metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­chlorido­{N,N,N′-tri­methyl-N′-(1H-pyrazol-1-yl-κN2)meth­yl]ethane-1,2-di­amine-κ2N,N′}copper(II) methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, M.S.J. Govt. (PG) College Bharatpur, Bharatpur, Rajasthan 321001, India, bCMP College Allahabad, a constitution college of Allahabad University, Allahabad, Uttar Pradesh 211002, India, cDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar 842001, India, dDepartment of Chemistry, Taras Shevchenko National University, Volodymyrska str., 64, 01601 Kyiv, Ukraine, and eOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Kurupelit, Samsun, Turkey
*Correspondence e-mail: tiskenderov@ukr.net

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 25 March 2019; accepted 14 May 2019; online 31 May 2019)

In the title compound, [CuCl2(C9H18N4)]·CH3OH, the central CuII ion is coordinated by three N atoms from the pyrazole derivative ligand and two chloride co-ligands. The coordination geometry around the CuII ion is distorted trigonal–bipyramidal. In the crystal, the mol­ecules are linked by C—H⋯O, C—H⋯Cl and O—H⋯Cl hydrogen bonds, forming a three-dimensional framework with the lattice solvent mol­ecule.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Rigid ligands including pyrazole are some of the most desirable ligands to biologists and bioinorganic chemists for specific functions, such as catalysis and fluxional behaviour (Zhang et al., 2009[Zhang, J., Li, A. F. & Hor, T. S. A. (2009). Dalton Trans. pp. 9327-9333.]; Arroyo et al., 2000[Arroyo, N., Gómez-de la Torre, F., Jalón, F. A., Manzano, B. R., Moreno-Lara, B. & Rodríguez, A. M. (2000). J. Organomet. Chem. 603, 174-184.]), and also in electrochemistry (Morin et al., 2011[Morin, T. J., Wanniarachchi, S., Gwengo, C., Makura, V., Tatlock, H. M., Lindeman, S. V., Bennett, B., Long, G. J., Grandjean, F. & Gardinier, J. R. (2011). Dalton Trans. 40, 8024-8034.]). Recently, there has been considerable inter­est in the use of multifunctional ligands containing substituted pyrazole groups because of their potential applications in catalysis, and their ability to form complexes that mimic structural and catalytic functions in metalloproteins (García-Antón et al., 2003[García-Antón, G., Pons, J., Solans, X., Font-Bardia, M. & Ros, J. (2003). Eur. J. Inorg. Chem. pp. 2992-3000.]; Mukherjee, 2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]; Pal et al., 2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]; Shaw et al., 2004[Shaw, J. L., Cardon, T. B., Lorigan, G. A. & Ziegler, C. J. (2004). Eur. J. Inorg. Chem. pp. 1073-1080.]). In particular, the research field dealing with copper complexes embraces a wide range of topics, such as metastasis development (Turski et al., 2009[Turski, M. L. & Thiele, D. J. (2009). J. Biol. Chem. 284, 717-721.]; Finney et al., 2009[Finney, L., Vogt, S., Fukai, T. & Glesne, D. (2009). Clin. Exp. Pharmacol. Physiol. 36, 88-94.]), anti­cancer activity, and other aspects of bioinorganic chemistry.

As part of our continuing inter­est in coordination chemistry (Kumar et al., 2018[Kumar, M., Kumar, A., Faizi, Md. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.], 2019[Kumar, A., Faizi, M. S. H., Javed, S., Siddiqui, N. & Iskenderov, T. (2019). IUCrData, 4, x190050-x190050.]; Faizi et al., 2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206-m207.], 2018[Faizi, Md. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457-464.]), we report herein the synthesis and structure of the title complex, [Cu(C9H18N4)Cl2]·CH4O. In this mononuclear copper(II) compound (Fig. 1[link]), the CuCl2 group is bonded to a tridentate ligand, N,N,N′-trimethyl-N′-pyrazol-1-ylmethyl-ethane-1,2-di­amine (TPED), and the asymmetric unit is completed by a methanol solvate mol­ecule. The central CuII ion is coordinated by the tridentate N-chelating TPED ligand and two Cl ions in a distorted trigonal–bipyramidal geometry, with the chloride ligands and the central ethyl­enedi­amine N atom (N3) occupying the equatorial positions [Cu—Cl = 2.4630 (15) and 2.2914 (15) Å; Cu—N = 2.125 (4) Å], while the coordinating pyrazole N atom and the terminal ethyl­enedi­amine N atom (N4) are placed in axial positions [Cu—N = 1.991 (4) and 2.043 (4) Å]. In the crystal, the mol­ecules are linked by weak O—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds, forming a three dimensional network (Table 1[link]; Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1i 0.93 2.98 3.841 (6) 156
C3—H3⋯O1ii 0.93 2.62 3.305 (7) 131
C4—H4A⋯Cl2ii 0.97 2.67 3.636 (5) 173
C4—H4B⋯Cl1iii 0.97 2.94 3.902 (5) 170
C5—H5A⋯Cl2iv 0.96 2.93 3.745 (5) 143
C7—H7A⋯O1v 0.97 2.42 3.281 (6) 148
C7—H7B⋯Cl2iv 0.97 2.83 3.632 (5) 140
C8—H8B⋯Cl1iii 0.96 2.81 3.736 (5) 162
O1—H1O⋯Cl2 0.91 (2) 2.16 (3) 3.047 (4) 164 (7)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+2; (iv) -x+1, -y+1, -z+1; (v) x, y+1, z.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 40% probability level. The inter­molecular O—H⋯Cl hydrogen bond between the solvent mol­ecule and the main complex is also shown.
[Figure 2]
Figure 2
Part of the crystal structure showing the formation of a one-dimensional structure involving the lattice solvent and the main complex. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds: mol­ecules are linked by weak C—H⋯O, C—H⋯Cl and O—H⋯Cl inter­actions. See Table 1[link] for details.

Synthesis and crystallization

[CuII(TPED)Cl2]·CH3OH: To a solution of TPED (0.050 g, 0.27 mmol) in 5 ml of methanol, solid CuCl2·2H2O (0.046 g, 0.27 mmol) was added portionwise. The colour of the solution changed from light yellow to blue. The solution was stirred for 1 h at 298 K. The blue solid that formed was filtered and washed with a methanol/diethyl ether mixture (1:3 v/v). The resulting blue solid was recrystallized by diffusion of diethyl ether into a solution of the complex in methanol, and the crystals were dried in vacuo. Yield: 0.072 g, 70%. C10H22Cl2CuN4O: calculated C 34.44, H 6.36, N 16.06; found C 34.94, H 6.86, N 16.78. UV–Vis [λmax, nm (, M−1cm−1 in methanol)]: 680 (310), 290 (8900), 235 (16 800).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [CuCl2(C9H18N4)]·CH4O
Mr 348.75
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.240 (5), 9.260 (5), 11.649 (5)
α, β, γ (°) 87.438 (5), 78.987 (5), 81.887 (5)
V3) 758.8 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.79
Crystal size (mm) 0.18 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.281, 0.397
No. of measured, independent and observed [I > 2σ(I)] reflections 3864, 2599, 2169
Rint 0.029
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.158, 1.04
No. of reflections 2599
No. of parameters 168
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.53, −0.61
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Dichlorido{N,N,N'-trimethyl-N'-(1H-pyrazol-1-yl-κN2)methyl]ethane-1,2-diamine-κ2N,N'}copper(II) methanol monosolvate top
Crystal data top
[CuCl2(C9H18N4)]·CH4OZ = 2
Mr = 348.75F(000) = 362
Triclinic, P1Dx = 1.526 Mg m3
a = 7.240 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.260 (5) ÅCell parameters from 2494 reflections
c = 11.649 (5) Åθ = 2.7–24.6°
α = 87.438 (5)°µ = 1.79 mm1
β = 78.987 (5)°T = 296 K
γ = 81.887 (5)°Prism, blue
V = 758.8 (7) Å30.18 × 0.14 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
2599 independent reflections
Radiation source: fine-focus sealed tube2169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 87
Tmin = 0.281, Tmax = 0.397k = 811
3864 measured reflectionsl = 1313
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.1044P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2599 reflectionsΔρmax = 1.53 e Å3
168 parametersΔρmin = 0.61 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.45726 (7)0.39934 (6)0.79843 (4)0.0189 (2)
Cl10.21622 (15)0.35638 (12)0.94918 (10)0.0218 (3)
Cl20.34205 (16)0.33139 (13)0.62524 (10)0.0254 (3)
O10.3144 (6)0.0068 (4)0.6629 (4)0.0446 (10)
N10.6201 (5)0.2174 (4)0.8341 (3)0.0221 (9)
N20.8060 (5)0.2307 (4)0.8190 (3)0.0224 (9)
N30.7305 (5)0.4460 (4)0.7149 (3)0.0198 (8)
N40.3760 (5)0.6189 (4)0.7857 (3)0.0196 (8)
C10.6077 (7)0.0801 (5)0.8671 (4)0.0269 (11)
H10.4949980.0394370.8834020.032*
C20.7861 (7)0.0041 (6)0.8744 (5)0.0309 (12)
H20.8154590.0930940.8960520.037*
C30.9082 (7)0.1060 (5)0.8423 (5)0.0298 (12)
H31.0391380.0903450.8376850.036*
C40.8589 (6)0.3763 (5)0.7913 (4)0.0228 (10)
H4A0.9901860.3702180.7513130.027*
H4B0.8435820.4314970.8620680.027*
C50.7883 (7)0.3862 (5)0.5963 (4)0.0248 (11)
H5A0.7036720.4324450.5473670.037*
H5B0.9154970.4041920.5643500.037*
H5C0.7832680.2830360.6000840.037*
C60.7179 (7)0.6079 (5)0.7113 (4)0.0252 (11)
H6A0.8137890.6386070.6485470.030*
H6B0.7394590.6420350.7845640.030*
C70.5209 (6)0.6717 (5)0.6914 (4)0.0203 (10)
H7A0.5079020.7774040.6914910.024*
H7B0.5025520.6420830.6159380.024*
C80.3699 (7)0.6894 (5)0.8977 (4)0.0240 (11)
H8A0.2751100.6531420.9567930.036*
H8B0.4916580.6678670.9203850.036*
H8C0.3389520.7930640.8887710.036*
C90.1845 (6)0.6579 (5)0.7540 (4)0.0238 (11)
H9A0.1830450.6137960.6812190.036*
H9B0.0902600.6230300.8142380.036*
H9C0.1571980.7620080.7461840.036*
C100.2343 (11)0.0099 (7)0.5611 (6)0.0552 (18)
H10A0.0993460.0182690.5790870.083*
H10B0.2612220.1099530.5377960.083*
H10C0.2889700.0509100.4984460.083*
H1O0.340 (12)0.100 (4)0.660 (8)0.09 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0138 (4)0.0291 (4)0.0137 (4)0.0029 (2)0.0019 (2)0.0033 (2)
Cl10.0148 (6)0.0331 (7)0.0169 (6)0.0028 (5)0.0014 (4)0.0012 (5)
Cl20.0205 (6)0.0397 (7)0.0172 (6)0.0054 (5)0.0045 (5)0.0061 (5)
O10.051 (3)0.035 (2)0.048 (3)0.004 (2)0.011 (2)0.002 (2)
N10.015 (2)0.034 (2)0.017 (2)0.0042 (17)0.0016 (16)0.0066 (17)
N20.016 (2)0.032 (2)0.018 (2)0.0005 (17)0.0003 (16)0.0051 (17)
N30.0137 (19)0.027 (2)0.018 (2)0.0030 (16)0.0018 (16)0.0003 (16)
N40.014 (2)0.029 (2)0.016 (2)0.0010 (16)0.0043 (16)0.0031 (16)
C10.026 (3)0.024 (3)0.029 (3)0.005 (2)0.000 (2)0.001 (2)
C20.029 (3)0.029 (3)0.032 (3)0.001 (2)0.001 (2)0.000 (2)
C30.021 (3)0.034 (3)0.031 (3)0.009 (2)0.004 (2)0.005 (2)
C40.016 (2)0.033 (3)0.021 (3)0.003 (2)0.005 (2)0.000 (2)
C50.022 (3)0.037 (3)0.015 (2)0.005 (2)0.002 (2)0.003 (2)
C60.017 (3)0.032 (3)0.026 (3)0.006 (2)0.004 (2)0.002 (2)
C70.020 (2)0.025 (3)0.017 (2)0.0057 (19)0.0028 (19)0.0032 (19)
C80.025 (3)0.034 (3)0.014 (2)0.005 (2)0.003 (2)0.007 (2)
C90.011 (2)0.035 (3)0.024 (3)0.001 (2)0.001 (2)0.002 (2)
C100.066 (5)0.054 (4)0.050 (4)0.015 (4)0.014 (4)0.002 (3)
Geometric parameters (Å, º) top
Cu1—N11.991 (4)C3—H30.9300
Cu1—N42.043 (4)C4—H4A0.9700
Cu1—N32.125 (4)C4—H4B0.9700
Cu1—Cl12.2914 (15)C5—H5A0.9600
Cu1—Cl22.4630 (15)C5—H5B0.9600
O1—C101.439 (7)C5—H5C0.9600
O1—H1O0.91 (2)C6—C71.522 (6)
N1—C11.322 (6)C6—H6A0.9700
N1—N21.346 (5)C6—H6B0.9700
N2—C31.327 (6)C7—H7A0.9700
N2—C41.459 (6)C7—H7B0.9700
N3—C41.473 (6)C8—H8A0.9600
N3—C51.473 (6)C8—H8B0.9600
N3—C61.488 (6)C8—H8C0.9600
N4—C81.475 (6)C9—H9A0.9600
N4—C71.484 (6)C9—H9B0.9600
N4—C91.493 (6)C9—H9C0.9600
C1—C21.396 (7)C10—H10A0.9600
C1—H10.9300C10—H10B0.9600
C2—C31.375 (7)C10—H10C0.9600
C2—H20.9300
N1—Cu1—N4156.67 (16)N3—C4—H4A110.6
N1—Cu1—N378.82 (16)N2—C4—H4B110.6
N4—Cu1—N385.33 (15)N3—C4—H4B110.6
N1—Cu1—Cl192.42 (12)H4A—C4—H4B108.7
N4—Cu1—Cl196.09 (11)N3—C5—H5A109.5
N3—Cu1—Cl1157.90 (11)N3—C5—H5B109.5
N1—Cu1—Cl2102.33 (12)H5A—C5—H5B109.5
N4—Cu1—Cl296.90 (11)N3—C5—H5C109.5
N3—Cu1—Cl298.84 (11)H5A—C5—H5C109.5
Cl1—Cu1—Cl2102.86 (6)H5B—C5—H5C109.5
C10—O1—H1O106 (5)N3—C6—C7108.4 (4)
C1—N1—N2105.4 (4)N3—C6—H6A110.0
C1—N1—Cu1140.6 (3)C7—C6—H6A110.0
N2—N1—Cu1114.0 (3)N3—C6—H6B110.0
C3—N2—N1111.5 (4)C7—C6—H6B110.0
C3—N2—C4131.2 (4)H6A—C6—H6B108.4
N1—N2—C4117.1 (4)N4—C7—C6109.2 (4)
C4—N3—C5110.2 (4)N4—C7—H7A109.8
C4—N3—C6112.7 (4)C6—C7—H7A109.8
C5—N3—C6111.0 (4)N4—C7—H7B109.8
C4—N3—Cu1104.4 (3)C6—C7—H7B109.8
C5—N3—Cu1112.5 (3)H7A—C7—H7B108.3
C6—N3—Cu1105.7 (3)N4—C8—H8A109.5
C8—N4—C7111.4 (4)N4—C8—H8B109.5
C8—N4—C9107.1 (4)H8A—C8—H8B109.5
C7—N4—C9109.0 (3)N4—C8—H8C109.5
C8—N4—Cu1110.6 (3)H8A—C8—H8C109.5
C7—N4—Cu1105.1 (3)H8B—C8—H8C109.5
C9—N4—Cu1113.6 (3)N4—C9—H9A109.5
N1—C1—C2111.1 (5)N4—C9—H9B109.5
N1—C1—H1124.4H9A—C9—H9B109.5
C2—C1—H1124.4N4—C9—H9C109.5
C3—C2—C1104.1 (5)H9A—C9—H9C109.5
C3—C2—H2127.9H9B—C9—H9C109.5
C1—C2—H2127.9O1—C10—H10A109.5
N2—C3—C2107.8 (5)O1—C10—H10B109.5
N2—C3—H3126.1H10A—C10—H10B109.5
C2—C3—H3126.1O1—C10—H10C109.5
N2—C4—N3105.9 (4)H10A—C10—H10C109.5
N2—C4—H4A110.6H10B—C10—H10C109.5
C1—N1—N2—C30.3 (5)N1—N2—C4—N336.6 (5)
Cu1—N1—N2—C3179.1 (3)C5—N3—C4—N275.1 (4)
C1—N1—N2—C4175.1 (4)C6—N3—C4—N2160.2 (4)
Cu1—N1—N2—C46.1 (5)Cu1—N3—C4—N245.9 (4)
N2—N1—C1—C20.5 (5)C4—N3—C6—C7149.4 (4)
Cu1—N1—C1—C2178.8 (4)C5—N3—C6—C786.4 (5)
N1—C1—C2—C30.4 (6)Cu1—N3—C6—C735.9 (4)
N1—N2—C3—C20.0 (6)C8—N4—C7—C672.7 (5)
C4—N2—C3—C2173.9 (5)C9—N4—C7—C6169.3 (4)
C1—C2—C3—N20.2 (6)Cu1—N4—C7—C647.2 (4)
C3—N2—C4—N3149.9 (5)N3—C6—C7—N457.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i0.932.983.841 (6)156
C3—H3···O1ii0.932.623.305 (7)131
C4—H4A···Cl2ii0.972.673.636 (5)173
C4—H4B···Cl1iii0.972.943.902 (5)170
C5—H5A···Cl2iv0.962.933.745 (5)143
C7—H7A···O1v0.972.423.281 (6)148
C7—H7B···Cl2iv0.972.833.632 (5)140
C8—H8A···Cl10.962.853.414 (5)119
C8—H8B···Cl1iii0.962.813.736 (5)162
C9—H9A···Cl20.962.763.387 (5)124
O1—H1O···Cl20.91 (2)2.16 (3)3.047 (4)164 (7)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x, y+1, z.
 

Acknowledgements

The Department of Chemistry, M.S.J. Govt. (PG) College Bharatpur, Rajasthan, and the Department of Chemistry, L·S. College, B·R.A. Bihar University, are thanked for providing laboratory facilities.

References

First citationArroyo, N., Gómez-de la Torre, F., Jalón, F. A., Manzano, B. R., Moreno-Lara, B. & Rodríguez, A. M. (2000). J. Organomet. Chem. 603, 174–184.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaizi, Md. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.  CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinney, L., Vogt, S., Fukai, T. & Glesne, D. (2009). Clin. Exp. Pharmacol. Physiol. 36, 88–94.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGarcía-Antón, G., Pons, J., Solans, X., Font-Bardia, M. & Ros, J. (2003). Eur. J. Inorg. Chem. pp. 2992–3000.  Google Scholar
First citationKumar, A., Faizi, M. S. H., Javed, S., Siddiqui, N. & Iskenderov, T. (2019). IUCrData, 4, x190050–x190050.  Google Scholar
First citationKumar, M., Kumar, A., Faizi, Md. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  CrossRef CAS Google Scholar
First citationMorin, T. J., Wanniarachchi, S., Gwengo, C., Makura, V., Tatlock, H. M., Lindeman, S. V., Bennett, B., Long, G. J., Grandjean, F. & Gardinier, J. R. (2011). Dalton Trans. 40, 8024–8034.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShaw, J. L., Cardon, T. B., Lorigan, G. A. & Ziegler, C. J. (2004). Eur. J. Inorg. Chem. pp. 1073–1080.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurski, M. L. & Thiele, D. J. (2009). J. Biol. Chem. 284, 717–721.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., Li, A. F. & Hor, T. S. A. (2009). Dalton Trans. pp. 9327–9333.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds