organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3-Bis(2-cyanopropan-2-yl)-5-methyl­benzene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur 613 403, Tamil Nadu, India, bDepartment of Chemistry, PRIST Deemed to be University, Thanjavur 613 403, Tamil Nadu, India, and cMolecular Structure Center, Department of Chemistry, Clemson University, 379 Hunter Laboratories, Clemson, SC 29634-0973, USA
*Correspondence e-mail: gomathichemist@gmail.com

Edited by S. Parkin, University of Kentucky, USA (Received 15 January 2019; accepted 19 March 2019; online 5 April 2019)

The complete molecule of the title compound [systematic name: 2,2′-(5-methyl-1,3-phenyl­ene)bis­(2-methyl­propane­nitrile)] is generated by a crystallographic twofold axis, which leads to disorder of the H atoms on the methyl group attached to the benzene ring. The dihedral angle between the benzene ring and the nitrile group is 26.2 (2)°. In the crystal, pairs of weak C—H⋯π inter­actions link mol­ecules into dimers. The mol­ecule absorbs at 212 nm as a result of a ππ* transition.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Anastrazole (1,3-di-(di­methyl­cyano­meth­yl)-5-([1,2,4]triazolylmeth­yl) benzene) is an active pharmaceutical ingredient that is used as a drug in the treatment of postmenopausal endocrine-responsive breast cancer (Varelas et al., 2007[Varelas, F. K., Papanicolaou, A. N., Vavatsi-Christaki, N., Makedos, G. A. & Vlassis, G. D. (2007). Obstet. Gynecol. 110, 643-649.]; Geisler et al., 1996[Geisler, J., King, N., Dowsett, M., Ottestad, L., Lundgren, S., Walton, P., Kormeset, P. O. & Lønning, P. E. (1996). Br. J. Cancer, 74, 1286-1291.]; Dowsett et al., 2001[Dowsett, M., Cuzick, J., Howell, A. & Jackson, I. (2001). Br. J. Cancer, 85, 317-324.]) and it has cytotoxic impact against breast, liver hepatocellular and glandular cancer cells. The title compound, 1,3-di(di­methyl­cyano­meth­yl)-5-methyl­benzene (MCMB) is used as a starting material (Hsieh et al., 2008[Hsieh, H. Y. & Wei, C. P. (2008). Process for preparation of anastrazole, US20080177081 A1.]) for the synthesis of anastrazole we now describe its crystal structure.

The asymmetric unit of the title compound consists of half a mol­ecule of MCMB, with the other half being generated by a crystallographic twofold rotation axis (symmetry operation −x, y, [{3\over 2}] − z) (Fig. 1[link]). Individual bond lengths and angles are unremarkable. The dihedral angle between the benzene ring and the carbo­nitrile moiety is 24.81 (16)°.

[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of 1,3-di(di­methyl­cyano­meth­yl)-5-methyl­benzene (MCMB). Symmetry code: (a) −x, y, [{3\over 2}] − z.

Within the crystal, mol­ecules are linked by C—H⋯π inter­actions, with a C—H⋯Cgi [symmetry code: (i) [{1\over 2}] − x, [{1\over 2}] − y, 2 − z] distance d(C⋯π) of 3.708 (3) Å and a C—H⋯π angle of 158°. The inter­action leads to the formation inversion dimers arranged in a two-dimensional supra­molecular strand-like architecture, linked by C—H⋯π inter­actions, as shown in Fig. 2[link].

[Figure 2]
Figure 2
Inversion dimers linked by C—H⋯π bonds [symmetry code: (i) [{1\over 2}] − x, 1/2 − y, 2 − z] forming supra­molecular strands. H atoms apart from the one that inter­acts with the phenyl group have been omitted to enhance the clarity of the figure.

An electronic transition takes place in the region of 212 nm because of a ππ* transition of the C=C benzene and C≡N nitrile bonds of MCMB. The UV spectrum is shown in Fig. 3[link].

[Figure 3]
Figure 3
UV absorption spectrum of MCMB.

Synthesis and crystallization

The compound MCMB (0.056 mg, 0.25 mmol), obtained as a gift sample, was dissolved in hot methanol and stirred for half an hour. The resulting solution was allowed to cool and stored for slow evaporation. After a week, colorless prismatic crystals were harvested from the mother solution.

IR spectra: νmax(cm−1): (C=C) 1601, 1458, (Ar C—H) 2984, in-plane bending vibration 1001, 1293, out-of-plane bending vibration 707, 867, (C≡N) 2237, (sym and asym CH3) 2874, 2942; 1H NMR (500 MHz, DMSO) δ: 1.7 (s,12H), 2.3 (s, 3H), 7.3 (o, 2H), 7.4 (p, 1H).

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. The H atoms attached to C7 are disordered over two sets of sites..

Table 1
Experimental details

Crystal data
Chemical formula C15H18N2
Mr 226.31
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 13.821 (6), 13.138 (3), 9.473 (3)
β (°) 126.133 (8)
V3) 1389.3 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.52 × 0.24 × 0.13
 
Data collection
Diffractometer Rigaku Mercury
Absorption correction Multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalStructure. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.653, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5988, 1261, 1012
Rint 0.043
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.168, 1.06
No. of reflections 1261
No. of parameters 82
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.14
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), POVRay (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray.org]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POVRay (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2,2'-(5-Methyl-1,3-phenylene)bis(2-methylpropanenitrile) top
Crystal data top
C15H18N2F(000) = 488
Mr = 226.31Dx = 1.082 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1261 reflections
a = 13.821 (6) Åθ = 2.4–25.2°
b = 13.138 (3) ŵ = 0.06 mm1
c = 9.473 (3) ÅT = 298 K
β = 126.133 (8)°Prism, colourless
V = 1389.3 (8) Å30.52 × 0.24 × 0.13 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
1261 independent reflections
Radiation source: Sealed Tube1012 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.043
Detector resolution: 18.4 pixels mm-1θmax = 25.3°, θmin = 2.4°
dtprofit.ref scansh = 1416
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1515
Tmin = 0.653, Tmax = 1.000l = 1111
5988 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0857P)2 + 0.652P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1261 reflectionsΔρmax = 0.18 e Å3
82 parametersΔρmin = 0.14 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All hydrogen atoms were positioned geometrically and were refined using a riding model with C—H bond lengths 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) for CH (aromatic) or 1.5Ueq(C) for CH3.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N100.2028 (3)0.50771 (16)0.8107 (5)0.1065 (13)
C10.07549 (16)0.16087 (13)0.7249 (2)0.0490 (6)
C20.07652 (15)0.26634 (13)0.7246 (2)0.0427 (5)
C30.000000.31872 (17)0.750000.0422 (7)
C40.000000.10686 (19)0.750000.0527 (8)
C50.15448 (16)0.32323 (13)0.6845 (2)0.0476 (6)
C60.1794 (2)0.42686 (15)0.7556 (3)0.0646 (8)
C70.000000.0085 (2)0.750000.0781 (13)
C80.2775 (2)0.27308 (17)0.7686 (3)0.0678 (8)
C90.0871 (2)0.3299 (2)0.4854 (3)0.0848 (10)
H10.126200.125440.708110.0590*
H30.000000.389500.750000.0510*
H7A0.034300.032840.807060.1170*0.500
H7B0.080780.032840.811210.1170*0.500
H7C0.046470.032840.631730.1170*0.500
H8A0.325250.314680.748120.1020*
H8B0.267040.207040.717960.1020*
H8C0.317170.266210.892090.1020*
H9A0.012180.364360.434890.1270*
H9B0.072310.262500.437530.1270*
H9C0.134640.366940.459290.1270*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N100.128 (2)0.0523 (12)0.196 (3)0.0193 (12)0.127 (2)0.0238 (14)
C10.0539 (10)0.0420 (10)0.0613 (11)0.0052 (7)0.0396 (9)0.0001 (7)
C20.0467 (9)0.0415 (9)0.0463 (9)0.0003 (7)0.0310 (7)0.0004 (6)
C30.0464 (12)0.0355 (11)0.0489 (12)0.00000.0305 (11)0.0000
C40.0617 (15)0.0373 (13)0.0668 (15)0.00000.0422 (13)0.0000
C50.0507 (10)0.0452 (10)0.0583 (10)0.0013 (7)0.0385 (9)0.0012 (7)
C60.0697 (13)0.0467 (11)0.1048 (17)0.0001 (9)0.0666 (13)0.0035 (10)
C70.095 (2)0.0386 (15)0.121 (3)0.00000.075 (2)0.0000
C80.0581 (12)0.0590 (12)0.0988 (16)0.0032 (9)0.0531 (12)0.0003 (11)
C90.0824 (16)0.116 (2)0.0638 (13)0.0166 (15)0.0475 (13)0.0137 (13)
Geometric parameters (Å, º) top
N10—C61.143 (3)C7—H7B0.9600
C1—C21.386 (2)C7—H7C0.9600
C1—C41.393 (3)C7—H7Ai0.9600
C2—C31.396 (3)C7—H7Bi0.9600
C2—C51.532 (3)C7—H7Ci0.9600
C4—C71.516 (4)C8—H8A0.9600
C5—C61.467 (3)C8—H8B0.9600
C5—C81.537 (4)C8—H8C0.9600
C5—C91.537 (3)C9—H9A0.9600
C1—H10.9300C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C7—H7A0.9600
C2—C1—C4121.3 (2)H7A—C7—H7C109.00
C1—C2—C3118.9 (2)H7A—C7—H7Ai141.00
C1—C2—C5119.87 (19)H7A—C7—H7Bi56.00
C3—C2—C5121.14 (16)H7A—C7—H7Ci56.00
C2—C3—C2i120.95 (19)H7B—C7—H7C109.00
C1—C4—C7120.62 (12)H7Ai—C7—H7B56.00
C1—C4—C1i118.8 (2)H7B—C7—H7Bi141.00
C1i—C4—C7120.62 (12)H7B—C7—H7Ci56.00
C2—C5—C6110.37 (19)H7Ai—C7—H7C56.00
C2—C5—C8112.78 (16)H7Bi—C7—H7C56.00
C2—C5—C9109.05 (18)H7C—C7—H7Ci141.00
C6—C5—C8105.75 (19)H7Ai—C7—H7Bi109.00
C6—C5—C9108.60 (17)H7Ai—C7—H7Ci109.00
C8—C5—C9110.2 (2)H7Bi—C7—H7Ci109.00
N10—C6—C5177.2 (4)C5—C8—H8A109.00
C2—C1—H1119.00C5—C8—H8B109.00
C4—C1—H1119.00C5—C8—H8C110.00
C2—C3—H3120.00H8A—C8—H8B109.00
C2i—C3—H3120.00H8A—C8—H8C109.00
C4—C7—H7A109.00H8B—C8—H8C109.00
C4—C7—H7B109.00C5—C9—H9A109.00
C4—C7—H7C109.00C5—C9—H9B109.00
C4—C7—H7Ai109.00C5—C9—H9C109.00
C4—C7—H7Bi109.00H9A—C9—H9B109.00
C4—C7—H7Ci109.00H9A—C9—H9C109.00
H7A—C7—H7B109.00H9B—C9—H9C109.00
C4—C1—C2—C30.0 (2)C1—C2—C5—C6157.97 (17)
C4—C1—C2—C5175.93 (12)C1—C2—C5—C840.0 (2)
C2—C1—C4—C7180.00 (12)C1—C2—C5—C982.8 (2)
C2—C1—C4—C1i0.00 (17)C3—C2—C5—C626.2 (2)
C1—C2—C3—C2i0.02 (18)C3—C2—C5—C8144.25 (15)
C5—C2—C3—C2i175.86 (12)C3—C2—C5—C992.99 (19)
Symmetry code: (i) x, y, z+3/2.
 

Acknowledgements

The authors thank Mr Sunil Kumar, Research Scholar, Department of Chemistry, Periyar Maniammai Institute of Science and Technology, for the gift of a sample.

References

First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray.org  Google Scholar
First citationDowsett, M., Cuzick, J., Howell, A. & Jackson, I. (2001). Br. J. Cancer, 85, 317–324.  Web of Science PubMed CAS Google Scholar
First citationGeisler, J., King, N., Dowsett, M., Ottestad, L., Lundgren, S., Walton, P., Kormeset, P. O. & Lønning, P. E. (1996). Br. J. Cancer, 74, 1286–1291.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHsieh, H. Y. & Wei, C. P. (2008). Process for preparation of anastrazole, US20080177081 A1.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2008). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarelas, F. K., Papanicolaou, A. N., Vavatsi-Christaki, N., Makedos, G. A. & Vlassis, G. D. (2007). Obstet. Gynecol. 110, 643–649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds