organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

A triclinic polymorph of N-[5-(di­phenyl­amino)­penta-2,4-diyn-1-yl]benzamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Systems Engineering, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@wakayama-u.ac.jp

Edited by J. Simpson, University of Otago, New Zealand (Received 4 March 2019; accepted 18 March 2019; online 2 April 2019)

The title compound, C24H18N2O, was been described previously in the space group P21/c with Z = 4 [Kawashima & Okuno (2017[Kawashima, T. & Okuno, T. (2017). IUCrData, 2, x170277.]). IUCrData, 2, x170277]. The current P[\overline{1}] polymorph was obtained from a chloro­form–ethanol solution. The mol­ecular structure in this polymorph is slightly different from the previously reported structure, with different dihedral angles of the two N-phenyl groups to the ynamine plane; these are 79.99 (11) and 12.09 (11)° in the polymorph reported here. The mol­ecules form dimers through four C—H⋯π inter­actions. Furthermore, in this polymorph, the mol­ecules stack along the a axis to form a mol­ecular arrangement that would be suitable to promote the solid-state polymerization of di­acetyl­enes.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) is a di­acetyl­ene derivative that has potential solid-state polymerization reactivity. Previously, it was isolated in a monoclinic P21/c polymorph with Z = 4 (Kawashima & Okuno, 2017[Kawashima, T. & Okuno, T. (2017). IUCrData, 2, x170277.]). The current triclinic polymorph was obtained by recrystallizationfrom a mixed solution of chloro­form–ethanol (1:1 v:v).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level and H atoms shown as small spheres.

In the title compound, the N1/C1/C7/C13 ynamine moiety has an almost planar structure (r.m.s. deviation = 0.0239 Å). The C1–C6 and C7–C12 phenyl groups subtend dihedral angles of 79.99 (11) and 12.09 (11)°, respectively, with this plane. This geometric situation is very similar to that reported for 5-(di­phenyl­amino)­penta-2,4-diyn-1-ol (Tokutome et al., 2012[Tokutome, Y., Kubo, N. & Okuno, T. (2012). J. Mol. Struct. 1029, 135-141.]). However, those found in the previously reported polymorph are 52.99 (7) and 21.91 (7)°, showing significant variation from those found in the current structure.

In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds to form one-dimensional stacks along the a axis (Fig. 2[link]). According to Baughman's notation (Baughman, 1974[Baughman, R. H. (1974). J. Polym. Sci. B, 12, 1511-1535.]), the repeating inter­val (the length of the a axis in this case) and inclination angle to the stacking axis (C16—C13—C13ii) are 5.033 (5) Å and 44.27 (7)° [symmetry code: (ii) x + 1, y, z], respectively. This mol­ecular arrangement is suitable for the solid-state polymerization of di­acetyl­enes and the title compound shows polymerization reactivity when exposed to heat or under irradiation by UV light. Weak inter­columnar C—H⋯π inter­actions are also detected between the stacks of mol­ecules (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.88 (3) 2.09 (3) 2.952 (4) 169 (2)
C11—H11⋯Cgii 0.95 2.97 3.822 (5) 150
Symmetry codes: (i) x-1, y, z; (ii) -x-1, -y, -z+2.
[Figure 2]
Figure 2
A view of the inter­molecular inter­actions in the title compound [symmetry codes:(i) x − 1, y, z; (ii) x + 1, y, z; (iii) −x − 1, −y, −z + 2]. Chains of mol­ecules along the a axis with hydrogen bonds are drawn as red dashed line. Ring centroids are shown as red spheres and C—H⋯π(ring) contacts are drawn as blue dashed lines.

Synthesis and crystallization

Preparation was carried out according to Tokutome et al. (2012[Tokutome, Y., Kubo, N. & Okuno, T. (2012). J. Mol. Struct. 1029, 135-141.]), Tokutome & Okuno (2013[Tokutome, Y. & Okuno, T. (2013). J. Mol. Struct. 1047, 136-142.]) and Tabata et al. (2012[Tabata, H., Tokoyama, H., Yamakado, H. & Okuno, T. (2012). J. Mater. Chem. 22, 115-122.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H18N2O
Mr 350.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 93
a, b, c (Å) 5.033 (5), 11.682 (10), 15.433 (15)
α, β, γ (°) 96.228 (19), 91.207 (14), 94.27 (2)
V3) 899.2 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.10 × 0.07
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Inc., Tokyo, Japan.])
Tmin, Tmax 0.988, 0.994
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 6092, 3091, 2235
Rint 0.040
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.136, 1.05
No. of reflections 3091
No. of parameters 248
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.21
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Inc., Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Inc., Tokyo, Japan.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

N-[5-(Diphenylamino)penta-2,4-diyn-1-yl]benzamide top
Crystal data top
C24H18N2OZ = 2
Mr = 350.42F(000) = 368.00
Triclinic, P1Dx = 1.294 Mg m3
a = 5.033 (5) ÅMo Kα radiation, λ = 0.71075 Å
b = 11.682 (10) ÅCell parameters from 2799 reflections
c = 15.433 (15) Åθ = 2.3–30.8°
α = 96.228 (19)°µ = 0.08 mm1
β = 91.207 (14)°T = 93 K
γ = 94.27 (2)°Block, colorless
V = 899.2 (14) Å30.20 × 0.10 × 0.07 mm
Data collection top
Rigaku Saturn724+
diffractometer
2235 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.040
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 55
Tmin = 0.988, Tmax = 0.994k = 1310
6092 measured reflectionsl = 1818
3091 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.5409P]
where P = (Fo2 + 2Fc2)/3
3091 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.21 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.3363 (3)0.62279 (14)0.63872 (12)0.0291 (4)
N10.0220 (4)0.19512 (16)0.87818 (13)0.0207 (5)
N20.9003 (4)0.57251 (17)0.65461 (14)0.0233 (5)
C10.0880 (5)0.08597 (19)0.82601 (16)0.0201 (5)
C20.2982 (5)0.0755 (2)0.76636 (17)0.0290 (6)
C30.3651 (6)0.0291 (2)0.71730 (17)0.0311 (6)
C40.2210 (5)0.1226 (2)0.72699 (18)0.0309 (6)
C50.0093 (6)0.1117 (2)0.7858 (2)0.0360 (7)
C60.0576 (5)0.0074 (2)0.83586 (19)0.0296 (6)
C70.1784 (5)0.23177 (19)0.94990 (15)0.0193 (5)
C80.1554 (5)0.3459 (2)0.98629 (16)0.0247 (6)
C90.3156 (5)0.3812 (2)1.05424 (17)0.0266 (6)
C100.4954 (5)0.3033 (2)1.08805 (17)0.0268 (6)
C110.5150 (5)0.1893 (2)1.05221 (17)0.0265 (6)
C120.3572 (5)0.1530 (2)0.98362 (16)0.0225 (6)
C130.1717 (5)0.26552 (19)0.84948 (15)0.0192 (5)
C140.3477 (5)0.32555 (19)0.82152 (16)0.0201 (5)
C150.5552 (5)0.39027 (19)0.78986 (15)0.0197 (5)
C160.7342 (5)0.4456 (2)0.75999 (16)0.0228 (6)
C170.9673 (5)0.5097 (2)0.72805 (18)0.0295 (6)
C181.1009 (5)0.6262 (2)0.61485 (16)0.0212 (5)
C191.0257 (5)0.6922 (2)0.54136 (15)0.0208 (5)
C201.1882 (5)0.7891 (2)0.52703 (17)0.0280 (6)
C211.1243 (6)0.8541 (3)0.46038 (19)0.0394 (7)
C220.9044 (6)0.8206 (3)0.40727 (19)0.0435 (8)
C230.7433 (6)0.7230 (3)0.41991 (18)0.0423 (8)
C240.8052 (5)0.6589 (2)0.48719 (17)0.0296 (6)
H10.732 (5)0.581 (2)0.6428 (17)0.024 (7)*
H20.397010.140180.758970.0348*
H30.511420.036510.676670.0374*
H40.267530.194410.693170.0370*
H50.091630.1760.792110.0432*
H60.203110.000240.87680.0355*
H80.029880.399760.964630.0296*
H90.302320.459951.078070.0319*
H100.603440.327891.135190.0322*
H110.638040.135271.074810.0317*
H120.371270.074320.959690.0270*
H17A1.047710.565180.776210.0354*
H17B1.101830.454950.70980.0354*
H201.34340.811050.562830.0337*
H211.232920.921720.451640.0473*
H220.862190.864730.361370.0522*
H230.59140.700010.38280.0508*
H240.695290.591720.496030.0355*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0180 (10)0.0335 (10)0.0378 (11)0.0014 (8)0.0027 (8)0.0134 (8)
N10.0225 (12)0.0160 (10)0.0231 (12)0.0025 (8)0.0054 (9)0.0010 (8)
N20.0148 (12)0.0251 (12)0.0316 (13)0.0014 (9)0.0025 (10)0.0103 (9)
C10.0244 (14)0.0133 (12)0.0221 (13)0.0020 (10)0.0076 (11)0.0017 (10)
C20.0363 (16)0.0226 (14)0.0283 (15)0.0074 (11)0.0008 (12)0.0000 (11)
C30.0362 (17)0.0286 (15)0.0260 (15)0.0009 (12)0.0026 (12)0.0054 (11)
C40.0357 (17)0.0200 (14)0.0343 (16)0.0034 (11)0.0137 (13)0.0068 (11)
C50.0304 (16)0.0195 (14)0.058 (2)0.0060 (11)0.0070 (14)0.0022 (13)
C60.0235 (14)0.0228 (14)0.0426 (17)0.0001 (11)0.0004 (12)0.0054 (12)
C70.0196 (13)0.0208 (13)0.0175 (13)0.0006 (10)0.0010 (10)0.0034 (10)
C80.0277 (14)0.0190 (13)0.0262 (14)0.0060 (10)0.0055 (11)0.0012 (10)
C90.0347 (16)0.0178 (13)0.0257 (14)0.0012 (11)0.0035 (12)0.0044 (10)
C100.0293 (15)0.0271 (14)0.0241 (14)0.0026 (11)0.0063 (11)0.0012 (11)
C110.0302 (15)0.0216 (13)0.0279 (15)0.0029 (11)0.0081 (12)0.0062 (11)
C120.0288 (14)0.0143 (12)0.0240 (14)0.0012 (10)0.0036 (11)0.0020 (10)
C130.0190 (13)0.0191 (12)0.0193 (13)0.0017 (10)0.0009 (10)0.0019 (10)
C140.0218 (13)0.0169 (12)0.0217 (13)0.0037 (10)0.0011 (11)0.0006 (10)
C150.0196 (13)0.0203 (12)0.0198 (13)0.0030 (10)0.0009 (10)0.0034 (10)
C160.0221 (14)0.0207 (13)0.0267 (14)0.0045 (10)0.0014 (11)0.0058 (10)
C170.0188 (14)0.0348 (15)0.0385 (17)0.0033 (11)0.0021 (12)0.0192 (13)
C180.0186 (14)0.0196 (13)0.0251 (14)0.0013 (10)0.0056 (11)0.0001 (10)
C190.0192 (13)0.0246 (13)0.0181 (13)0.0038 (10)0.0037 (10)0.0015 (10)
C200.0287 (15)0.0295 (15)0.0255 (15)0.0014 (11)0.0006 (12)0.0036 (11)
C210.0464 (19)0.0396 (17)0.0358 (17)0.0045 (14)0.0084 (14)0.0175 (13)
C220.0411 (19)0.069 (2)0.0262 (17)0.0170 (16)0.0050 (14)0.0219 (15)
C230.0315 (17)0.076 (2)0.0196 (15)0.0056 (15)0.0010 (12)0.0039 (14)
C240.0283 (15)0.0388 (16)0.0205 (14)0.0007 (12)0.0050 (12)0.0002 (11)
Geometric parameters (Å, º) top
O1—C181.238 (3)C19—C241.381 (4)
N1—C11.445 (3)C20—C211.389 (4)
N1—C71.419 (3)C21—C221.371 (4)
N1—C131.342 (3)C22—C231.382 (5)
N2—C171.462 (4)C23—C241.388 (4)
N2—C181.344 (3)N2—H10.88 (3)
C1—C21.377 (4)C2—H20.950
C1—C61.378 (4)C3—H30.950
C2—C31.381 (3)C4—H40.950
C3—C41.375 (4)C5—H50.950
C4—C51.374 (4)C6—H60.950
C5—C61.385 (4)C8—H80.950
C7—C81.385 (3)C9—H90.950
C7—C121.388 (3)C10—H100.950
C8—C91.383 (4)C11—H110.950
C9—C101.385 (4)C12—H120.950
C10—C111.381 (3)C17—H17A0.990
C11—C121.386 (4)C17—H17B0.990
C13—C141.205 (3)C20—H200.950
C14—C151.373 (3)C21—H210.950
C15—C161.199 (3)C22—H220.950
C16—C171.468 (4)C23—H230.950
C18—C191.496 (4)C24—H240.950
C19—C201.387 (4)
C1—N1—C7120.96 (19)C18—N2—H1122.4 (17)
C1—N1—C13117.0 (2)C1—C2—H2120.071
C7—N1—C13121.57 (19)C3—C2—H2120.068
C17—N2—C18118.0 (2)C2—C3—H3119.845
N1—C1—C2119.6 (2)C4—C3—H3119.829
N1—C1—C6120.4 (2)C3—C4—H4120.118
C2—C1—C6120.1 (2)C5—C4—H4120.116
C1—C2—C3119.9 (2)C4—C5—H5119.851
C2—C3—C4120.3 (3)C6—C5—H5119.851
C3—C4—C5119.8 (2)C1—C6—H6120.160
C4—C5—C6120.3 (3)C5—C6—H6120.160
C1—C6—C5119.7 (3)C7—C8—H8120.094
N1—C7—C8120.5 (2)C9—C8—H8120.082
N1—C7—C12119.9 (2)C8—C9—H9119.555
C8—C7—C12119.6 (2)C10—C9—H9119.551
C7—C8—C9119.8 (2)C9—C10—H10120.499
C8—C9—C10120.9 (2)C11—C10—H10120.495
C9—C10—C11119.0 (2)C10—C11—H11119.660
C10—C11—C12120.7 (2)C12—C11—H11119.674
C7—C12—C11119.9 (2)C7—C12—H12120.027
N1—C13—C14177.7 (2)C11—C12—H12120.023
C13—C14—C15177.6 (3)N2—C17—H17A109.084
C14—C15—C16178.2 (2)N2—C17—H17B109.092
C15—C16—C17175.6 (3)C16—C17—H17A109.078
N2—C17—C16112.6 (2)C16—C17—H17B109.082
O1—C18—N2121.6 (2)H17A—C17—H17B107.829
O1—C18—C19121.6 (2)C19—C20—H20119.955
N2—C18—C19116.7 (2)C21—C20—H20119.953
C18—C19—C20118.0 (2)C20—C21—H21120.056
C18—C19—C24122.5 (2)C22—C21—H21120.062
C20—C19—C24119.5 (2)C21—C22—H22119.708
C19—C20—C21120.1 (2)C23—C22—H22119.707
C20—C21—C22119.9 (3)C22—C23—H23120.233
C21—C22—C23120.6 (3)C24—C23—H23120.242
C22—C23—C24119.5 (3)C19—C24—H24119.798
C19—C24—C23120.4 (2)C23—C24—H24119.790
C17—N2—H1119.1 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.88 (3)2.09 (3)2.952 (4)169 (2)
C11—H11···Cgii0.952.973.822 (5)150
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+2.
 

Acknowledgements

This work was supported by Research for Promoting Technological Seeds from Japan Science and Technology Agency (JST).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaughman, R. H. (1974). J. Polym. Sci. B, 12, 1511–1535.  CAS Google Scholar
First citationKawashima, T. & Okuno, T. (2017). IUCrData, 2, x170277.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTabata, H., Tokoyama, H., Yamakado, H. & Okuno, T. (2012). J. Mater. Chem. 22, 115–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationTokutome, Y., Kubo, N. & Okuno, T. (2012). J. Mol. Struct. 1029, 135–141.  Web of Science CSD CrossRef CAS Google Scholar
First citationTokutome, Y. & Okuno, T. (2013). J. Mol. Struct. 1047, 136–142.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds