organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,8-Di­methyl-5,11-bis­­[3-(methyl­sulfan­yl)prop­yl]-1H,7H-diimidazo[c,h][1,6]diazecine

CROSSMARK_Color_square_no_text.svg

aFacultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México D.F., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 25 March 2019; accepted 1 April 2019; online 5 April 2019)

The refinement of the crystal structure of the title compound, C20H34N6S2, was challenging, as a consequence of three issues: crystals are twinned, disordered, and include large empty voids corresponding to ca 8% of the unit-cell volume. A satisfactory model was obtained using data collected at 153 K. The diazecine ring is centrosymmetric, and displays the expected boat–chair–boat conformation. The 3-(methyl­sulfan­yl)propyl chain is disordered over two sites with equal occupancies, and different conformations, i.e. transgauchegauche for the first chain [Ndiaz—Cmeth—Cmeth—Cmeth torsion angles: 169.9 (4), 66.8 (5), 62.4 (5)°; diaz = diazecine and meth = methyl­ene] and transtransgauche for the second component [torsion angles: 169.9 (4), −177.6 (4), 64.4 (5)°]. In the crystal, N—H⋯N hydrogen bonds between imidazole rings are evident; weak inter­molecular C—H⋯S contacts are also noted. The crystal studied was modelled as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The chemistry of [1,6]diazecine derivatives bearing imidazole rings started in the 1990′s, through a collaboration between groups from Mexico and The Netherlands (Mendoza-Díaz et al., 1996[Mendoza-Díaz, G., Driessen, W. L. & Reedijk, J. (1996). Acta Cryst. C52, 960-962.]), when a suitable methodology was established for their preparation, based on the Mannich reaction. Here, the one-pot reaction between propyl­amine, formaldehyde and 2-methyl­imidazole resulted in the double addition of formaldehyde on the imidazole, followed by condensation with propyl­amine, to afford the ten-membered ring characterizing the diazecines. Some other related structures were characterized by X-ray diffraction, upon modification of the group substituting the N sites in positions 1 and 6 in the ring (Mendoza-Díaz et al., 2002[Mendoza-Díaz, G., Driessen, W. L., Reedijk, J., Gorter, S., Gasque, L. & Thompson, K. R. (2002). Inorg. Chim. Acta, 339, 51-59.], 2010[Mendoza-Díaz, G., Betancourt-Mendiola, M. de L. & Bernès, S. (2010). Acta Cryst. E66, o1958-o1959.]). On the other hand, the coordination chemistry of CuII with these mol­ecules was studied, which has been relevant towards bioinorganic topics, including the modelling of the active site of catecholases (Mendoza-Díaz et al., 2002[Mendoza-Díaz, G., Driessen, W. L., Reedijk, J., Gorter, S., Gasque, L. & Thompson, K. R. (2002). Inorg. Chim. Acta, 339, 51-59.]; Mendoza-Quijano et al., 2012[Mendoza-Quijano, M. R., Ferrer-Sueta, G., Flores-Álamo, M., Aliaga-Alcalde, N., Gómez-Vidales, V., Ugalde-Saldívar, V. M. & Gasque, L. (2012). Dalton Trans. 41, 4985-4997.]; Zerón et al., 2017[Zerón, P., Westphal, M., Comba, P., Flores-Álamo, M., Stueckl, A. C., Leal-Cervantes, C., Ugalde-Saldívar, V. M. & Gasque, L. (2017). Eur. J. Inorg. Chem. pp. 56-62.]).

Although the bioinorganic chemistry has grown steadily for this class of compound, it is clear that the chemical crystallography of the corresponding free ligands is rather poor, with very few structures deposited in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The reason probably stems in part from the fact that the refinement of these crystal structures is not always routine. In the case of the title compound, three issues made the refinement challenging: (i) crystals are systematically twinned, a rather common feature for the tetra­gonal system. In the present case, a rotation axis about (110) is swapping unit cell vectors a and b in the Laue class 4/m (class I of twins by merohedry), to form an almost perfect twin; for the studied crystal, fractional contributions for the two-component twin were k1 = 0.486 (2) and k2 = 0.514 (2). (ii) A disorder is observed for the lateral 3-(methyl­sulfan­yl)propyl chain, involving the S atom, which is the main scatterer in the crystal (see Fig. 1[link], inset). Indeed, this disorder could not be solved using room-temperature diffraction data. (iii) The packing efficiency of the mol­ecules in the crystal is very poor, leaving ca 8% of the cell empty (Fig. 2[link]). Apparently, each individual void of ca 100 Å3 is not filled with disordered solvent (ethanol or water), as evidenced by unsuccessful attempts to include the contribution of disordered solvents to structure factors using the SQUEEZE tool in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]); a non-significant density of 12 e per unit cell was recovered, corresponding to 1.5 e/mol­ecule.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with 50% displacement ellipsoids for non-H atoms. Disordered sites B were omitted for clarity. The complete asymmetric unit is represented in the inset, including A and B disordered sites.
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, viewed along the b axis. The minor part of the disorder and H atoms were omitted. The red mol­ecule in the top-left unit cell includes the asymmetric unit. Void spaces in the crystal are delimited by gold surfaces calculated using the `contact surface' tool in Mercury, with a probe radius of 1.2 Å and a grid spacing of 0.3 Å (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Although these issues are decreased dramatically the scattering power of the crystals, data collected on a large sample at 153 K were suitable for refining the structure satisfactorily. The asymmetric unit contains half the formula, with the mol­ecule lying on an inversion centre (Fig. 1[link]). Atoms C10/S1/C11 belonging to the lateral chain are disordered over two sites, with occupancies equal to 0.5 for each part (sites A and B, Fig. 1[link], inset). The conformation of this chain is different for each disordered part: transgauchegauche for part A [torsion angles starting from N7: 169.9 (4), 66.8 (5), 62.4 (5)°] and transtransgauche for part B [torsion angles starting from N7: 169.9 (4), −177.6 (4), 64.4 (5)°]. The diazecine ten-membered ring adopts the skewed boat-chair-boat conformation, invariably found in other related derivatives (idealized symmetry: C2h). In the imidazole ring, π-bonds are localized, with normal bond lengths C2=N3 [1.320 (3) Å] and C3=C4 [1.369 (3) Å]. As a consequence, the imidazolic H atom is localized on N1. This group serves as donor group for the formation of N1—H1⋯N3 hydrogen bonds with a symmetry-related imidazole ring. Other potentially stabilizing hydrogen bonds are weak inter­molecular C—H⋯S contacts (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.68 (3) 2.15 (3) 2.825 (2) 169 (3)
C6—H6B⋯S1Aii 0.99 2.93 3.837 (3) 153
C12—H12A⋯S1Aiii 0.98 3.01 3.926 (3) 156
C11B—H11D⋯S1Biv 0.98 1.97 2.767 (6) 137
Symmetry codes: (i) [y-{\script{1\over 4}}, -x+{\script{3\over 4}}, z-{\script{1\over 4}}]; (ii) [-y+{\script{5\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Synthesis and crystallization

2-Methyl­imidazole (20 mmol, 1.64 g) was dissolved in water (100 ml). To this solution, with vigorous stirring, 3(methyl­thio)­propyl­amine (20 mmol, 2.1 g) was added dropwise. This mixture formed an emulsion which was broken with the addition of EtOH (ca 20 ml). Without pausing the agitation, formaldehyde (60 mmol, 37% aqueous solution) was added dropwise. This mixture was allowed to react at 333 K for approximately two days when the appearance of a white precipitate indicated the presence of the product. Analysis calculated (%) for C20H34N6S2: C, 56.37; H, 8.11; N, 19.88; S, 15.17. Found: C, 57.15; H, 8.25; N, 19.68, S, 15.30. 1H-NMR (400 MHz, CD3OD, p.p.m.) δ: 2.34 (s, 6H, CH3-Im), 3.36 (s, 8H, Im–CH2–N—R), 1.93 (q, 4H, –CH2-CH2-CH2—S—CH3), 2.12 (s, 6H, CH3-S–), 2.92 (t, 4H, –CH2—CH2CH2–N–), 2.66 (t, 4H, –S–CH2–CH2—CH2—N–). Crystalline samples were obtained from the slow evaporation of ethano­lic solutions of the compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal was modelled as a two-component twin, using the twin matrix (0 1 0, 1 0 0, 0 0 [\overline{1}]) and one batch scale factor, which converged to 0.486 (2) (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Occupancies for disordered sites A and B (atoms C10/S1/C11) were first refined, and since they converged towards a value very close to 1/2, they were fixed to 0.5 in the last cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C20H34N6S2
Mr 422.65
Crystal system, space group Tetragonal, I41/a
Temperature (K) 153
a, c (Å) 16.8114 (6), 17.8288 (6)
V3) 5038.8 (4)
Z 8
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.12
Crystal size (mm) 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.326, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 50278, 2943, 2296
Rint 0.098
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.138, 0.97
No. of reflections 2943
No. of parameters 159
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.19
Computer programs: X-AREA, SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2018); cell refinement: X-AREA (Stoe & Cie, 2018; data reduction: X-AREA (Stoe & Cie, 2018; program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

2,8-Dimethyl-5,11-bis[3-(methylsulfanyl)propyl]-1H,7H-diimidazo[c,h][1,6]diazecine top
Crystal data top
C20H34N6S2Dx = 1.114 Mg m3
Mr = 422.65Ag Kα radiation, λ = 0.56083 Å
Tetragonal, I41/aCell parameters from 29151 reflections
a = 16.8114 (6) Åθ = 2.3–25.6°
c = 17.8288 (6) ŵ = 0.12 mm1
V = 5038.8 (4) Å3T = 153 K
Z = 8Prism, yellow
F(000) = 18240.30 × 0.25 × 0.25 mm
Data collection top
Stoe Stadivari
diffractometer
2943 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source2296 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.098
Detector resolution: 5.81 pixels mm-1θmax = 21.5°, θmin = 2.3°
ω scansh = 2121
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2018)
k = 2121
Tmin = 0.326, Tmax = 1.000l = 2319
50278 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0946P)2]
where P = (Fo2 + 2Fc2)/3
2943 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.19 e Å3
0 constraints
Special details top

Refinement. Refined as a 2-component twin, rotation axis (1 1 0). TWIN 0 1 0 1 0 0 0 0 -1 2 BASF 0.48572

All C-bound H atoms were placed in calculated positions and refined as riding to their carrier C atoms with isotropic displacement parameters. The atomic coordinates for the N-bound H atom were refined; Uiso = 1.2Ueq(N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10A0.5232 (4)0.5267 (4)0.3420 (3)0.0508 (13)0.5
H10A0.5594420.4804550.3381740.061*0.5
H10B0.4823680.5152330.3805080.061*0.5
S1A0.57758 (8)0.61513 (10)0.36542 (7)0.0531 (4)0.5
C11A0.5021 (6)0.6863 (5)0.3722 (7)0.126 (4)0.5
H11A0.5253220.7379670.3850650.189*0.5
H11B0.4742580.6903290.3240650.189*0.5
H11C0.4643250.6704030.4113370.189*0.5
C10B0.5452 (3)0.5766 (5)0.3314 (3)0.0541 (14)0.5
H10C0.5577180.6333260.3221440.065*0.5
H10D0.5955530.5460740.3299660.065*0.5
S1B0.49849 (9)0.56555 (13)0.42257 (7)0.0728 (5)0.5
C11B0.4927 (5)0.4626 (7)0.4248 (4)0.099 (3)0.5
H11D0.4679770.4456430.4719330.149*0.5
H11E0.4604700.4439120.3824660.149*0.5
H11F0.5462750.4399920.4211610.149*0.5
N10.33547 (11)0.45749 (11)0.05949 (9)0.0340 (4)
H10.3217 (17)0.4482 (17)0.0945 (15)0.041*
C20.28871 (13)0.49400 (12)0.00916 (11)0.0337 (4)
N30.32672 (11)0.50618 (11)0.05457 (9)0.0342 (4)
C30.40212 (12)0.47426 (12)0.04372 (11)0.0308 (4)
C40.40840 (12)0.44355 (12)0.02712 (11)0.0316 (4)
C50.47564 (13)0.40230 (13)0.06585 (12)0.0369 (5)
H5A0.5167150.3900680.0277720.044*
H5B0.4554970.3508760.0851330.044*
C60.46077 (13)0.47487 (14)0.10598 (10)0.0361 (5)
H6A0.4372750.4478240.1500500.043*
H6B0.5083750.4443270.0905210.043*
N70.48549 (11)0.55613 (12)0.12799 (8)0.0373 (4)
C80.53467 (15)0.5544 (2)0.19642 (12)0.0559 (8)
H8A0.5649990.6047010.2002900.067*
H8B0.5733580.5101600.1928160.067*
C90.48435 (19)0.5437 (2)0.26668 (12)0.0732 (10)
H9A0.4521840.5926050.2727170.088*0.5
H9B0.4466190.4997620.2566070.088*0.5
H9C0.4704160.4871530.2749370.088*0.5
H9D0.4350470.5758080.2644170.088*0.5
C120.20352 (15)0.51376 (16)0.02429 (14)0.0481 (6)
H12A0.1848320.5525420.0127680.072*
H12B0.1713060.4653120.0208320.072*
H12C0.1985610.5363810.0747370.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10A0.052 (3)0.072 (4)0.028 (2)0.006 (3)0.007 (2)0.006 (2)
S1A0.0488 (7)0.0725 (9)0.0379 (6)0.0006 (7)0.0083 (5)0.0032 (6)
C11A0.088 (6)0.083 (6)0.206 (10)0.033 (5)0.044 (7)0.028 (7)
C10B0.042 (3)0.089 (5)0.031 (2)0.013 (3)0.009 (2)0.020 (3)
S1B0.0529 (8)0.1376 (17)0.0279 (5)0.0111 (9)0.0017 (5)0.0087 (7)
C11B0.060 (4)0.187 (10)0.051 (3)0.018 (5)0.011 (3)0.024 (4)
N10.0360 (9)0.0387 (10)0.0274 (8)0.0039 (8)0.0013 (7)0.0085 (7)
C20.0360 (11)0.0316 (10)0.0334 (10)0.0034 (8)0.0016 (8)0.0043 (8)
N30.0362 (9)0.0382 (9)0.0282 (8)0.0026 (7)0.0042 (7)0.0056 (7)
C30.0361 (11)0.0300 (10)0.0262 (8)0.0025 (8)0.0028 (8)0.0002 (7)
C40.0349 (10)0.0305 (10)0.0295 (9)0.0045 (8)0.0016 (7)0.0035 (8)
C50.0379 (12)0.0345 (11)0.0384 (10)0.0016 (9)0.0009 (8)0.0108 (9)
C60.0398 (12)0.0459 (12)0.0227 (8)0.0001 (9)0.0014 (8)0.0035 (8)
N70.0384 (10)0.0520 (12)0.0216 (7)0.0023 (8)0.0016 (7)0.0124 (7)
C80.0432 (13)0.099 (2)0.0256 (10)0.0152 (13)0.0079 (9)0.0217 (12)
C90.0659 (18)0.131 (3)0.0225 (10)0.0355 (19)0.0047 (11)0.0117 (13)
C120.0383 (13)0.0531 (14)0.0529 (13)0.0028 (11)0.0022 (10)0.0120 (11)
Geometric parameters (Å, º) top
C10A—C91.520 (5)N3—C31.390 (3)
C10A—S1A1.795 (7)C3—C41.369 (3)
C10A—H10A0.9900C3—C61.485 (3)
C10A—H10B0.9900C4—C51.495 (3)
S1A—C11A1.748 (8)C5—N7i1.464 (3)
C11A—H11A0.9800C5—H5A0.9900
C11A—H11B0.9800C5—H5B0.9900
C11A—H11C0.9800C6—N71.481 (3)
C10B—C91.639 (6)C6—H6A0.9900
C10B—S1B1.815 (6)C6—H6B0.9900
C10B—H10C0.9900N7—C81.474 (3)
C10B—H10D0.9900C8—C91.522 (4)
S1B—C11B1.734 (11)C8—H8A0.9900
C11B—H11D0.9800C8—H8B0.9900
C11B—H11E0.9800C9—H9A0.9900
C11B—H11F0.9800C9—H9B0.9900
N1—C21.341 (3)C9—H9C0.9900
N1—C41.375 (3)C9—H9D0.9900
N1—H10.68 (3)C12—H12A0.9800
C2—N31.320 (3)C12—H12B0.9800
C2—C121.495 (3)C12—H12C0.9800
C9—C10A—S1A105.6 (4)N7i—C5—C4117.74 (18)
C9—C10A—H10A110.6N7i—C5—H5A107.9
S1A—C10A—H10A110.6C4—C5—H5A107.9
C9—C10A—H10B110.6N7i—C5—H5B107.9
S1A—C10A—H10B110.6C4—C5—H5B107.9
H10A—C10A—H10B108.8H5A—C5—H5B107.2
C11A—S1A—C10A102.3 (4)N7—C6—C3113.01 (18)
S1A—C11A—H11A109.5N7—C6—H6A109.0
S1A—C11A—H11B109.5C3—C6—H6A109.0
H11A—C11A—H11B109.5N7—C6—H6B109.0
S1A—C11A—H11C109.5C3—C6—H6B109.0
H11A—C11A—H11C109.5H6A—C6—H6B107.8
H11B—C11A—H11C109.5C5i—N7—C8112.67 (19)
C9—C10B—S1B109.0 (4)C5i—N7—C6111.42 (14)
C9—C10B—H10C109.9C8—N7—C6111.0 (2)
S1B—C10B—H10C109.9N7—C8—C9111.8 (2)
C9—C10B—H10D109.9N7—C8—H8A109.3
S1B—C10B—H10D109.9C9—C8—H8A109.3
H10C—C10B—H10D108.3N7—C8—H8B109.3
C11B—S1B—C10B98.5 (3)C9—C8—H8B109.3
S1B—C11B—H11D109.5H8A—C8—H8B107.9
S1B—C11B—H11E109.5C10A—C9—C8120.7 (3)
H11D—C11B—H11E109.5C8—C9—C10B101.1 (3)
S1B—C11B—H11F109.5C10A—C9—H9A107.2
H11D—C11B—H11F109.5C8—C9—H9A107.2
H11E—C11B—H11F109.5C10A—C9—H9B107.2
C2—N1—C4108.65 (16)C8—C9—H9B107.2
C2—N1—H1121 (2)H9A—C9—H9B106.8
C4—N1—H1130 (2)C8—C9—H9C111.6
N3—C2—N1111.29 (19)C10B—C9—H9C111.6
N3—C2—C12125.80 (19)C8—C9—H9D111.6
N1—C2—C12122.85 (19)C10B—C9—H9D111.6
C2—N3—C3105.19 (17)H9C—C9—H9D109.4
C4—C3—N3110.15 (18)C2—C12—H12A109.5
C4—C3—C6129.9 (2)C2—C12—H12B109.5
N3—C3—C6119.93 (17)H12A—C12—H12B109.5
C3—C4—N1104.72 (18)C2—C12—H12C109.5
C3—C4—C5131.3 (2)H12A—C12—H12C109.5
N1—C4—C5124.00 (17)H12B—C12—H12C109.5
C9—C10A—S1A—C11A62.4 (5)C2—N1—C4—C5178.75 (19)
C9—C10B—S1B—C11B64.4 (5)C3—C4—C5—N7i111.7 (3)
C4—N1—C2—N30.9 (3)N1—C4—C5—N7i69.1 (3)
C4—N1—C2—C12176.4 (2)C4—C3—C6—N7117.0 (2)
N1—C2—N3—C30.8 (2)N3—C3—C6—N765.4 (2)
C12—C2—N3—C3176.4 (2)C3—C6—N7—C5i61.5 (2)
C2—N3—C3—C40.4 (2)C3—C6—N7—C8172.04 (17)
C2—N3—C3—C6177.72 (19)C5i—N7—C8—C9156.2 (3)
N3—C3—C4—N10.2 (2)C6—N7—C8—C978.0 (3)
C6—C3—C4—N1178.0 (2)S1A—C10A—C9—C866.8 (5)
N3—C3—C4—C5179.1 (2)N7—C8—C9—C10A169.9 (4)
C6—C3—C4—C51.3 (4)N7—C8—C9—C10B159.8 (3)
C2—N1—C4—C30.6 (2)S1B—C10B—C9—C8177.6 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3ii0.68 (3)2.15 (3)2.825 (2)169 (3)
C6—H6B···S1Aiii0.992.933.837 (3)153
C12—H12A···S1Aiv0.983.013.926 (3)156
C11B—H11D···S1Bv0.981.972.767 (6)137
Symmetry codes: (ii) y1/4, x+3/4, z1/4; (iii) y+5/4, x1/4, z1/4; (iv) x1/2, y, z+1/2; (v) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178).

References

First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMendoza-Díaz, G., Betancourt-Mendiola, M. de L. & Bernès, S. (2010). Acta Cryst. E66, o1958–o1959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMendoza-Díaz, G., Driessen, W. L. & Reedijk, J. (1996). Acta Cryst. C52, 960–962.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMendoza-Díaz, G., Driessen, W. L., Reedijk, J., Gorter, S., Gasque, L. & Thompson, K. R. (2002). Inorg. Chim. Acta, 339, 51–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationMendoza-Quijano, M. R., Ferrer-Sueta, G., Flores-Álamo, M., Aliaga-Alcalde, N., Gómez-Vidales, V., Ugalde-Saldívar, V. M. & Gasque, L. (2012). Dalton Trans. 41, 4985–4997.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZerón, P., Westphal, M., Comba, P., Flores-Álamo, M., Stueckl, A. C., Leal-Cervantes, C., Ugalde-Saldívar, V. M. & Gasque, L. (2017). Eur. J. Inorg. Chem. pp. 56–62.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds