metal-organic compounds
Propane-1,3-diammonium molybdate
aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: mouhamadoubdiop@gmail.com
The reaction between equimolar amounts of propane-1,3-diamine and molybdenum trioxide in water led to the formation of single crystals of the title salt, (C3H12N2)[MoO4]. The is comprised of one propane-1,3-diammonium cation and one molybdate anion. The latter is isolated in the structure and has a slightly distorted tetrahedral configuration. An extensive network of N—H⋯O hydrogen bonds connects anions and cations, giving rise to a compact three-dimensional packing.
Keywords: crystal structure; molybdate salt; propane-1,3-diammonium; hydrogen bonds.
CCDC reference: 1909766
Structure description
In recent decades, oxyanions of metals from groups 5 and 6 in the periodic table (polyoxometalates, POMs) have attracted great interest in many fields (catalysis, medicine, functional materials and photochemistry) and continue to be extensively studied for energy applications (An et al., 2018). This is particularly the case for molybdenum compounds which constitute suitable building blocks for the assembly of more complex and unusual structures (Süss-Fink et al., 1997; Plasseraud et al., 1999).
Numerous crystal structures of hetero- and polyoxidomolybdates are known from the literature (Li & Xu, 2011). For mononuclear molybdates with tetrahedral anions, the first determination was reported for Na2[MoO4]·2H2O (Lindqvist, 1950; Matsumoto et al., 1975), followed by the potassium compound K2[MoO4] (Gatehouse & Leverett, 1969). Ammonium salts of [MoO4]2– have also been isolated in the solid state and their crystal structures determined: (CH6N3)2[MoO4] (Ozeki et al., 1987), (C6H14N)2[MoO4] and (C12H26N)2[MoO4]·2H2O (Thiele & Fuchs, 1979), (C2H10N2)[MoO4] (Bensch et al., 1987), (C4H12NO)2[MoO4] (Sheikhshoaie & Ghazizadeh, 2013), (Cy2NH2)2[MoO4]·2H2O (Pouye et al., 2014) and (iPr2NH2)2[MoO4] (Sarr et al., 2018). In this context and in continuation of our studies of interactions between organic ammonium cations and transition-metal or main-group metal anions (Pouye et al., 2014; Diallo et al., 2014), we report here the of (C3H12N2)[MoO4], (I).
The ). Several crystal structures of salts containing the propane-1,3-diammonium dication are reported in the literature (e.g. Ayadi et al., 2017; Kamoun et al., 1992). Bond lengths and angles of the (C3H12N2)2+ cation in (I) are in accordance with those reported previously for other oxidometalate salts, such as {(C3H12N2)[Mo3O10]·2H2O}n (Ding et al., 2007) or (C3H12N2)[Cr2O7] (Trabelsi et al., 2012). A search of the Cambridge Structural Database (WebCSD; Thomas et al., 2010) revealed 30 crystal structures of salts involving the propane-1,3-diammonium cation associated with anions containing molybdenum. The [MoO4]2− anion in (I) exhibits a slightly distorted tetrahedral configuration. Three of the four Mo—O bond lengths (involving O2, O3 and O4; Table 1) are in the range of those reported in the literature (Bensch et al., 1987; Sarr et al., 2018). The fourth (involving O1; Table 1) is considerably longer because it is the acceptor atom of three hydrogen bonds, whereas the other O atoms are involved in only one hydrogen bond each. From a supramolecular point of view, the (C3H12N2)2+ cations and [MoO4]2− anions are connected via several N—H⋯O hydrogen bonds, with D⋯A contacts ranging from 2.6808 (19) to 2.8512 (18) Å (Table 2). Each molybdate anion is surrounded by six propane-1,3-diammonium cations, and each of the cations is hydrogen bonded to five neighbouring anions. These interactions lead to a three-dimensional network structure (Fig. 2).
of (I) consists of a propane 1,3-diammonium cation and a molybdate anion (Fig. 1
|
The i.e. (C3H12N2)[MoS4] (Srinivasan et al., 2005), is comprised of the same building units [an organic (C3H12N2)2+ cation and a tetrahedral [MoS4]2− anion] but is not isotypic. However, the of (C3H12N2)[MoS4] likewise is consolidated by hydrogen bonds between the cation and the anion (here of type N—H⋯S).
of the tetrathiomolybdate analog of (I),Synthesis and crystallization
All chemicals were purchased from Sigma–Aldrich (Germany) and used without further purification. The title salt was prepared by mixing equimolar amounts of propane-1,3-diamine (0.50 g, 6.75 mmol) and molybdenum trioxide (0.97 g, 6.75 mmol) in 25 ml of water (75% yield). Colourless prismatic crystals, suitable for X-ray crystallographic analysis, were obtained by slow evaporation (10 d) at 333 K.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 1909766
https://doi.org/10.1107/S2414314619005005/wm4103sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619005005/wm4103Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).(C3H12N2)[MoO4] | F(000) = 472 |
Mr = 236.09 | Dx = 1.985 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4849 (3) Å | Cell parameters from 9941 reflections |
b = 14.7539 (7) Å | θ = 2.8–27.6° |
c = 8.3224 (4) Å | µ = 1.63 mm−1 |
β = 97.2950 (13)° | T = 100 K |
V = 789.82 (6) Å3 | Prism, colourless |
Z = 4 | 0.55 × 0.45 × 0.30 mm |
Bruker D8 Venture Cu diffractometer | 1813 independent reflections |
Radiation source: sealed X-ray tube, high brilliance microfocus sealed tube, Cu | 1780 reflections with I > 2σ(I) |
QUAZAR MX multilayer optics monochromator | Rint = 0.024 |
Detector resolution: 1024 x 1024 pixels mm-1 | θmax = 27.6°, θmin = 2.8° |
φ and ω scans' | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −19→19 |
Tmin = 0.613, Tmax = 0.746 | l = −10→10 |
11859 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.016 | H-atom parameters constrained |
wR(F2) = 0.041 | w = 1/[σ2(Fo2) + (0.0135P)2 + 1.0699P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
1813 reflections | Δρmax = 0.69 e Å−3 |
93 parameters | Δρmin = −0.48 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.8168 (2) | 0.43213 (10) | 0.26436 (16) | 0.0097 (3) | |
H1A | 0.810512 | 0.429665 | 0.154588 | 0.012* | |
H1B | 0.855824 | 0.377091 | 0.307292 | 0.012* | |
H1C | 0.911423 | 0.474723 | 0.303924 | 0.012* | |
N2 | 0.2514 (2) | 0.27700 (9) | 0.08732 (17) | 0.0100 (3) | |
H2A | 0.183145 | 0.271475 | −0.014722 | 0.012* | |
H2B | 0.157872 | 0.275641 | 0.160109 | 0.012* | |
H2C | 0.342784 | 0.230364 | 0.107595 | 0.012* | |
C1 | 0.6079 (3) | 0.45664 (11) | 0.3092 (2) | 0.0123 (3) | |
H1D | 0.554783 | 0.510294 | 0.245464 | 0.015* | |
H1E | 0.622845 | 0.473537 | 0.425179 | 0.015* | |
C2 | 0.4506 (3) | 0.38039 (12) | 0.2796 (2) | 0.0114 (3) | |
H2D | 0.332328 | 0.393725 | 0.340245 | 0.014* | |
H2E | 0.516258 | 0.323603 | 0.324156 | 0.014* | |
C3 | 0.3666 (3) | 0.36483 (11) | 0.1021 (2) | 0.0109 (3) | |
H3A | 0.272418 | 0.415035 | 0.062280 | 0.013* | |
H3B | 0.482908 | 0.363095 | 0.035692 | 0.013* | |
Mo | 0.83296 (2) | 0.14663 (2) | 0.25817 (2) | 0.00677 (6) | |
O1 | 0.96985 (18) | 0.25143 (8) | 0.30707 (14) | 0.0106 (2) | |
O2 | 0.9652 (2) | 0.08535 (8) | 0.12245 (15) | 0.0143 (2) | |
O3 | 0.8303 (2) | 0.08287 (9) | 0.43589 (15) | 0.0170 (3) | |
O4 | 0.5768 (2) | 0.16715 (9) | 0.17004 (17) | 0.0179 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0096 (6) | 0.0081 (6) | 0.0110 (7) | 0.0003 (5) | 0.0000 (5) | −0.0004 (5) |
N2 | 0.0087 (6) | 0.0110 (6) | 0.0097 (6) | 0.0004 (5) | −0.0009 (5) | 0.0004 (5) |
C1 | 0.0108 (7) | 0.0118 (7) | 0.0143 (8) | 0.0019 (6) | 0.0014 (6) | −0.0042 (6) |
C2 | 0.0114 (7) | 0.0135 (8) | 0.0091 (7) | −0.0010 (6) | 0.0005 (6) | −0.0010 (6) |
C3 | 0.0108 (7) | 0.0112 (7) | 0.0104 (8) | −0.0013 (6) | −0.0005 (6) | 0.0009 (6) |
Mo | 0.00632 (8) | 0.00583 (8) | 0.00786 (8) | 0.00055 (4) | −0.00030 (5) | 0.00027 (4) |
O1 | 0.0102 (5) | 0.0090 (5) | 0.0122 (5) | −0.0007 (4) | −0.0005 (4) | 0.0001 (4) |
O2 | 0.0168 (6) | 0.0135 (6) | 0.0126 (6) | 0.0037 (5) | 0.0017 (5) | −0.0017 (5) |
O3 | 0.0243 (7) | 0.0140 (6) | 0.0131 (6) | −0.0004 (5) | 0.0044 (5) | 0.0040 (5) |
O4 | 0.0104 (6) | 0.0145 (6) | 0.0270 (7) | 0.0021 (5) | −0.0051 (5) | −0.0014 (5) |
N1—H1A | 0.9100 | C1—C2 | 1.518 (2) |
N1—H1B | 0.9100 | C2—H2D | 0.9900 |
N1—H1C | 0.9100 | C2—H2E | 0.9900 |
N1—C1 | 1.494 (2) | C2—C3 | 1.526 (2) |
N2—H2A | 0.9100 | C3—H3A | 0.9900 |
N2—H2B | 0.9100 | C3—H3B | 0.9900 |
N2—H2C | 0.9100 | Mo—O1 | 1.8035 (12) |
N2—C3 | 1.493 (2) | Mo—O2 | 1.7536 (12) |
C1—H1D | 0.9900 | Mo—O3 | 1.7548 (12) |
C1—H1E | 0.9900 | Mo—O4 | 1.7547 (13) |
H1A—N1—H1B | 109.5 | C1—C2—H2D | 108.6 |
H1A—N1—H1C | 109.5 | C1—C2—H2E | 108.6 |
H1B—N1—H1C | 109.5 | C1—C2—C3 | 114.72 (14) |
C1—N1—H1A | 109.5 | H2D—C2—H2E | 107.6 |
C1—N1—H1B | 109.5 | C3—C2—H2D | 108.6 |
C1—N1—H1C | 109.5 | C3—C2—H2E | 108.6 |
H2A—N2—H2B | 109.5 | N2—C3—C2 | 108.87 (13) |
H2A—N2—H2C | 109.5 | N2—C3—H3A | 109.9 |
H2B—N2—H2C | 109.5 | N2—C3—H3B | 109.9 |
C3—N2—H2A | 109.5 | C2—C3—H3A | 109.9 |
C3—N2—H2B | 109.5 | C2—C3—H3B | 109.9 |
C3—N2—H2C | 109.5 | H3A—C3—H3B | 108.3 |
N1—C1—H1D | 109.0 | O2—Mo—O1 | 108.69 (6) |
N1—C1—H1E | 109.0 | O2—Mo—O3 | 108.94 (6) |
N1—C1—C2 | 113.10 (13) | O2—Mo—O4 | 109.52 (6) |
H1D—C1—H1E | 107.8 | O3—Mo—O1 | 109.06 (6) |
C2—C1—H1D | 109.0 | O4—Mo—O1 | 111.04 (6) |
C2—C1—H1E | 109.0 | O4—Mo—O3 | 109.55 (7) |
N1—C1—C2—C3 | −74.84 (18) | C1—C2—C3—N2 | 167.95 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.91 | 1.85 | 2.7550 (19) | 173 |
N1—H1B···O1 | 0.91 | 2.00 | 2.8512 (18) | 156 |
N1—H1C···O2ii | 0.91 | 1.89 | 2.7670 (19) | 163 |
N2—H2A···O1iii | 0.91 | 1.93 | 2.8048 (18) | 162 |
N2—H2B···O1iv | 0.91 | 1.87 | 2.7690 (18) | 170 |
N2—H2C···O4 | 0.91 | 1.80 | 2.6808 (19) | 162 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) x−1, −y+1/2, z−1/2; (iv) x−1, y, z. |
Acknowledgements
The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Bourgogne Franche-Comté (Dijon, France).
References
An, S., Liu, J. C., Zhang, H., Wu, L., Qi, B. & Song, Y. F. (2018). Sci. China Chem. 61, 159–161. Google Scholar
Ayadi, R., Lhoste, J., Rak, I. L., Mhiri, T. & Boujelbene, M. (2017). J. Saudi Chem. Soc. 21, 869–877. Web of Science CrossRef CAS Google Scholar
Bensch, W., Hug, P., Emmenegger, R., Reller, A. & Oswald, H. R. (1987). Mater. Res. Bull. 22, 447–454. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2016). SADABS, SAINT and APEX3. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Diallo, W., Diop, L., Plasseraud, L. & Cattey, H. (2014). Main Group Met. Chem. 37, 107–112. CAS Google Scholar
Ding, C., Lin, B.-Z., Han, G.-H. & Bai, L. (2007). Acta Cryst. C63, m256–m258. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gatehouse, B. M. & Leverett, P. (1969). J. Chem. Soc. A, pp. 849–854. CrossRef ICSD Web of Science Google Scholar
Kamoun, S., Jouini, A., Daoud, A., Durif, A. & Guitel, J. C. (1992). Acta Cryst. C48, 133–135. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Li, F. & Xu, L. (2011). Dalton Trans. 40, 4024–4034. Web of Science CrossRef CAS PubMed Google Scholar
Lindqvist, I. (1950). Acta Chem. Scand. 4, 1066–1074. CrossRef ICSD CAS Web of Science Google Scholar
Matsumoto, K. Y., Kobayashi, A. & Sasaki, Y. (1975). Bull. Chem. Soc. Jpn, 48, 1009–1013. CrossRef ICSD CAS Web of Science Google Scholar
Ozeki, T., Ichida, H. & Sasaki, Y. (1987). Acta Cryst. C43, 2220–2221. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Plasseraud, L., Stoeckli-Evans, H. & Süss-Fink, G. (1999). Inorg. Chem. Commun. 2, 344–346. Web of Science CSD CrossRef CAS Google Scholar
Pouye, S. F., Cisse, I., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2014). Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. (Univ. Bacau), 15, 091–094. CAS Google Scholar
Sarr, B., Mbaye, A., Diop, C. A. K., Melin, F., Hellwig, P., Sidibé, M. & Rousselin, Y. (2018). Acta Cryst. E74, 1682–1685. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheikhshoaie, I. & Ghazizadeh, M. (2013). Bull. Chem. Soc. Ethiop. 27, 69–76. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Srinivasan, B. R., Dhuri, S. N., Näther, C. & Bensch, W. (2005). Inorg. Chim. Acta, 358, 279–287. Web of Science CSD CrossRef CAS Google Scholar
Süss-Fink, G., Plasseraud, L., Ferrand, V. & Stoeckli-Evans, H. (1997). Chem. Commun. pp. 1657–1658. Google Scholar
Thiele, A. & Fuchs, J. (1979). Z. Naturforsch. Teil B, 34, 145–154. CSD CrossRef Google Scholar
Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362–366. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trabelsi, S., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, m1056. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.