metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Propane-1,3-di­ammonium molybdate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: mouhamadoubdiop@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 March 2019; accepted 12 April 2019; online 16 April 2019)

The reaction between equimolar amounts of propane-1,3-di­amine and molybdenum trioxide in water led to the formation of single crystals of the title salt, (C3H12N2)[MoO4]. The asymmetric unit is comprised of one propane-1,3-di­ammonium cation and one molybdate anion. The latter is isolated in the structure and has a slightly distorted tetra­hedral configuration. An extensive network of N—H⋯O hydrogen bonds connects anions and cations, giving rise to a compact three-dimensional packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent decades, oxyanions of metals from groups 5 and 6 in the periodic table (polyoxometalates, POMs) have attracted great inter­est in many fields (catalysis, medicine, functional materials and photochemistry) and continue to be extensively studied for energy applications (An et al., 2018[An, S., Liu, J. C., Zhang, H., Wu, L., Qi, B. & Song, Y. F. (2018). Sci. China Chem. 61, 159-161.]). This is particularly the case for molybdenum compounds which constitute suitable building blocks for the assembly of more complex and unusual structures (Süss-Fink et al., 1997[Süss-Fink, G., Plasseraud, L., Ferrand, V. & Stoeckli-Evans, H. (1997). Chem. Commun. pp. 1657-1658.]; Plasseraud et al., 1999[Plasseraud, L., Stoeckli-Evans, H. & Süss-Fink, G. (1999). Inorg. Chem. Commun. 2, 344-346.]).

Numerous crystal structures of hetero- and polyoxidomolybdates are known from the literature (Li & Xu, 2011[Li, F. & Xu, L. (2011). Dalton Trans. 40, 4024-4034.]). For mononuclear molybdates with tetra­hedral anions, the first crystal structure determination was reported for Na2[MoO4]·2H2O (Lindqvist, 1950[Lindqvist, I. (1950). Acta Chem. Scand. 4, 1066-1074.]; Matsumoto et al., 1975[Matsumoto, K. Y., Kobayashi, A. & Sasaki, Y. (1975). Bull. Chem. Soc. Jpn, 48, 1009-1013.]), followed by the potassium compound K2[MoO4] (Gatehouse & Leverett, 1969[Gatehouse, B. M. & Leverett, P. (1969). J. Chem. Soc. A, pp. 849-854.]). Ammonium salts of [MoO4]2– have also been isolated in the solid state and their crystal structures determined: (CH6N3)2[MoO4] (Ozeki et al., 1987[Ozeki, T., Ichida, H. & Sasaki, Y. (1987). Acta Cryst. C43, 2220-2221.]), (C6H14N)2[MoO4] and (C12H26N)2[MoO4]·2H2O (Thiele & Fuchs, 1979[Thiele, A. & Fuchs, J. (1979). Z. Naturforsch. Teil B, 34, 145-154.]), (C2H10N2)[MoO4] (Bensch et al., 1987[Bensch, W., Hug, P., Emmenegger, R., Reller, A. & Oswald, H. R. (1987). Mater. Res. Bull. 22, 447-454.]), (C4H12NO)2[MoO4] (Sheikhshoaie & Ghazizadeh, 2013[Sheikhshoaie, I. & Ghazizadeh, M. (2013). Bull. Chem. Soc. Ethiop. 27, 69-76.]), (Cy2NH2)2[MoO4]·2H2O (Pouye et al., 2014[Pouye, S. F., Cisse, I., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2014). Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. (Univ. Bacau), 15, 091-094.]) and (iPr2NH2)2[MoO4] (Sarr et al., 2018[Sarr, B., Mbaye, A., Diop, C. A. K., Melin, F., Hellwig, P., Sidibé, M. & Rousselin, Y. (2018). Acta Cryst. E74, 1682-1685.]). In this context and in continuation of our studies of inter­actions between organic ammonium cations and transition-metal or main-group metal anions (Pouye et al., 2014[Pouye, S. F., Cisse, I., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2014). Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. (Univ. Bacau), 15, 091-094.]; Diallo et al., 2014[Diallo, W., Diop, L., Plasseraud, L. & Cattey, H. (2014). Main Group Met. Chem. 37, 107-112.]), we report here the crystal structure of (C3H12N2)[MoO4], (I).

The asymmetric unit of (I) consists of a propane 1,3-di­ammonium cation and a molybdate anion (Fig. 1[link]). Several crystal structures of salts containing the propane-1,3-di­ammonium dication are reported in the literature (e.g. Ayadi et al., 2017[Ayadi, R., Lhoste, J., Rak, I. L., Mhiri, T. & Boujelbene, M. (2017). J. Saudi Chem. Soc. 21, 869-877.]; Kamoun et al., 1992[Kamoun, S., Jouini, A., Daoud, A., Durif, A. & Guitel, J. C. (1992). Acta Cryst. C48, 133-135.]). Bond lengths and angles of the (C3H12N2)2+ cation in (I) are in accordance with those reported previously for other oxidometalate salts, such as {(C3H12N2)[Mo3O10]·2H2O}n (Ding et al., 2007[Ding, C., Lin, B.-Z., Han, G.-H. & Bai, L. (2007). Acta Cryst. C63, m256-m258.]) or (C3H12N2)[Cr2O7] (Trabelsi et al., 2012[Trabelsi, S., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, m1056.]). A search of the Cambridge Structural Database (WebCSD; Thomas et al., 2010[Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362-366.]) revealed 30 crystal structures of salts involving the propane-1,3-di­ammonium cation associated with anions containing molybdenum. The [MoO4]2− anion in (I) exhibits a slightly distorted tetra­hedral configuration. Three of the four Mo—O bond lengths (involving O2, O3 and O4; Table 1[link]) are in the range of those reported in the literature (Bensch et al., 1987[Bensch, W., Hug, P., Emmenegger, R., Reller, A. & Oswald, H. R. (1987). Mater. Res. Bull. 22, 447-454.]; Sarr et al., 2018[Sarr, B., Mbaye, A., Diop, C. A. K., Melin, F., Hellwig, P., Sidibé, M. & Rousselin, Y. (2018). Acta Cryst. E74, 1682-1685.]). The fourth (involving O1; Table 1[link]) is considerably longer because it is the acceptor atom of three hydrogen bonds, whereas the other O atoms are involved in only one hydrogen bond each. From a supra­molecular point of view, the (C3H12N2)2+ cations and [MoO4]2− anions are connected via several N—H⋯O hydrogen bonds, with DA contacts ranging from 2.6808 (19) to 2.8512 (18) Å (Table 2[link]). Each molybdate anion is surrounded by six propane-1,3-di­ammonium cations, and each of the cations is hydrogen bonded to five neighbouring anions. These inter­actions lead to a three-dimensional network structure (Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Mo—O1 1.8035 (12) Mo—O3 1.7548 (12)
Mo—O2 1.7536 (12) Mo—O4 1.7547 (13)
       
O2—Mo—O1 108.69 (6) O3—Mo—O1 109.06 (6)
O2—Mo—O3 108.94 (6) O4—Mo—O1 111.04 (6)
O2—Mo—O4 109.52 (6) O4—Mo—O3 109.55 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.91 1.85 2.7550 (19) 173
N1—H1B⋯O1 0.91 2.00 2.8512 (18) 156
N1—H1C⋯O2ii 0.91 1.89 2.7670 (19) 163
N2—H2A⋯O1iii 0.91 1.93 2.8048 (18) 162
N2—H2B⋯O1iv 0.91 1.87 2.7690 (18) 170
N2—H2C⋯O4 0.91 1.80 2.6808 (19) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z.
[Figure 1]
Figure 1
The expanded asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dotted lines. [Symmetry codes: (i) x, −y + [{1\over 2}], z − [{1\over 2}]; (ii) −x + 2, y + [{1\over 2}], −z + [{1\over 2}]; (iii) x − 1, −y + [{1\over 2}], z − [{1\over 2}]; (iv) x − 1, y, z.]
[Figure 2]
Figure 2
Partial packing diagram of (I), showing the inter­molecular hydrogen-bonding scheme (dashed lines). Colour code: C dark grey, H white, O red, N blue and Mo blue metal.

The crystal structure of the tetra­thio­molybdate analog of (I), i.e. (C3H12N2)[MoS4] (Srinivasan et al., 2005[Srinivasan, B. R., Dhuri, S. N., Näther, C. & Bensch, W. (2005). Inorg. Chim. Acta, 358, 279-287.]), is comprised of the same building units [an organic (C3H12N2)2+ cation and a tetra­hedral [MoS4]2− anion] but is not isotypic. However, the crystal structure of (C3H12N2)[MoS4] likewise is consolidated by hydrogen bonds between the cation and the anion (here of type N—H⋯S).

Synthesis and crystallization

All chemicals were purchased from Sigma–Aldrich (Germany) and used without further purification. The title salt was prepared by mixing equimolar amounts of propane-1,3-di­amine (0.50 g, 6.75 mmol) and molybdenum trioxide (0.97 g, 6.75 mmol) in 25 ml of water (75% yield). Colourless prismatic crystals, suitable for X-ray crystallographic analysis, were obtained by slow evaporation (10 d) at 333 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula (C3H12N2)[MoO4]
Mr 236.09
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.4849 (3), 14.7539 (7), 8.3224 (4)
β (°) 97.2950 (13)
V3) 789.82 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.63
Crystal size (mm) 0.55 × 0.45 × 0.30
 
Data collection
Diffractometer Bruker D8 Venture Cu
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS, SAINT and APEX3. Bruker AXS Inc, Madison, Wisconsin, USA.])
Tmin, Tmax 0.613, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11859, 1813, 1780
Rint 0.024
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.041, 1.11
No. of reflections 1813
No. of parameters 93
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −0.48
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). SADABS, SAINT and APEX3. Bruker AXS Inc, Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SADABS, SAINT and APEX3. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Propane-1,3-diammonium molybdate top
Crystal data top
(C3H12N2)[MoO4]F(000) = 472
Mr = 236.09Dx = 1.985 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.4849 (3) ÅCell parameters from 9941 reflections
b = 14.7539 (7) Åθ = 2.8–27.6°
c = 8.3224 (4) ŵ = 1.63 mm1
β = 97.2950 (13)°T = 100 K
V = 789.82 (6) Å3Prism, colourless
Z = 40.55 × 0.45 × 0.30 mm
Data collection top
Bruker D8 Venture Cu
diffractometer
1813 independent reflections
Radiation source: sealed X-ray tube, high brilliance microfocus sealed tube, Cu1780 reflections with I > 2σ(I)
QUAZAR MX multilayer optics monochromatorRint = 0.024
Detector resolution: 1024 x 1024 pixels mm-1θmax = 27.6°, θmin = 2.8°
φ and ω scans'h = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1919
Tmin = 0.613, Tmax = 0.746l = 1010
11859 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0135P)2 + 1.0699P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
1813 reflectionsΔρmax = 0.69 e Å3
93 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8168 (2)0.43213 (10)0.26436 (16)0.0097 (3)
H1A0.8105120.4296650.1545880.012*
H1B0.8558240.3770910.3072920.012*
H1C0.9114230.4747230.3039240.012*
N20.2514 (2)0.27700 (9)0.08732 (17)0.0100 (3)
H2A0.1831450.2714750.0147220.012*
H2B0.1578720.2756410.1601090.012*
H2C0.3427840.2303640.1075950.012*
C10.6079 (3)0.45664 (11)0.3092 (2)0.0123 (3)
H1D0.5547830.5102940.2454640.015*
H1E0.6228450.4735370.4251790.015*
C20.4506 (3)0.38039 (12)0.2796 (2)0.0114 (3)
H2D0.3323280.3937250.3402450.014*
H2E0.5162580.3236030.3241560.014*
C30.3666 (3)0.36483 (11)0.1021 (2)0.0109 (3)
H3A0.2724180.4150350.0622800.013*
H3B0.4829080.3630950.0356920.013*
Mo0.83296 (2)0.14663 (2)0.25817 (2)0.00677 (6)
O10.96985 (18)0.25143 (8)0.30707 (14)0.0106 (2)
O20.9652 (2)0.08535 (8)0.12245 (15)0.0143 (2)
O30.8303 (2)0.08287 (9)0.43589 (15)0.0170 (3)
O40.5768 (2)0.16715 (9)0.17004 (17)0.0179 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0096 (6)0.0081 (6)0.0110 (7)0.0003 (5)0.0000 (5)0.0004 (5)
N20.0087 (6)0.0110 (6)0.0097 (6)0.0004 (5)0.0009 (5)0.0004 (5)
C10.0108 (7)0.0118 (7)0.0143 (8)0.0019 (6)0.0014 (6)0.0042 (6)
C20.0114 (7)0.0135 (8)0.0091 (7)0.0010 (6)0.0005 (6)0.0010 (6)
C30.0108 (7)0.0112 (7)0.0104 (8)0.0013 (6)0.0005 (6)0.0009 (6)
Mo0.00632 (8)0.00583 (8)0.00786 (8)0.00055 (4)0.00030 (5)0.00027 (4)
O10.0102 (5)0.0090 (5)0.0122 (5)0.0007 (4)0.0005 (4)0.0001 (4)
O20.0168 (6)0.0135 (6)0.0126 (6)0.0037 (5)0.0017 (5)0.0017 (5)
O30.0243 (7)0.0140 (6)0.0131 (6)0.0004 (5)0.0044 (5)0.0040 (5)
O40.0104 (6)0.0145 (6)0.0270 (7)0.0021 (5)0.0051 (5)0.0014 (5)
Geometric parameters (Å, º) top
N1—H1A0.9100C1—C21.518 (2)
N1—H1B0.9100C2—H2D0.9900
N1—H1C0.9100C2—H2E0.9900
N1—C11.494 (2)C2—C31.526 (2)
N2—H2A0.9100C3—H3A0.9900
N2—H2B0.9100C3—H3B0.9900
N2—H2C0.9100Mo—O11.8035 (12)
N2—C31.493 (2)Mo—O21.7536 (12)
C1—H1D0.9900Mo—O31.7548 (12)
C1—H1E0.9900Mo—O41.7547 (13)
H1A—N1—H1B109.5C1—C2—H2D108.6
H1A—N1—H1C109.5C1—C2—H2E108.6
H1B—N1—H1C109.5C1—C2—C3114.72 (14)
C1—N1—H1A109.5H2D—C2—H2E107.6
C1—N1—H1B109.5C3—C2—H2D108.6
C1—N1—H1C109.5C3—C2—H2E108.6
H2A—N2—H2B109.5N2—C3—C2108.87 (13)
H2A—N2—H2C109.5N2—C3—H3A109.9
H2B—N2—H2C109.5N2—C3—H3B109.9
C3—N2—H2A109.5C2—C3—H3A109.9
C3—N2—H2B109.5C2—C3—H3B109.9
C3—N2—H2C109.5H3A—C3—H3B108.3
N1—C1—H1D109.0O2—Mo—O1108.69 (6)
N1—C1—H1E109.0O2—Mo—O3108.94 (6)
N1—C1—C2113.10 (13)O2—Mo—O4109.52 (6)
H1D—C1—H1E107.8O3—Mo—O1109.06 (6)
C2—C1—H1D109.0O4—Mo—O1111.04 (6)
C2—C1—H1E109.0O4—Mo—O3109.55 (7)
N1—C1—C2—C374.84 (18)C1—C2—C3—N2167.95 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.911.852.7550 (19)173
N1—H1B···O10.912.002.8512 (18)156
N1—H1C···O2ii0.911.892.7670 (19)163
N2—H2A···O1iii0.911.932.8048 (18)162
N2—H2B···O1iv0.911.872.7690 (18)170
N2—H2C···O40.911.802.6808 (19)162
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1/2, z+1/2; (iii) x1, y+1/2, z1/2; (iv) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Bourgogne Franche-Comté (Dijon, France).

References

First citationAn, S., Liu, J. C., Zhang, H., Wu, L., Qi, B. & Song, Y. F. (2018). Sci. China Chem. 61, 159–161.  Google Scholar
First citationAyadi, R., Lhoste, J., Rak, I. L., Mhiri, T. & Boujelbene, M. (2017). J. Saudi Chem. Soc. 21, 869–877.  Web of Science CrossRef CAS Google Scholar
First citationBensch, W., Hug, P., Emmenegger, R., Reller, A. & Oswald, H. R. (1987). Mater. Res. Bull. 22, 447–454.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). SADABS, SAINT and APEX3. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationDiallo, W., Diop, L., Plasseraud, L. & Cattey, H. (2014). Main Group Met. Chem. 37, 107–112.  CAS Google Scholar
First citationDing, C., Lin, B.-Z., Han, G.-H. & Bai, L. (2007). Acta Cryst. C63, m256–m258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGatehouse, B. M. & Leverett, P. (1969). J. Chem. Soc. A, pp. 849–854.  CrossRef ICSD Web of Science Google Scholar
First citationKamoun, S., Jouini, A., Daoud, A., Durif, A. & Guitel, J. C. (1992). Acta Cryst. C48, 133–135.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, F. & Xu, L. (2011). Dalton Trans. 40, 4024–4034.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLindqvist, I. (1950). Acta Chem. Scand. 4, 1066–1074.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMatsumoto, K. Y., Kobayashi, A. & Sasaki, Y. (1975). Bull. Chem. Soc. Jpn, 48, 1009–1013.  CrossRef ICSD CAS Web of Science Google Scholar
First citationOzeki, T., Ichida, H. & Sasaki, Y. (1987). Acta Cryst. C43, 2220–2221.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPlasseraud, L., Stoeckli-Evans, H. & Süss-Fink, G. (1999). Inorg. Chem. Commun. 2, 344–346.  Web of Science CSD CrossRef CAS Google Scholar
First citationPouye, S. F., Cisse, I., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2014). Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. (Univ. Bacau), 15, 091–094.  CAS Google Scholar
First citationSarr, B., Mbaye, A., Diop, C. A. K., Melin, F., Hellwig, P., Sidibé, M. & Rousselin, Y. (2018). Acta Cryst. E74, 1682–1685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheikhshoaie, I. & Ghazizadeh, M. (2013). Bull. Chem. Soc. Ethiop. 27, 69–76.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrinivasan, B. R., Dhuri, S. N., Näther, C. & Bensch, W. (2005). Inorg. Chim. Acta, 358, 279–287.  Web of Science CSD CrossRef CAS Google Scholar
First citationSüss-Fink, G., Plasseraud, L., Ferrand, V. & Stoeckli-Evans, H. (1997). Chem. Commun. pp. 1657–1658.  Google Scholar
First citationThiele, A. & Fuchs, J. (1979). Z. Naturforsch. Teil B, 34, 145–154.  CSD CrossRef Google Scholar
First citationThomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362–366.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrabelsi, S., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, m1056.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds