.0051 (17) |
N3 | 0.0137 (19) | 0.027 (2) | 0.018 (2) | −0.0030 (16) | −0.0018 (16) | 0.0003 (16) |
N4 | 0.014 (2) | 0.029 (2) | 0.016 (2) | −0.0010 (16) | −0.0043 (16) | −0.0031 (16) |
C1 | 0.026 (3) | 0.024 (3) | 0.029 (3) | −0.005 (2) | 0.000 (2) | −0.001 (2) |
C2 | 0.029 (3) | 0.029 (3) | 0.032 (3) | 0.001 (2) | −0.001 (2) | 0.000 (2) |
C3 | 0.021 (3) | 0.034 (3) | 0.031 (3) | 0.009 (2) | −0.004 (2) | −0.005 (2) |
C4 | 0.016 (2) | 0.033 (3) | 0.021 (3) | −0.003 (2) | −0.005 (2) | 0.000 (2) |
C5 | 0.022 (3) | 0.037 (3) | 0.015 (2) | −0.005 (2) | −0.002 (2) | −0.003 (2) |
C6 | 0.017 (3) | 0.032 (3) | 0.026 (3) | −0.006 (2) | −0.004 (2) | 0.002 (2) |
C7 | 0.020 (2) | 0.025 (3) | 0.017 (2) | −0.0057 (19) | −0.0028 (19) | 0.0032 (19) |
C8 | 0.025 (3) | 0.034 (3) | 0.014 (2) | −0.005 (2) | −0.003 (2) | −0.007 (2) |
C9 | 0.011 (2) | 0.035 (3) | 0.024 (3) | −0.001 (2) | −0.001 (2) | −0.002 (2) |
C10 | 0.066 (5) | 0.054 (4) | 0.050 (4) | −0.015 (4) | −0.014 (4) | −0.002 (3) |
Cu1—N1 | 1.991 (4) | C3—H3 | 0.9300 |
Cu1—N4 | 2.043 (4) | C4—H4A | 0.9700 |
Cu1—N3 | 2.125 (4) | C4—H4B | 0.9700 |
Cu1—Cl1 | 2.2914 (15) | C5—H5A | 0.9600 |
Cu1—Cl2 | 2.4630 (15) | C5—H5B | 0.9600 |
O1—C10 | 1.439 (7) | C5—H5C | 0.9600 |
O1—H1O | 0.91 (2) | C6—C7 | 1.522 (6) |
N1—C1 | 1.322 (6) | C6—H6A | 0.9700 |
N1—N2 | 1.346 (5) | C6—H6B | 0.9700 |
N2—C3 | 1.327 (6) | C7—H7A | 0.9700 |
N2—C4 | 1.459 (6) | C7—H7B | 0.9700 |
N3—C4 | 1.473 (6) | C8—H8A | 0.9600 |
N3—C5 | 1.473 (6) | C8—H8B | 0.9600 |
N3—C6 | 1.488 (6) | C8—H8C | 0.9600 |
N4—C8 | 1.475 (6) | C9—H9A | 0.9600 |
N4—C7 | 1.484 (6) | C9—H9B | 0.9600 |
N4—C9 | 1.493 (6) | C9—H9C | 0.9600 |
C1—C2 | 1.396 (7) | C10—H10A | 0.9600 |
C1—H1 | 0.9300 | C10—H10B | 0.9600 |
C2—C3 | 1.375 (7) | C10—H10C | 0.9600 |
C2—H2 | 0.9300 | ||
N1—Cu1—N4 | 156.67 (16) | N3—C4—H4A | 110.6 |
N1—Cu1—N3 | 78.82 (16) | N2—C4—H4B | 110.6 |
N4—Cu1—N3 | 85.33 (15) | N3—C4—H4B | 110.6 |
N1—Cu1—Cl1 | 92.42 (12) | H4A—C4—H4B | 108.7 |
N4—Cu1—Cl1 | 96.09 (11) | N3—C5—H5A | 109.5 |
N3—Cu1—Cl1 | 157.90 (11) | N3—C5—H5B | 109.5 |
N1—Cu1—Cl2 | 102.33 (12) | H5A—C5—H5B | 109.5 |
N4—Cu1—Cl2 | 96.90 (11) | N3—C5—H5C | 109.5 |
N3—Cu1—Cl2 | 98.84 (11) | H5A—C5—H5C | 109.5 |
Cl1—Cu1—Cl2 | 102.86 (6) | H5B—C5—H5C | 109.5 |
C10—O1—H1O | 106 (5) | N3—C6—C7 | 108.4 (4) |
C1—N1—N2 | 105.4 (4) | N3—C6—H6A | 110.0 |
C1—N1—Cu1 | 140.6 (3) | C7—C6—H6A | 110.0 |
N2—N1—Cu1 | 114.0 (3) | N3—C6—H6B | 110.0 |
C3—N2—N1 | 111.5 (4) | C7—C6—H6B | 110.0 |
C3—N2—C4 | 131.2 (4) | H6A—C6—H6B | 108.4 |
N1—N2—C4 | 117.1 (4) | N4—C7—C6 | 109.2 (4) |
C4—N3—C5 | 110.2 (4) | N4—C7—H7A | 109.8 |
C4—N3—C6 | 112.7 (4) | C6—C7—H7A | 109.8 |
C5—N3—C6 | 111.0 (4) | N4—C7—H7B | 109.8 |
C4—N3—Cu1 | 104.4 (3) | C6—C7—H7B | 109.8 |
C5—N3—Cu1 | 112.5 (3) | H7A—C7—H7B | 108.3 |
C6—N3—Cu1 | 105.7 (3) | N4—C8—H8A | 109.5 |
C8—N4—C7 | 111.4 (4) | N4—C8—H8B | 109.5 |
C8—N4—C9 | 107.1 (4) | H8A—C8—H8B | 109.5 |
C7—N4—C9 | 109.0 (3) | N4—C8—H8C | 109.5 |
C8—N4—Cu1 | 110.6 (3) | H8A—C8—H8C | 109.5 |
C7—N4—Cu1 | 105.1 (3) | H8B—C8—H8C | 109.5 |
C9—N4—Cu1 | 113.6 (3) | N4—C9—H9A | 109.5 |
N1—C1—C2 | 111.1 (5) | N4—C9—H9B | 109.5 |
N1—C1—H1 | 124.4 | H9A—C9—H9B | 109.5 |
C2—C1—H1 | 124.4 | N4—C9—H9C | 109.5 |
C3—C2—C1 | 104.1 (5) | H9A—C9—H9C | 109.5 |
C3—C2—H2 | 127.9 | H9B—C9—H9C | 109.5 |
C1—C2—H2 | 127.9 | O1—C10—H10A | 109.5 |
N2—C3—C2 | 107.8 (5) | O1—C10—H10B | 109.5 |
N2—C3—H3 | 126.1 | H10A—C10—H10B | 109.5 |
C2—C3—H3 | 126.1 | O1—C10—H10C | 109.5 |
N2—C4—N3 | 105.9 (4) | H10A—C10—H10C | 109.5 |
N2—C4—H4A | 110.6 | H10B—C10—H10C | 109.5 |
C1—N1—N2—C3 | −0.3 (5) | N1—N2—C4—N3 | −36.6 (5) |
Cu1—N1—N2—C3 | −179.1 (3) | C5—N3—C4—N2 | −75.1 (4) |
C1—N1—N2—C4 | −175.1 (4) | C6—N3—C4—N2 | 160.2 (4) |
Cu1—N1—N2—C4 | 6.1 (5) | Cu1—N3—C4—N2 | 45.9 (4) |
N2—N1—C1—C2 | 0.5 (5) | C4—N3—C6—C7 | −149.4 (4) |
Cu1—N1—C1—C2 | 178.8 (4) | C5—N3—C6—C7 | 86.4 (5) |
N1—C1—C2—C3 | −0.4 (6) | Cu1—N3—C6—C7 | −35.9 (4) |
N1—N2—C3—C2 | 0.0 (6) | C8—N4—C7—C6 | 72.7 (5) |
C4—N2—C3—C2 | 173.9 (5) | C9—N4—C7—C6 | −169.3 (4) |
C1—C2—C3—N2 | 0.2 (6) | Cu1—N4—C7—C6 | −47.2 (4) |
C3—N2—C4—N3 | 149.9 (5) | N3—C6—C7—N4 | 57.5 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cl1i | 0.93 | 2.98 | 3.841 (6) | 156 |
C3—H3···O1ii | 0.93 | 2.62 | 3.305 (7) | 131 |
C4—H4A···Cl2ii | 0.97 | 2.67 | 3.636 (5) | 173 |
C4—H4B···Cl1iii | 0.97 | 2.94 | 3.902 (5) | 170 |
C5—H5A···Cl2iv | 0.96 | 2.93 | 3.745 (5) | 143 |
C7—H7A···O1v | 0.97 | 2.42 | 3.281 (6) | 148 |
C7—H7B···Cl2iv | 0.97 | 2.83 | 3.632 (5) | 140 |
C8—H8A···Cl1 | 0.96 | 2.85 | 3.414 (5) | 119 |
C8—H8B···Cl1iii | 0.96 | 2.81 | 3.736 (5) | 162 |
C9—H9A···Cl2 | 0.96 | 2.76 | 3.387 (5) | 124 |
O1—H1O···Cl2 | 0.91 (2) | 2.16 (3) | 3.047 (4) | 164 (7) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2; (iv) −x+1, −y+1, −z+1; (v) x, y+1, z. |
Acknowledgements
The Department of Chemistry, M.S.J. Govt. (PG) College Bharatpur, Rajasthan, and the Department of Chemistry, L·S. College, B·R.A. Bihar University, are thanked for providing laboratory facilities.
References
Arroyo, N., Gómez-de la Torre, F., Jalón, F. A., Manzano, B. R., Moreno-Lara, B. & Rodríguez, A. M. (2000). J. Organomet. Chem. 603, 174–184. CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Faizi, Md. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464. CrossRef CAS Google Scholar
Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Finney, L., Vogt, S., Fukai, T. & Glesne, D. (2009). Clin. Exp. Pharmacol. Physiol. 36, 88–94. Web of Science CrossRef PubMed CAS Google Scholar
García-Antón, G., Pons, J., Solans, X., Font-Bardia, M. & Ros, J. (2003). Eur. J. Inorg. Chem. pp. 2992–3000. Google Scholar
Kumar, A., Faizi, M. S. H., Javed, S., Siddiqui, N. & Iskenderov, T. (2019). IUCrData, 4, x190050–x190050. Google Scholar
Kumar, M., Kumar, A., Faizi, Md. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899. CrossRef CAS Google Scholar
Morin, T. J., Wanniarachchi, S., Gwengo, C., Makura, V., Tatlock, H. M., Lindeman, S. V., Bennett, B., Long, G. J., Grandjean, F. & Gardinier, J. R. (2011). Dalton Trans. 40, 8024–8034. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218. Web of Science CrossRef CAS Google Scholar
Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889. Web of Science CSD CrossRef PubMed CAS Google Scholar
Shaw, J. L., Cardon, T. B., Lorigan, G. A. & Ziegler, C. J. (2004). Eur. J. Inorg. Chem. pp. 1073–1080. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turski, M. L. & Thiele, D. J. (2009). J. Biol. Chem. 284, 717–721. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, J., Li, A. F. & Hor, T. S. A. (2009). Dalton Trans. pp. 9327–9333. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.