organic compounds
3-Ethoxy-5-phenyl-1H-1,2,4-triazole
aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
The title compound, C10H11N3O, crystallizes in the triclinic P with Z′ = 2. The two independent molecules (A and B) differ in the orientation of the phenyl rings with respect to the plane of the triazine ring, with an interplanar angle of 11.45 (6)° in molecule A and 19.71 (5)° in molecule B, in the opposite sense. In the crystal, classical N—H⋯N hydrogen bonds cross-link the molecules to form chains parallel to the b axis. Two additional `weak' C—H⋯O hydrogen bonds link the chains to form layers parallel to (101).
Keywords: crystal structure; 1,2,4-triazole; pyrazole; synthesis; hydrogen bonding.
CCDC reference: 1904090
Structure description
Cyanoketene S,S-acetals and cyanoketene N,S-acetals are important synthetic intermediates (Elgemeie et al., 2015, 2016, 2017, 2018) that have been used as building blocks to assemble a wide range of (Azzam et al. 2017a,b, 2019; Azzam & Elgemeie, 2019); they are also of general interest in medicinal chemistry (Abu-Zaied & Elgemeie, 2017, 2018; Elgemeie et al. 2017c). Recently, we have reported the synthesis of various antimetabolic agents starting from cyanoketene N,S-acetals (Elgemeie et al. 2006, 2009), cyanoketene S,S-acetals (Elgemeie et al., 2003a, 2017d), and cyanoketene N,N-acetals (Elgemeie et al., 2003b). As a part of this programme, the reaction of (E)-ethyl 3-benzamido-2-cyano-3-(methylthio)acrylate (1) with hydrazine was investigated (Fig. 1). This gave a product whose was not consistent with the proposed pyrazole structure (3). Other spectroscopic measurements did not allow us to identify the product unambiguously and therefore the X-ray was determined, confirming the exclusive presence of the triazole derivative (7) as sole product in the solid state. The formation of (7) is assumed to proceed via initial addition of the basic N atom of hydrazine to the double bond of (1), followed by formation of adduct (4) and elimination of ethyl cyanoacetate. From adduct (4), the favoured, kinetically and thermodynamically controlled product (7) is formed.
Compound (7) crystallizes with two molecules (A and B) in the linked by the hydrogen bond N1—H01⋯N4′ (Table 1 and Fig. 2). The triazine rings of the two molecules subtend an interplanar angle of 74.75 (4)°. The was chosen so that the molecules are linked by a hydrogen bond, but the best least-squares fit (r.m.s. deviation 0.057 Å excluding C12, C13, C15, C16) is obtained when one molecule is inverted (Fig. 3). The molecules differ in the orientation of the phenyl ring, whereby the interplanar angle to the triazine ring is 11.45 (6)° in molecule A (unprimed atoms) but 19.71 (5)° in molecule B (in the opposite sense).
In the crystal, molecules are linked by two classical hydrogen bonds, N1—H01⋯N4′ (within the asymmetric unit) and N1′—H01⋯N4 (by b-axis translation), to form chains parallel to the b axis. Weak intermolecular hydrogen bonds, C13—H13⋯O1′ and C15′—H15′⋯N2 (for operators see Table 1) cross-link these chains to form layers parallel to (101) (Table 1 and Fig. 4).
The Cambridge Structural Database (Groom et al., 2016) contains no other example of a 1,2,4-triazine, unsubstituted at N1, with an oxygen substituent at C3. There are eight examples of a 1,2,4-triazine with a phenyl substituent at C5: refcodes DIWZOA (Othman et al., 2014a), DOLCAJ (Dolzhenko et al., 2009), HIYTAM (Othman et al., 2014a), IBOMAP (two polymorphs of the 3,5-diphenyl derivative; Brough et al., 2011 and Sudheendran et al., 2014), LAGCAX (Carlsen et al., 1991), SISNIS (Buzykin et al., 2006), URELIN (Zhu et al., 2011), XUHBEJ (De Rosa et al., 2014).
Synthesis and crystallization
Hydrazine hydrate (1 mmol) was added to a solution of (E)-ethyl 3-benzamido-2-cyano-3-(methylthio)acrylate (1) (1 mmol) in ethanol (20 ml) containing a few drops of piperidine. The mixture was heated under reflux with continuous stirring for 2 h, then poured onto ice. The solid product was filtered off, dried and recrystallized from ethanol to afford compound (7) as colourless crystals (yield 60%, m.p. 393 K). 1H NMR (400 MHz, DMSO): δ 1.37 (t, 3H, CH3), 4.34 (q, 2H, CH2), 7.47–7.93 (m, 5H, Ph), 13.72 (s, H, NH-triazole). Analysis: calculated for C10H11N3O (189.21): C, 63.48; H, 5.86; N, 22.21. Found: C, 63.25; H, 5.62; N, 22.44.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1904090
https://doi.org/10.1107/S241431461900378X/su4171sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461900378X/su4171Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461900378X/su4171Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).C10H11N3O | Z = 4 |
Mr = 189.22 | F(000) = 400 |
Triclinic, P1 | Dx = 1.343 Mg m−3 |
a = 8.0664 (4) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 10.0476 (5) Å | Cell parameters from 16098 reflections |
c = 12.5229 (5) Å | θ = 3.6–76.1° |
α = 79.554 (4)° | µ = 0.74 mm−1 |
β = 81.137 (4)° | T = 100 K |
γ = 70.517 (5)° | Lath, colourless |
V = 936.17 (8) Å3 | 0.20 × 0.10 × 0.05 mm |
Oxford Diffraction Xcalibur Atlas Nova diffractometer | 3894 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 3397 reflections with I > 2σ(I) |
Detector resolution: 10.3543 pixels mm-1 | Rint = 0.043 |
ω–scan | θmax = 76.3°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Rigaku OD, 2015) | h = −10→10 |
Tmin = 0.937, Tmax = 1.000 | k = −12→11 |
30281 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: mixed |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0463P)2 + 0.2414P] where P = (Fo2 + 2Fc2)/3 |
3894 reflections | (Δ/σ)max < 0.001 |
263 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 7.6131 (0.0016) x + 0.4132 (0.0052) y - 0.6162 (0.0069) z = 2.2732 (0.0040) * 0.0019 (0.0006) N1 * 0.0006 (0.0006) N2 * -0.0028 (0.0006) C3 * 0.0038 (0.0006) N4 * -0.0035 (0.0006) C5 Rms deviation of fitted atoms = 0.0028 6.9734 (0.0022) x - 1.5826 (0.0053) y - 1.2344 (0.0061) z = 0.9885 (0.0034) Angle to previous plane (with approximate esd) = 11.449 ( 0.057 ) * 0.0008 (0.0008) C11 * -0.0011 (0.0009) C12 * 0.0011 (0.0009) C13 * -0.0008 (0.0009) C14 * 0.0004 (0.0009) C15 * -0.0004 (0.0009) C16 Rms deviation of fitted atoms = 0.0008 3.3871 (0.0042) x + 1.0816 (0.0053) y + 11.8627 (0.0024) z = 4.1527 (0.0012) Angle to previous plane (with approximate esd) = 77.006 ( 0.042 ) * 0.0001 (0.0006) N1' * -0.0006 (0.0006) N2' * 0.0009 (0.0007) C3' * -0.0008 (0.0006) N4' * 0.0004 (0.0006) C5' Rms deviation of fitted atoms = 0.0006 3.7369 (0.0034) x + 4.3701 (0.0047) y + 11.6356 (0.0025) z = 4.0750 (0.0012) Angle to previous plane (with approximate esd) = 19.712 ( 0.046 ) * -0.0014 (0.0008) C11' * 0.0001 (0.0008) C12' * 0.0008 (0.0009) C13' * -0.0005 (0.0009) C14' * -0.0008 (0.0009) C15' * 0.0017 (0.0008) C16' Rms deviation of fitted atoms = 0.0010 |
x | y | z | Uiso*/Ueq | ||
N1 | 0.30398 (12) | 0.33959 (10) | 0.29129 (7) | 0.0186 (2) | |
H01 | 0.309 (2) | 0.2538 (18) | 0.2700 (13) | 0.033 (4)* | |
N2 | 0.31227 (12) | 0.34480 (10) | 0.39915 (7) | 0.0189 (2) | |
C3 | 0.30430 (14) | 0.47855 (12) | 0.39607 (9) | 0.0173 (2) | |
N4 | 0.29269 (12) | 0.55939 (10) | 0.29610 (7) | 0.0184 (2) | |
C5 | 0.29156 (14) | 0.46660 (12) | 0.23169 (9) | 0.0176 (2) | |
C6 | 0.31423 (15) | 0.44416 (12) | 0.58656 (9) | 0.0205 (2) | |
H6A | 0.367766 | 0.477794 | 0.638132 | 0.025* | |
H6B | 0.390314 | 0.346689 | 0.574971 | 0.025* | |
C7 | 0.13224 (15) | 0.44054 (13) | 0.63501 (9) | 0.0245 (2) | |
H7A | 0.055441 | 0.537604 | 0.643488 | 0.037* | |
H7B | 0.140288 | 0.381170 | 0.706524 | 0.037* | |
H7C | 0.082810 | 0.400500 | 0.586489 | 0.037* | |
C11 | 0.27486 (14) | 0.49708 (12) | 0.11405 (9) | 0.0191 (2) | |
C12 | 0.29281 (16) | 0.62379 (13) | 0.05453 (9) | 0.0236 (2) | |
H12 | 0.314085 | 0.691340 | 0.090316 | 0.028* | |
C13 | 0.27955 (17) | 0.65127 (13) | −0.05738 (10) | 0.0259 (3) | |
H13 | 0.292318 | 0.737445 | −0.097986 | 0.031* | |
C14 | 0.24777 (16) | 0.55318 (13) | −0.10967 (9) | 0.0251 (3) | |
H14 | 0.238324 | 0.572415 | −0.185999 | 0.030* | |
C15 | 0.22973 (18) | 0.42703 (14) | −0.05082 (10) | 0.0286 (3) | |
H15 | 0.208292 | 0.359830 | −0.086908 | 0.034* | |
C16 | 0.24296 (17) | 0.39880 (13) | 0.06086 (10) | 0.0256 (3) | |
H16 | 0.230276 | 0.312403 | 0.101083 | 0.031* | |
O1 | 0.30570 (10) | 0.53820 (8) | 0.48320 (6) | 0.01994 (18) | |
N1' | 0.34778 (13) | −0.16318 (10) | 0.26565 (8) | 0.0196 (2) | |
H01' | 0.325 (2) | −0.2465 (18) | 0.2761 (12) | 0.030 (4)* | |
N2' | 0.51220 (13) | −0.15849 (10) | 0.21821 (8) | 0.0208 (2) | |
C3' | 0.49143 (15) | −0.02159 (12) | 0.21179 (9) | 0.0196 (2) | |
N4' | 0.33042 (13) | 0.06147 (10) | 0.25005 (7) | 0.0197 (2) | |
C5' | 0.24252 (15) | −0.03317 (12) | 0.28387 (8) | 0.0185 (2) | |
C6' | 0.78367 (15) | −0.05107 (13) | 0.12871 (10) | 0.0240 (2) | |
H6'1 | 0.808590 | −0.147414 | 0.171531 | 0.029* | |
H6'2 | 0.879139 | −0.012801 | 0.135839 | 0.029* | |
C7' | 0.78071 (18) | −0.06106 (14) | 0.01023 (10) | 0.0293 (3) | |
H7'1 | 0.686086 | −0.098850 | 0.003246 | 0.044* | |
H7'2 | 0.894582 | −0.124760 | −0.017045 | 0.044* | |
H7'3 | 0.759557 | 0.033952 | −0.032440 | 0.044* | |
C11' | 0.05810 (15) | −0.00021 (12) | 0.33152 (8) | 0.0192 (2) | |
C12' | −0.05513 (16) | 0.13969 (12) | 0.31547 (10) | 0.0238 (2) | |
H12' | −0.012250 | 0.212809 | 0.274291 | 0.029* | |
C13' | −0.23009 (16) | 0.17204 (13) | 0.35957 (10) | 0.0263 (3) | |
H13' | −0.306704 | 0.267400 | 0.348484 | 0.032* | |
C14' | −0.29414 (16) | 0.06579 (13) | 0.41993 (10) | 0.0248 (3) | |
H14' | −0.414184 | 0.088374 | 0.449939 | 0.030* | |
C15' | −0.18179 (16) | −0.07356 (13) | 0.43617 (10) | 0.0248 (2) | |
H15' | −0.225243 | −0.146391 | 0.477316 | 0.030* | |
C16' | −0.00612 (16) | −0.10682 (12) | 0.39246 (9) | 0.0227 (2) | |
H16' | 0.070371 | −0.202176 | 0.404035 | 0.027* | |
O1' | 0.61578 (11) | 0.04083 (9) | 0.17153 (7) | 0.02334 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0236 (5) | 0.0149 (5) | 0.0175 (4) | −0.0067 (4) | −0.0006 (3) | −0.0030 (3) |
N2 | 0.0221 (4) | 0.0173 (5) | 0.0173 (4) | −0.0064 (4) | −0.0009 (3) | −0.0029 (3) |
C3 | 0.0169 (5) | 0.0172 (5) | 0.0179 (5) | −0.0059 (4) | 0.0001 (4) | −0.0032 (4) |
N4 | 0.0201 (4) | 0.0162 (4) | 0.0189 (4) | −0.0065 (4) | −0.0003 (3) | −0.0023 (3) |
C5 | 0.0170 (5) | 0.0151 (5) | 0.0201 (5) | −0.0053 (4) | 0.0003 (4) | −0.0025 (4) |
C6 | 0.0223 (5) | 0.0222 (6) | 0.0169 (5) | −0.0072 (4) | −0.0023 (4) | −0.0017 (4) |
C7 | 0.0237 (6) | 0.0266 (6) | 0.0224 (5) | −0.0088 (5) | 0.0002 (4) | −0.0018 (4) |
C11 | 0.0196 (5) | 0.0177 (5) | 0.0191 (5) | −0.0053 (4) | −0.0002 (4) | −0.0028 (4) |
C12 | 0.0315 (6) | 0.0178 (5) | 0.0221 (5) | −0.0088 (5) | −0.0018 (4) | −0.0030 (4) |
C13 | 0.0345 (6) | 0.0185 (6) | 0.0225 (6) | −0.0083 (5) | −0.0006 (5) | 0.0008 (4) |
C14 | 0.0310 (6) | 0.0242 (6) | 0.0180 (5) | −0.0065 (5) | −0.0024 (4) | −0.0016 (4) |
C15 | 0.0426 (7) | 0.0235 (6) | 0.0232 (6) | −0.0133 (5) | −0.0065 (5) | −0.0040 (5) |
C16 | 0.0364 (6) | 0.0206 (6) | 0.0224 (6) | −0.0132 (5) | −0.0038 (5) | −0.0008 (4) |
O1 | 0.0254 (4) | 0.0186 (4) | 0.0173 (4) | −0.0088 (3) | −0.0012 (3) | −0.0034 (3) |
N1' | 0.0228 (5) | 0.0154 (5) | 0.0210 (4) | −0.0077 (4) | 0.0003 (3) | −0.0028 (3) |
N2' | 0.0231 (5) | 0.0182 (5) | 0.0216 (4) | −0.0083 (4) | 0.0004 (4) | −0.0030 (4) |
C3' | 0.0246 (5) | 0.0181 (5) | 0.0176 (5) | −0.0091 (4) | −0.0010 (4) | −0.0025 (4) |
N4' | 0.0249 (5) | 0.0160 (5) | 0.0188 (4) | −0.0079 (4) | −0.0006 (3) | −0.0026 (3) |
C5' | 0.0257 (5) | 0.0145 (5) | 0.0159 (5) | −0.0070 (4) | −0.0030 (4) | −0.0016 (4) |
C6' | 0.0232 (5) | 0.0223 (6) | 0.0267 (6) | −0.0088 (5) | 0.0002 (4) | −0.0033 (4) |
C7' | 0.0347 (6) | 0.0254 (6) | 0.0260 (6) | −0.0094 (5) | 0.0032 (5) | −0.0043 (5) |
C11' | 0.0239 (5) | 0.0176 (5) | 0.0170 (5) | −0.0074 (4) | −0.0026 (4) | −0.0030 (4) |
C12' | 0.0269 (6) | 0.0173 (6) | 0.0267 (6) | −0.0081 (5) | −0.0023 (4) | 0.0000 (4) |
C13' | 0.0256 (6) | 0.0186 (6) | 0.0321 (6) | −0.0045 (5) | −0.0026 (5) | −0.0016 (5) |
C14' | 0.0231 (5) | 0.0244 (6) | 0.0257 (6) | −0.0073 (5) | 0.0000 (4) | −0.0031 (5) |
C15' | 0.0291 (6) | 0.0205 (6) | 0.0247 (6) | −0.0107 (5) | 0.0014 (4) | −0.0008 (4) |
C16' | 0.0273 (6) | 0.0164 (5) | 0.0232 (5) | −0.0063 (4) | −0.0011 (4) | −0.0017 (4) |
O1' | 0.0261 (4) | 0.0192 (4) | 0.0264 (4) | −0.0113 (3) | 0.0036 (3) | −0.0049 (3) |
N1—C5 | 1.3372 (14) | N1'—C5' | 1.3372 (14) |
N1—N2 | 1.3739 (13) | N1'—N2' | 1.3795 (13) |
N1—H01 | 0.935 (17) | N1'—H01' | 0.898 (17) |
N2—C3 | 1.3176 (15) | N2'—C3' | 1.3179 (15) |
C3—O1 | 1.3399 (13) | C3'—O1' | 1.3428 (14) |
C3—N4 | 1.3610 (14) | C3'—N4' | 1.3576 (15) |
N4—C5 | 1.3418 (14) | N4'—C5' | 1.3407 (15) |
C5—C11 | 1.4670 (15) | C5'—C11' | 1.4656 (15) |
C6—O1 | 1.4537 (13) | C6'—O1' | 1.4477 (14) |
C6—C7 | 1.5092 (15) | C6'—C7' | 1.5095 (17) |
C6—H6A | 0.9900 | C6'—H6'1 | 0.9900 |
C6—H6B | 0.9900 | C6'—H6'2 | 0.9900 |
C7—H7A | 0.9800 | C7'—H7'1 | 0.9800 |
C7—H7B | 0.9800 | C7'—H7'2 | 0.9800 |
C7—H7C | 0.9800 | C7'—H7'3 | 0.9800 |
C11—C12 | 1.3940 (16) | C11'—C12' | 1.3958 (16) |
C11—C16 | 1.3949 (17) | C11'—C16' | 1.3964 (16) |
C12—C13 | 1.3921 (16) | C12'—C13' | 1.3861 (17) |
C12—H12 | 0.9500 | C12'—H12' | 0.9500 |
C13—C14 | 1.3857 (18) | C13'—C14' | 1.3903 (17) |
C13—H13 | 0.9500 | C13'—H13' | 0.9500 |
C14—C15 | 1.3864 (17) | C14'—C15' | 1.3893 (17) |
C14—H14 | 0.9500 | C14'—H14' | 0.9500 |
C15—C16 | 1.3892 (16) | C15'—C16' | 1.3896 (17) |
C15—H15 | 0.9500 | C15'—H15' | 0.9500 |
C16—H16 | 0.9500 | C16'—H16' | 0.9500 |
C5—N1—N2 | 110.54 (9) | C5'—N1'—N2' | 110.63 (9) |
C5—N1—H01 | 130.1 (10) | C5'—N1'—H01' | 130.4 (10) |
N2—N1—H01 | 119.4 (10) | N2'—N1'—H01' | 118.8 (10) |
C3—N2—N1 | 101.40 (9) | C3'—N2'—N1' | 100.98 (9) |
N2—C3—O1 | 124.72 (10) | N2'—C3'—O1' | 125.44 (10) |
N2—C3—N4 | 116.09 (10) | N2'—C3'—N4' | 116.40 (10) |
O1—C3—N4 | 119.19 (10) | O1'—C3'—N4' | 118.16 (10) |
C5—N4—C3 | 102.22 (9) | C5'—N4'—C3' | 102.35 (9) |
N1—C5—N4 | 109.75 (9) | N1'—C5'—N4' | 109.64 (10) |
N1—C5—C11 | 123.83 (10) | N1'—C5'—C11' | 124.66 (10) |
N4—C5—C11 | 126.40 (10) | N4'—C5'—C11' | 125.69 (10) |
O1—C6—C7 | 110.87 (9) | O1'—C6'—C7' | 110.59 (10) |
O1—C6—H6A | 109.5 | O1'—C6'—H6'1 | 109.5 |
C7—C6—H6A | 109.5 | C7'—C6'—H6'1 | 109.5 |
O1—C6—H6B | 109.5 | O1'—C6'—H6'2 | 109.5 |
C7—C6—H6B | 109.5 | C7'—C6'—H6'2 | 109.5 |
H6A—C6—H6B | 108.1 | H6'1—C6'—H6'2 | 108.1 |
C6—C7—H7A | 109.5 | C6'—C7'—H7'1 | 109.5 |
C6—C7—H7B | 109.5 | C6'—C7'—H7'2 | 109.5 |
H7A—C7—H7B | 109.5 | H7'1—C7'—H7'2 | 109.5 |
C6—C7—H7C | 109.5 | C6'—C7'—H7'3 | 109.5 |
H7A—C7—H7C | 109.5 | H7'1—C7'—H7'3 | 109.5 |
H7B—C7—H7C | 109.5 | H7'2—C7'—H7'3 | 109.5 |
C12—C11—C16 | 119.61 (10) | C12'—C11'—C16' | 119.52 (11) |
C12—C11—C5 | 120.15 (10) | C12'—C11'—C5' | 119.52 (10) |
C16—C11—C5 | 120.24 (10) | C16'—C11'—C5' | 120.96 (10) |
C13—C12—C11 | 119.94 (11) | C13'—C12'—C11' | 120.06 (11) |
C13—C12—H12 | 120.0 | C13'—C12'—H12' | 120.0 |
C11—C12—H12 | 120.0 | C11'—C12'—H12' | 120.0 |
C14—C13—C12 | 120.13 (11) | C12'—C13'—C14' | 120.41 (11) |
C14—C13—H13 | 119.9 | C12'—C13'—H13' | 119.8 |
C12—C13—H13 | 119.9 | C14'—C13'—H13' | 119.8 |
C13—C14—C15 | 120.14 (11) | C15'—C14'—C13' | 119.69 (11) |
C13—C14—H14 | 119.9 | C15'—C14'—H14' | 120.2 |
C15—C14—H14 | 119.9 | C13'—C14'—H14' | 120.2 |
C14—C15—C16 | 120.06 (12) | C14'—C15'—C16' | 120.25 (11) |
C14—C15—H15 | 120.0 | C14'—C15'—H15' | 119.9 |
C16—C15—H15 | 120.0 | C16'—C15'—H15' | 119.9 |
C15—C16—C11 | 120.12 (11) | C15'—C16'—C11' | 120.06 (11) |
C15—C16—H16 | 119.9 | C15'—C16'—H16' | 120.0 |
C11—C16—H16 | 119.9 | C11'—C16'—H16' | 120.0 |
C3—O1—C6 | 115.05 (9) | C3'—O1'—C6' | 116.23 (9) |
C5—N1—N2—C3 | −0.12 (11) | C5'—N1'—N2'—C3' | 0.07 (12) |
N1—N2—C3—O1 | 179.17 (10) | N1'—N2'—C3'—O1' | 179.42 (10) |
N1—N2—C3—N4 | −0.36 (12) | N1'—N2'—C3'—N4' | −0.15 (12) |
N2—C3—N4—C5 | 0.68 (12) | N2'—C3'—N4'—C5' | 0.17 (13) |
O1—C3—N4—C5 | −178.88 (9) | O1'—C3'—N4'—C5' | −179.43 (10) |
N2—N1—C5—N4 | 0.55 (12) | N2'—N1'—C5'—N4' | 0.03 (12) |
N2—N1—C5—C11 | −178.03 (9) | N2'—N1'—C5'—C11' | 178.84 (10) |
C3—N4—C5—N1 | −0.70 (12) | C3'—N4'—C5'—N1' | −0.11 (12) |
C3—N4—C5—C11 | 177.83 (10) | C3'—N4'—C5'—C11' | −178.90 (10) |
N1—C5—C11—C12 | −169.05 (11) | N1'—C5'—C11'—C12' | −159.54 (11) |
N4—C5—C11—C12 | 12.60 (17) | N4'—C5'—C11'—C12' | 19.07 (17) |
N1—C5—C11—C16 | 10.20 (17) | N1'—C5'—C11'—C16' | 20.26 (17) |
N4—C5—C11—C16 | −168.14 (11) | N4'—C5'—C11'—C16' | −161.13 (11) |
C16—C11—C12—C13 | −0.25 (18) | C16'—C11'—C12'—C13' | −0.19 (17) |
C5—C11—C12—C13 | 179.02 (10) | C5'—C11'—C12'—C13' | 179.61 (11) |
C11—C12—C13—C14 | 0.28 (18) | C11'—C12'—C13'—C14' | −0.02 (19) |
C12—C13—C14—C15 | −0.25 (19) | C12'—C13'—C14'—C15' | 0.09 (19) |
C13—C14—C15—C16 | 0.2 (2) | C13'—C14'—C15'—C16' | 0.07 (18) |
C14—C15—C16—C11 | −0.2 (2) | C14'—C15'—C16'—C11' | −0.28 (18) |
C12—C11—C16—C15 | 0.18 (18) | C12'—C11'—C16'—C15' | 0.34 (17) |
C5—C11—C16—C15 | −179.08 (11) | C5'—C11'—C16'—C15' | −179.46 (10) |
N2—C3—O1—C6 | −0.91 (15) | N2'—C3'—O1'—C6' | 2.20 (16) |
N4—C3—O1—C6 | 178.61 (9) | N4'—C3'—O1'—C6' | −178.24 (9) |
C7—C6—O1—C3 | −84.57 (11) | C7'—C6'—O1'—C3' | 87.32 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H01···N4′ | 0.94 (2) | 1.94 (2) | 2.866 (1) | 170 (1) |
N1′—H01′···N4i | 0.90 (2) | 2.02 (2) | 2.916 (1) | 176 (1) |
C13—H13···O1′ii | 0.95 | 2.55 | 3.478 (2) | 165 |
C15′—H15′···N2iii | 0.95 | 2.52 | 3.463 (2) | 172 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z; (iii) −x, −y, −z+1. |
References
Abu-Zaied, M. A. & Elgemeie, G. H. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 713–725. Web of Science CAS PubMed Google Scholar
Abu-Zaied, M. A. & Elgemeie, G. H. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 67–77. Web of Science CAS PubMed Google Scholar
Azzam, R. A. & Elgemeie, G. H. (2019). Med. Chem. Res. 28, 62–70. Web of Science CrossRef CAS Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1820–1822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Ramadan, R. & Jones, P. G. (2017a). Acta Cryst. E73, 752–754. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brough, P., Gambarelli, S., Jacquot, J.-F., Grand, A., Pécaut, J. & Rey, P. (2011). Chem. Eur. J. 17, 11250–11257. Web of Science CSD CrossRef CAS PubMed Google Scholar
Buzykin, B. I., Mironova, E. V., Nabiullin, V. N., Gubaidullin, A. T. & Litvinov, I. A. (2006). Russ. J. Gen. Chem. 76, 1471–1486. Web of Science CrossRef CAS Google Scholar
Carlsen, P. H. J., Gautun, O. R., Samuelsen, E. J., Mårdalen, J., Helgesson, G. & Jagner, S. (1991). Phys. Scr. 44, 214–216. CrossRef CAS Web of Science Google Scholar
De Rosa, M., Arnold, D. & Yennawar, H. (2014). Tetrahedron Lett. 55, 5491–5494. Web of Science CSD CrossRef CAS Google Scholar
Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009). Acta Cryst. E65, o126. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659–673. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Abu-Zaied, M. A. & Nawwar, G. H. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 112–123. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Abu-Zaied, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211–222. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug Des. Dev. Ther. 11, 3389–3399. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., El-Ezbawy, S. R. & Sood, S. A. (2003a). Synth. Commun. 33, 2095–2101. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2003b). Synth. Commun. 33, 1659–1664. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Elsayed, S. H. & Hassan, A. S. (2009). Synth. Commun. 39, 1781–1792. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Elzanaty, A. M., Elghandour, A. H. & Ahmed, S. A. (2006). Synth. Commun. 36, 825–834. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Fathy, N., Zaghary, W. & Farag, A. (2017c). Nucleosides Nucleotides Nucleic Acids, 36, 198–212. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017d). Nucleosides Nucleotides Nucleic Acids, 36, 213–223. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Othman, R. Ben , Marchivie, M., Suzenet, F. & Routier, S. (2014b). Acta Cryst. E70, o622--o623. Google Scholar
Othman, R., Massip, S., Marchivie, M., Jarry, C., Vercouillie, J., Chalon, S., Guillaumet, G., Suzenet, F. & Routier, S. (2014b). Eur. J. Org. Chem. pp. 3225–3231. Web of Science CSD CrossRef Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Sudheendran, K., Schmidt, D., Frey, W., Conrad, J. & Beifuss, U. (2014). Tetrahedron, 70, 1635–1645. Web of Science CSD CrossRef CAS Google Scholar
Zhu, A.-X., Liu, J.-N., Li, Z., Wang, H.-C. & Du, Y.-C. (2011). Acta Cryst. E67, o1208. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.