organic compounds
1,3-Bis(2-cyanopropan-2-yl)-5-methylbenzene
aDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur 613 403, Tamil Nadu, India, bDepartment of Chemistry, PRIST Deemed to be University, Thanjavur 613 403, Tamil Nadu, India, and cMolecular Structure Center, Department of Chemistry, Clemson University, 379 Hunter Laboratories, Clemson, SC 29634-0973, USA
*Correspondence e-mail: gomathichemist@gmail.com
The complete molecule of the title compound [systematic name: 2,2′-(5-methyl-1,3-phenylene)bis(2-methylpropanenitrile)] is generated by a crystallographic twofold axis, which leads to disorder of the H atoms on the methyl group attached to the benzene ring. The dihedral angle between the benzene ring and the nitrile group is 26.2 (2)°. In the crystal, pairs of weak C—H⋯π interactions link molecules into dimers. The molecule absorbs at 212 nm as a result of a π–π* transition.
Keywords: 1,3-di(dimethylcyanomethyl)-5-methylbenzene; spectroscopic studies; crystal structure; non-covalent interaction.
CCDC reference: 1904010
Structure description
Anastrazole (1,3-di-(dimethylcyanomethyl)-5-([1,2,4]triazolylmethyl) benzene) is an active pharmaceutical ingredient that is used as a drug in the treatment of postmenopausal endocrine-responsive breast cancer (Varelas et al., 2007; Geisler et al., 1996; Dowsett et al., 2001) and it has cytotoxic impact against breast, liver hepatocellular and glandular cancer cells. The title compound, 1,3-di(dimethylcyanomethyl)-5-methylbenzene (MCMB) is used as a starting material (Hsieh et al., 2008) for the synthesis of anastrazole we now describe its crystal structure.
The x, y, − z) (Fig. 1). Individual bond lengths and angles are unremarkable. The dihedral angle between the benzene ring and the carbonitrile moiety is 24.81 (16)°.
of the title compound consists of half a molecule of MCMB, with the other half being generated by a crystallographic twofold rotation axis (symmetry operation −Within the crystal, molecules are linked by C—H⋯π interactions, with a C—H⋯Cgi [symmetry code: (i) − x, − y, 2 − z] distance d(C⋯π) of 3.708 (3) Å and a C—H⋯π angle of 158°. The interaction leads to the formation inversion dimers arranged in a two-dimensional supramolecular strand-like architecture, linked by C—H⋯π interactions, as shown in Fig. 2.
An electronic transition takes place in the region of 212 nm because of a π–π* transition of the C=C benzene and C≡N nitrile bonds of MCMB. The UV spectrum is shown in Fig. 3.
Synthesis and crystallization
The compound MCMB (0.056 mg, 0.25 mmol), obtained as a gift sample, was dissolved in hot methanol and stirred for half an hour. The resulting solution was allowed to cool and stored for slow evaporation. After a week, colorless prismatic crystals were harvested from the mother solution.
IR spectra: νmax(cm−1): (C=C) 1601, 1458, (Ar C—H) 2984, in-plane bending vibration 1001, 1293, out-of-plane bending vibration 707, 867, (C≡N) 2237, (sym and asym CH3) 2874, 2942; 1H NMR (500 MHz, DMSO) δ: 1.7 (s,12H), 2.3 (s, 3H), 7.3 (o, 2H), 7.4 (p, 1H).
Refinement
Crystal data, data collection, and structure . The H atoms attached to C7 are disordered over two sets of sites..
details are summarized in Table 1Structural data
CCDC reference: 1904010
https://doi.org/10.1107/S2414314619003766/pk4023sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619003766/pk4023Isup2.hkl
Spectroscopic information. DOI: https://doi.org/10.1107/S2414314619003766/pk4023sup3.doc
Supporting information file. DOI: https://doi.org/10.1107/S2414314619003766/pk4023Isup4.cml
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POVRay (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C15H18N2 | F(000) = 488 |
Mr = 226.31 | Dx = 1.082 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1261 reflections |
a = 13.821 (6) Å | θ = 2.4–25.2° |
b = 13.138 (3) Å | µ = 0.06 mm−1 |
c = 9.473 (3) Å | T = 298 K |
β = 126.133 (8)° | Prism, colourless |
V = 1389.3 (8) Å3 | 0.52 × 0.24 × 0.13 mm |
Z = 4 |
Rigaku Mercury diffractometer | 1261 independent reflections |
Radiation source: Sealed Tube | 1012 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.043 |
Detector resolution: 18.4 pixels mm-1 | θmax = 25.3°, θmin = 2.4° |
dtprofit.ref scans | h = −14→16 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | k = −15→15 |
Tmin = 0.653, Tmax = 1.000 | l = −11→11 |
5988 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.168 | w = 1/[σ2(Fo2) + (0.0857P)2 + 0.652P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1261 reflections | Δρmax = 0.18 e Å−3 |
82 parameters | Δρmin = −0.14 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. All hydrogen atoms were positioned geometrically and were refined using a riding model with C—H bond lengths 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) for CH (aromatic) or 1.5Ueq(C) for CH3. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N10 | 0.2028 (3) | 0.50771 (16) | 0.8107 (5) | 0.1065 (13) | |
C1 | 0.07549 (16) | 0.16087 (13) | 0.7249 (2) | 0.0490 (6) | |
C2 | 0.07652 (15) | 0.26634 (13) | 0.7246 (2) | 0.0427 (5) | |
C3 | 0.00000 | 0.31872 (17) | 0.75000 | 0.0422 (7) | |
C4 | 0.00000 | 0.10686 (19) | 0.75000 | 0.0527 (8) | |
C5 | 0.15448 (16) | 0.32323 (13) | 0.6845 (2) | 0.0476 (6) | |
C6 | 0.1794 (2) | 0.42686 (15) | 0.7556 (3) | 0.0646 (8) | |
C7 | 0.00000 | −0.0085 (2) | 0.75000 | 0.0781 (13) | |
C8 | 0.2775 (2) | 0.27308 (17) | 0.7686 (3) | 0.0678 (8) | |
C9 | 0.0871 (2) | 0.3299 (2) | 0.4854 (3) | 0.0848 (10) | |
H1 | 0.12620 | 0.12544 | 0.70811 | 0.0590* | |
H3 | 0.00000 | 0.38950 | 0.75000 | 0.0510* | |
H7A | −0.03430 | −0.03284 | 0.80706 | 0.1170* | 0.500 |
H7B | 0.08078 | −0.03284 | 0.81121 | 0.1170* | 0.500 |
H7C | −0.04647 | −0.03284 | 0.63173 | 0.1170* | 0.500 |
H8A | 0.32525 | 0.31468 | 0.74812 | 0.1020* | |
H8B | 0.26704 | 0.20704 | 0.71796 | 0.1020* | |
H8C | 0.31717 | 0.26621 | 0.89209 | 0.1020* | |
H9A | 0.01218 | 0.36436 | 0.43489 | 0.1270* | |
H9B | 0.07231 | 0.26250 | 0.43753 | 0.1270* | |
H9C | 0.13464 | 0.36694 | 0.45929 | 0.1270* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N10 | 0.128 (2) | 0.0523 (12) | 0.196 (3) | −0.0193 (12) | 0.127 (2) | −0.0238 (14) |
C1 | 0.0539 (10) | 0.0420 (10) | 0.0613 (11) | 0.0052 (7) | 0.0396 (9) | 0.0001 (7) |
C2 | 0.0467 (9) | 0.0415 (9) | 0.0463 (9) | 0.0003 (7) | 0.0310 (7) | 0.0004 (6) |
C3 | 0.0464 (12) | 0.0355 (11) | 0.0489 (12) | 0.0000 | 0.0305 (11) | 0.0000 |
C4 | 0.0617 (15) | 0.0373 (13) | 0.0668 (15) | 0.0000 | 0.0422 (13) | 0.0000 |
C5 | 0.0507 (10) | 0.0452 (10) | 0.0583 (10) | 0.0013 (7) | 0.0385 (9) | 0.0012 (7) |
C6 | 0.0697 (13) | 0.0467 (11) | 0.1048 (17) | −0.0001 (9) | 0.0666 (13) | 0.0035 (10) |
C7 | 0.095 (2) | 0.0386 (15) | 0.121 (3) | 0.0000 | 0.075 (2) | 0.0000 |
C8 | 0.0581 (12) | 0.0590 (12) | 0.0988 (16) | 0.0032 (9) | 0.0531 (12) | 0.0003 (11) |
C9 | 0.0824 (16) | 0.116 (2) | 0.0638 (13) | −0.0166 (15) | 0.0475 (13) | 0.0137 (13) |
N10—C6 | 1.143 (3) | C7—H7B | 0.9600 |
C1—C2 | 1.386 (2) | C7—H7C | 0.9600 |
C1—C4 | 1.393 (3) | C7—H7Ai | 0.9600 |
C2—C3 | 1.396 (3) | C7—H7Bi | 0.9600 |
C2—C5 | 1.532 (3) | C7—H7Ci | 0.9600 |
C4—C7 | 1.516 (4) | C8—H8A | 0.9600 |
C5—C6 | 1.467 (3) | C8—H8B | 0.9600 |
C5—C8 | 1.537 (4) | C8—H8C | 0.9600 |
C5—C9 | 1.537 (3) | C9—H9A | 0.9600 |
C1—H1 | 0.9300 | C9—H9B | 0.9600 |
C3—H3 | 0.9300 | C9—H9C | 0.9600 |
C7—H7A | 0.9600 | ||
C2—C1—C4 | 121.3 (2) | H7A—C7—H7C | 109.00 |
C1—C2—C3 | 118.9 (2) | H7A—C7—H7Ai | 141.00 |
C1—C2—C5 | 119.87 (19) | H7A—C7—H7Bi | 56.00 |
C3—C2—C5 | 121.14 (16) | H7A—C7—H7Ci | 56.00 |
C2—C3—C2i | 120.95 (19) | H7B—C7—H7C | 109.00 |
C1—C4—C7 | 120.62 (12) | H7Ai—C7—H7B | 56.00 |
C1—C4—C1i | 118.8 (2) | H7B—C7—H7Bi | 141.00 |
C1i—C4—C7 | 120.62 (12) | H7B—C7—H7Ci | 56.00 |
C2—C5—C6 | 110.37 (19) | H7Ai—C7—H7C | 56.00 |
C2—C5—C8 | 112.78 (16) | H7Bi—C7—H7C | 56.00 |
C2—C5—C9 | 109.05 (18) | H7C—C7—H7Ci | 141.00 |
C6—C5—C8 | 105.75 (19) | H7Ai—C7—H7Bi | 109.00 |
C6—C5—C9 | 108.60 (17) | H7Ai—C7—H7Ci | 109.00 |
C8—C5—C9 | 110.2 (2) | H7Bi—C7—H7Ci | 109.00 |
N10—C6—C5 | 177.2 (4) | C5—C8—H8A | 109.00 |
C2—C1—H1 | 119.00 | C5—C8—H8B | 109.00 |
C4—C1—H1 | 119.00 | C5—C8—H8C | 110.00 |
C2—C3—H3 | 120.00 | H8A—C8—H8B | 109.00 |
C2i—C3—H3 | 120.00 | H8A—C8—H8C | 109.00 |
C4—C7—H7A | 109.00 | H8B—C8—H8C | 109.00 |
C4—C7—H7B | 109.00 | C5—C9—H9A | 109.00 |
C4—C7—H7C | 109.00 | C5—C9—H9B | 109.00 |
C4—C7—H7Ai | 109.00 | C5—C9—H9C | 109.00 |
C4—C7—H7Bi | 109.00 | H9A—C9—H9B | 109.00 |
C4—C7—H7Ci | 109.00 | H9A—C9—H9C | 109.00 |
H7A—C7—H7B | 109.00 | H9B—C9—H9C | 109.00 |
C4—C1—C2—C3 | 0.0 (2) | C1—C2—C5—C6 | −157.97 (17) |
C4—C1—C2—C5 | −175.93 (12) | C1—C2—C5—C8 | −40.0 (2) |
C2—C1—C4—C7 | −180.00 (12) | C1—C2—C5—C9 | 82.8 (2) |
C2—C1—C4—C1i | 0.00 (17) | C3—C2—C5—C6 | 26.2 (2) |
C1—C2—C3—C2i | 0.02 (18) | C3—C2—C5—C8 | 144.25 (15) |
C5—C2—C3—C2i | 175.86 (12) | C3—C2—C5—C9 | −92.99 (19) |
Symmetry code: (i) −x, y, −z+3/2. |
Acknowledgements
The authors thank Mr Sunil Kumar, Research Scholar, Department of Chemistry, Periyar Maniammai Institute of Science and Technology, for the gift of a sample.
References
Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray.org Google Scholar
Dowsett, M., Cuzick, J., Howell, A. & Jackson, I. (2001). Br. J. Cancer, 85, 317–324. Web of Science PubMed CAS Google Scholar
Geisler, J., King, N., Dowsett, M., Ottestad, L., Lundgren, S., Walton, P., Kormeset, P. O. & Lønning, P. E. (1996). Br. J. Cancer, 74, 1286–1291. CrossRef CAS PubMed Web of Science Google Scholar
Hsieh, H. Y. & Wei, C. P. (2008). Process for preparation of anastrazole, US20080177081 A1. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku (2008). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Varelas, F. K., Papanicolaou, A. N., Vavatsi-Christaki, N., Makedos, G. A. & Vlassis, G. D. (2007). Obstet. Gynecol. 110, 643–649. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.