organic compounds
(R,R/S,S)-9-Benzyl-3-methyl-7-phenyl-1,6-dioxa-3,9-diazaspiro[4.4]nonane-2,8-dione
aSchool of Chemistry, Monash University, Clayton 3800, Australia, and bSchool of Chemistry, Shahid Beheshti University G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: craig.forsyth@monash.edu
The title compound, C19H18N2O4, a rare example of a spirocyclic orthoamide, was synthesized by a double of a N-Boc protected sarcosine derivative. The of the racemic (R,R/S,S) modification reveals two near-orthogonal five-membered heterocyclic ring systems, each in an envelope configuration.
CCDC reference: 1486263
Structure description
The biological significance of spirocyclic molecules has inspired considerable research towards the discovery of new synthetic routes to such compounds (Rios, 2012). We have recently reported (Nazarian & Forsyth, 2016) the preparation of 1,6-dioxa-3,9-diazaspiro[4,4]nonane-2,8-diones, a new class of spirocyclic othoamide. These were achieved by double of O-acylated hydroxamides utilizing a modification of an analogous procedure for 2-oxy-1,3-oxazolidin-4-ones (Kamimura et al., 2002, 2003, 2006).
As part of this study, we prepared the title compound (B) from the N-Boc-protected sarcosine derivative (A). Two solid B1 and liquid B2 (Fig. 1) were formed with the solid diastereomer B1 as the major product. However, attempted crystallization of B1 in EtOH resulted instead in the formation of crystals of the racemic modification (R,R/S,S), presumably due to thermal instability of the spirocyclic nonane and subsequent change in the configuration profile during crystal growth.
The molecular structure and atom numbering scheme of the title compound are shown in Fig. 2. The structure comprises two approximately orthogonal five-membered heterocyclic ring systems [angle between least squares planes = 87.12 (5)°]. The geometry about the central C1 atom is slightly distorted, with a larger N2—C1—C2 angle of 117.4 (1)°, presumably due to the steric influence of the CH2Ph substituent on N2. The individual heterocycles each have an envelope configuration, on C2 (ring I) and on O3 (ring II) and are similar to previous examples of isolated oxazolidin-2-one or oxazolidine-4-one ring systems (Obijalska et al., 2010; El Bouakher et al., 2016).
The crystal packing of molecules of B1 reveals a weak intermolecular offset π–π ring interaction between parallel, inversion-related, phenyl rings [Cg1⋯Cg1i 4.608 (1) Å, offset 3.196 Å, interplanar separation ca 3.32 Å, Cg1 defined by atoms C7–C12; symmetry code: (i) −x, −y, −z]. In addition, there are minor C—H⋯O and C—H⋯π contacts that link molecules into a supramolecular network (Table 1).
|
A search of the Cambridge Structural Database (CSD Version 5.39, August 2018; Groom et al. 2016) for the 1,6-dioxa-3,9-diazaspiro[4,4]nonane-2,8-dione skeleton yielded hits for three substituted analogues from our previous study (CSD refcodes IAPDIO, IAPDOU, IAPDUA; Nazarian & Forsyth, 2016). Additionally, there was one example of an oxazolidine-4-one ring in a spirocyclic multi-ring natural product analogue (CSD refcode KEMXOR; Oguri et al., 2012) in which the heterocyclic ring has an envelope configuration on the ether oxygen atom, similar to the current structure.
Synthesis and crystallization
(R)-2(Benzylamino)-2-oxo-1-phenylethyl-2-{(t-butoxycarbonyl)(methyl)amino}acetate (A).
To a solution of R-N-benzyl-2-hydroxy-2-phenylacetamide (0.30 g,1.24 mmol) in anhydrous CH2Cl2 at 0°C, were added N-Boc-sarcosine (0.234 g, 1.24 mmol), EDCl·HCl (0.378 g, 1.98 mmol) and DMAP (0.124 g, 0.015 mmol) under an atmosphere of N2. To the resulting suspension, dried Et3N (1.61 mmol) was added dropwise while stirring vigorously. The mixture was warmed to room temperature and stirred for 7–8 h. The resulting mixture was diluted with CH2Cl2, washed successively with 1M HCl(aq) and water, then dried over MgSO4. Solvent removal in vacuo gave a yellow oil that was purified by flash (20% EtOAc/hexanes) to afford the title compound (0.449 g, 88%) as a white foam. (Mixture of two rotomers) 1H NMR (400 MHz, CDCl3) δ 7.47–7.20 (m, 10 H, ArH), 6.15 (s, 1 H, H7), 4.54–4.32 (m, 2 H, PhCH2NH), 4.15–3.82 (m, 2 H, H4), 2.91 and 2.89 (2 × s, 3 H, NCH3), 1.37 and 1.30 (2 × s, 9 H, C(CH3)3). 13C NMR (100 MHz, CDCl3) δ 168.5 and 168.3 (OC=O), 168 (PhCH2N(H)C=O), 156.8 (OCO-t-Bu), 138.0 (ArC quaternary), 135.2 (ArC quaternary), 129.2 (ArC), 128.9 (ArC), 128.8 (ArC), 128.7 (ArC), 128.5 (ArC), 127.7 (ArC), 127.6 (ArC), 127.5 (ArC), 127.3 (ArC), 127.3 (ArC), 80.7 and 80.4 (C(CH3)3), 76.0 (C7), 51.3 and 51.0 (C4), 43.2 (PhCH2NH), 36.3 and 35.5 (NCH3), 28.2 and 28.1 (C(CH3)3). IR νmax 3301 (br, w), 2975 (w), 2929 (w), 1754 (m), 1663 (s), 1536 (w), 1453 (w), 1389 (m), 1366 (m), 1239 (w), 1144 (s), 732 (w), 696 (w) cm−1. HRMS calculated for C23H28N2O5 [M+Na]+ m/z = 435.1890; found 435.1891. Specific rotation [α]D −51.8 (c 1.0, CH2Cl2).
9-Benzyl-3-methyl-7-phenyl-1,6-dioxa-3,9-diazaspiro[4,4]nonane-2,8-dione (B)
To a stirring solution of A (0.191 g, 0.463 mmol) in dry CH2Cl2 at 0°C under N2, was added Et3N (0.161 ml, 1.15 mmol), followed by TBSOTf (0.301 mL, 1.15 mmol). The reaction mixture was stirred at 0°C for 15–20 min, then warmed to room temperature and stirred for a further 13–14 h. The solvent was removed in vacuo and the crude product was purified by flash eluting with a solvent gradient of 20–40% EtOAc/hexanes to yield the title compound as a mixture of in a 1:1.2 dr ratio (87 mg, 56% combined yield). Major diastereomer B1 (solid) 1H NMR (400 MHz, CDCl3) δ 7.44–7.25 (m, 10 H, ArH), 5.52 (s, 1 H, H7), 5.10 (d, J = 15.6 Hz, 1 H, NCH2Ph), 4.09 (d, J = 15.7 Hz, 1 H, NCH2Ph), 3.58 (d, J = 11.1 Hz, 1 H, H4), 3.33 (d, J = 11.1 Hz, 1 H, H4), 2.80 (s, 3 H, NCH3). 13C NMR (100 MHz, CDCl3) δ 170.4 (C8), 154.6 (C2), 135.4 (ArC quaternary), 133.9 (ArC quaternary), 129.3 (ArC), 129.1 (ArC), 129.0 (ArC), 128.4 (ArC), 127.9 (ArC), 126.5 (ArC), 111.8 (C5), 78.4 (C7), 54.2 (C4), 43.8 (NCH2Ph), 30.2 (NCH3). IR νmax 3033 (w), 2928 (w), 1769 (s), 1731 (s), 1413 (w), 1396 (m), 1365 (w), 974 (w) cm−1. HRMS calculated for C19H18N2O4 [M+H]+ m/z = 339.1339; found 339.1345. Specific rotation [α]D −86 (c 0.73, CH3OH). Minor diastereomer B2 (liquid) 1H NMR (400 MHz, CDCl3) δ 7.55–7.26 (m, 10 H, ArH), 5.48 (s, 1 H, H7), 5.04 (d, J = 15.5 Hz, 1 H, NCH2Ph), 4.09 (d, J = 15.5 Hz, 1 H, NCH2Ph), 3.56 (d, J = 11.0 Hz, 1 H, H4), 3.23 (d, J = 11.0 Hz, 1 H, H4), 2.78 (s, 3 H, NCH3). 13C NMR (100 MHz, CDCl3) δ 169.9 (C8), 154.7 (C2), 135.4 (ArC quaternary), 134.4 (ArC quaternary), 129.2 (ArC), 129.0 (ArC), 128.7 (ArC), 128.4 (ArC), 126.6 (ArC), 112.4 (C5), 79.7 (C7), 54.9 (C4), 43.9 (NCH2Ph), 30.3 (NCH3). IR νmax 3032 (w), 2929 (w), 1768 (s), 1728 (s), 1413 (w), 1398 (m), 1364 (w), 976 (w) cm−1. HRMS calculated for C19H18N2O4 [M+H]+ 339.1339; found 339.1345. Specific rotation [α]D +10.16 (c 0.41 CH2Cl2).
Attempted crystallization of the major diastereomer B1 by dissolution of the solid compound in hot EtOH gave colourless prisms of the R,R/S,S racemate.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1486263
https://doi.org/10.1107/S2414314619005200/nk4001sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619005200/nk4001Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314619005200/nk4001Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).C19H18N2O4 | F(000) = 712 |
Mr = 338.35 | Dx = 1.356 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 11.0914 (4) Å | Cell parameters from 7087 reflections |
b = 13.6412 (4) Å | θ = 3.2–66.9° |
c = 11.9739 (4) Å | µ = 0.79 mm−1 |
β = 113.863 (4)° | T = 123 K |
V = 1656.78 (11) Å3 | Prism, colourless |
Z = 4 | 0.25 × 0.10 × 0.05 mm |
Rigaku Xcalibur Ruby Gemini ultra diffractometer | 2944 independent reflections |
Radiation source: fine focus sealed tube | 2699 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 10.3389 pixels mm-1 | θmax = 67.0°, θmin = 4.6° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −16→16 |
Tmin = 0.927, Tmax = 1.000 | l = −13→14 |
17312 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0431P)2 + 0.5909P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2944 reflections | Δρmax = 0.20 e Å−3 |
227 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen atoms were included in the refinement at calculated positions with C—H = 0.95–0.98 Å and treated as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Geometrical calculations were performed using PLATON (Spek, 2009). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.30052 (8) | 0.18504 (7) | 0.42698 (8) | 0.0240 (2) | |
O2 | 0.51661 (9) | 0.15756 (9) | 0.53756 (10) | 0.0370 (3) | |
O3 | 0.13155 (9) | 0.08339 (7) | 0.30163 (8) | 0.0262 (2) | |
O4 | −0.09916 (9) | 0.27442 (7) | 0.23543 (8) | 0.0265 (2) | |
N1 | 0.35613 (11) | 0.05967 (8) | 0.55571 (10) | 0.0257 (3) | |
N2 | 0.07999 (10) | 0.20997 (8) | 0.39423 (9) | 0.0212 (2) | |
C1 | 0.17850 (12) | 0.13722 (9) | 0.41040 (11) | 0.0212 (3) | |
C2 | 0.21542 (12) | 0.06973 (10) | 0.52047 (12) | 0.0245 (3) | |
H2A | 0.195578 | 0.100051 | 0.586248 | 0.029* | |
H2B | 0.169756 | 0.005773 | 0.497868 | 0.029* | |
C3 | 0.40365 (12) | 0.13439 (10) | 0.51217 (12) | 0.0256 (3) | |
C4 | 0.43909 (16) | 0.00450 (12) | 0.66301 (14) | 0.0382 (4) | |
H4A | 0.531105 | 0.008769 | 0.673022 | 0.057* | |
H4B | 0.411239 | −0.064295 | 0.653082 | 0.057* | |
H4C | 0.430920 | 0.031765 | 0.735349 | 0.057* | |
C5 | 0.03485 (12) | 0.14058 (9) | 0.20589 (11) | 0.0229 (3) | |
H5 | 0.077093 | 0.173387 | 0.156165 | 0.028* | |
C6 | −0.00674 (12) | 0.21743 (9) | 0.27596 (11) | 0.0221 (3) | |
C7 | −0.07615 (12) | 0.07618 (9) | 0.12528 (12) | 0.0230 (3) | |
C8 | −0.14058 (15) | 0.01396 (11) | 0.17482 (13) | 0.0341 (3) | |
H8 | −0.114380 | 0.011638 | 0.260766 | 0.041* | |
C9 | −0.24301 (16) | −0.04480 (12) | 0.09927 (15) | 0.0389 (4) | |
H9 | −0.286665 | −0.087432 | 0.133586 | 0.047* | |
C10 | −0.28201 (14) | −0.04155 (11) | −0.02631 (14) | 0.0332 (3) | |
H10 | −0.352334 | −0.081813 | −0.077997 | 0.040* | |
C11 | −0.21818 (14) | 0.02050 (11) | −0.07603 (13) | 0.0309 (3) | |
H11 | −0.244734 | 0.022950 | −0.162014 | 0.037* | |
C12 | −0.11513 (13) | 0.07931 (10) | −0.00018 (12) | 0.0259 (3) | |
H12 | −0.071317 | 0.121773 | −0.034527 | 0.031* | |
C13 | 0.08804 (12) | 0.27981 (9) | 0.48963 (11) | 0.0224 (3) | |
H13A | 0.053659 | 0.343955 | 0.451291 | 0.027* | |
H13B | 0.181783 | 0.288903 | 0.545309 | 0.027* | |
C14 | 0.01220 (12) | 0.24816 (9) | 0.56362 (11) | 0.0206 (3) | |
C15 | 0.06565 (13) | 0.26214 (11) | 0.68900 (12) | 0.0288 (3) | |
H15 | 0.152564 | 0.287306 | 0.728776 | 0.035* | |
C16 | −0.00679 (15) | 0.23967 (11) | 0.75711 (13) | 0.0340 (3) | |
H16 | 0.030622 | 0.249980 | 0.842907 | 0.041* | |
C17 | −0.13275 (14) | 0.20246 (10) | 0.70050 (13) | 0.0305 (3) | |
H17 | −0.182498 | 0.187761 | 0.746961 | 0.037* | |
C18 | −0.18620 (13) | 0.18667 (11) | 0.57578 (13) | 0.0294 (3) | |
H18 | −0.272484 | 0.160259 | 0.536577 | 0.035* | |
C19 | −0.11400 (13) | 0.20934 (10) | 0.50763 (12) | 0.0263 (3) | |
H19 | −0.151291 | 0.198200 | 0.421991 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0182 (4) | 0.0298 (5) | 0.0253 (5) | −0.0012 (4) | 0.0101 (4) | 0.0011 (4) |
O2 | 0.0182 (5) | 0.0530 (7) | 0.0397 (6) | −0.0017 (4) | 0.0116 (4) | −0.0089 (5) |
O3 | 0.0244 (5) | 0.0284 (5) | 0.0216 (5) | 0.0056 (4) | 0.0049 (4) | −0.0035 (4) |
O4 | 0.0241 (5) | 0.0270 (5) | 0.0255 (5) | 0.0058 (4) | 0.0071 (4) | 0.0037 (4) |
N1 | 0.0203 (5) | 0.0271 (6) | 0.0236 (6) | 0.0049 (4) | 0.0026 (4) | 0.0001 (4) |
N2 | 0.0189 (5) | 0.0240 (5) | 0.0202 (5) | 0.0016 (4) | 0.0076 (4) | −0.0005 (4) |
C1 | 0.0167 (6) | 0.0253 (6) | 0.0215 (6) | 0.0001 (5) | 0.0077 (5) | −0.0005 (5) |
C2 | 0.0222 (6) | 0.0250 (6) | 0.0244 (7) | 0.0002 (5) | 0.0074 (5) | 0.0024 (5) |
C3 | 0.0197 (6) | 0.0321 (7) | 0.0240 (6) | 0.0027 (5) | 0.0078 (5) | −0.0066 (5) |
C4 | 0.0376 (8) | 0.0362 (8) | 0.0287 (7) | 0.0121 (7) | 0.0010 (6) | 0.0022 (6) |
C5 | 0.0227 (6) | 0.0259 (7) | 0.0199 (6) | 0.0016 (5) | 0.0082 (5) | 0.0009 (5) |
C6 | 0.0206 (6) | 0.0227 (6) | 0.0226 (6) | −0.0013 (5) | 0.0083 (5) | 0.0026 (5) |
C7 | 0.0219 (6) | 0.0240 (6) | 0.0221 (6) | 0.0038 (5) | 0.0076 (5) | −0.0011 (5) |
C8 | 0.0369 (8) | 0.0383 (8) | 0.0252 (7) | −0.0067 (6) | 0.0108 (6) | 0.0012 (6) |
C9 | 0.0392 (8) | 0.0355 (8) | 0.0395 (9) | −0.0112 (7) | 0.0134 (7) | 0.0010 (7) |
C10 | 0.0275 (7) | 0.0293 (7) | 0.0340 (8) | −0.0018 (6) | 0.0034 (6) | −0.0050 (6) |
C11 | 0.0272 (7) | 0.0352 (7) | 0.0240 (7) | 0.0037 (6) | 0.0038 (5) | −0.0035 (6) |
C12 | 0.0248 (6) | 0.0283 (7) | 0.0246 (7) | 0.0036 (5) | 0.0098 (5) | 0.0008 (5) |
C13 | 0.0226 (6) | 0.0226 (6) | 0.0228 (6) | −0.0026 (5) | 0.0098 (5) | −0.0046 (5) |
C14 | 0.0202 (6) | 0.0189 (6) | 0.0230 (6) | 0.0019 (5) | 0.0090 (5) | −0.0017 (5) |
C15 | 0.0246 (6) | 0.0354 (7) | 0.0237 (7) | −0.0044 (6) | 0.0070 (5) | −0.0045 (6) |
C16 | 0.0404 (8) | 0.0407 (8) | 0.0214 (7) | −0.0044 (7) | 0.0131 (6) | −0.0027 (6) |
C17 | 0.0362 (8) | 0.0302 (7) | 0.0331 (7) | −0.0002 (6) | 0.0224 (6) | 0.0009 (6) |
C18 | 0.0218 (6) | 0.0335 (7) | 0.0347 (7) | −0.0031 (5) | 0.0134 (6) | −0.0030 (6) |
C19 | 0.0226 (6) | 0.0334 (7) | 0.0223 (6) | −0.0011 (5) | 0.0083 (5) | −0.0031 (5) |
O1—C3 | 1.3719 (16) | C8—C9 | 1.386 (2) |
O1—C1 | 1.4418 (15) | C8—H8 | 0.9500 |
O2—C3 | 1.2058 (17) | C9—C10 | 1.387 (2) |
O3—C1 | 1.3992 (15) | C9—H9 | 0.9500 |
O3—C5 | 1.4417 (15) | C10—C11 | 1.383 (2) |
O4—C6 | 1.2199 (16) | C10—H10 | 0.9500 |
N1—C3 | 1.3457 (19) | C11—C12 | 1.391 (2) |
N1—C2 | 1.4490 (17) | C11—H11 | 0.9500 |
N1—C4 | 1.4516 (18) | C12—H12 | 0.9500 |
N2—C6 | 1.3560 (16) | C13—C14 | 1.5105 (17) |
N2—C1 | 1.4300 (16) | C13—H13A | 0.9900 |
N2—C13 | 1.4622 (16) | C13—H13B | 0.9900 |
C1—C2 | 1.5218 (18) | C14—C15 | 1.3862 (18) |
C2—H2A | 0.9900 | C14—C19 | 1.3892 (18) |
C2—H2B | 0.9900 | C15—C16 | 1.391 (2) |
C4—H4A | 0.9800 | C15—H15 | 0.9500 |
C4—H4B | 0.9800 | C16—C17 | 1.379 (2) |
C4—H4C | 0.9800 | C16—H16 | 0.9500 |
C5—C7 | 1.5025 (18) | C17—C18 | 1.383 (2) |
C5—C6 | 1.5260 (18) | C17—H17 | 0.9500 |
C5—H5 | 1.0000 | C18—C19 | 1.3898 (19) |
C7—C12 | 1.3857 (18) | C18—H18 | 0.9500 |
C7—C8 | 1.388 (2) | C19—H19 | 0.9500 |
C3—O1—C1 | 109.17 (10) | C8—C7—C5 | 120.85 (12) |
C1—O3—C5 | 109.46 (9) | C9—C8—C7 | 120.18 (14) |
C3—N1—C2 | 111.10 (10) | C9—C8—H8 | 119.9 |
C3—N1—C4 | 121.89 (12) | C7—C8—H8 | 119.9 |
C2—N1—C4 | 121.95 (12) | C8—C9—C10 | 120.20 (14) |
C6—N2—C1 | 111.95 (10) | C8—C9—H9 | 119.9 |
C6—N2—C13 | 124.08 (11) | C10—C9—H9 | 119.9 |
C1—N2—C13 | 123.00 (10) | C11—C10—C9 | 119.79 (13) |
O3—C1—N2 | 105.19 (9) | C11—C10—H10 | 120.1 |
O3—C1—O1 | 109.93 (10) | C9—C10—H10 | 120.1 |
N2—C1—O1 | 109.14 (10) | C10—C11—C12 | 120.02 (13) |
O3—C1—C2 | 110.92 (10) | C10—C11—H11 | 120.0 |
N2—C1—C2 | 117.40 (10) | C12—C11—H11 | 120.0 |
O1—C1—C2 | 104.22 (9) | C7—C12—C11 | 120.24 (13) |
N1—C2—C1 | 100.97 (10) | C7—C12—H12 | 119.9 |
N1—C2—H2A | 111.6 | C11—C12—H12 | 119.9 |
C1—C2—H2A | 111.6 | N2—C13—C14 | 113.54 (10) |
N1—C2—H2B | 111.6 | N2—C13—H13A | 108.9 |
C1—C2—H2B | 111.6 | C14—C13—H13A | 108.9 |
H2A—C2—H2B | 109.4 | N2—C13—H13B | 108.9 |
O2—C3—N1 | 129.11 (13) | C14—C13—H13B | 108.9 |
O2—C3—O1 | 121.61 (13) | H13A—C13—H13B | 107.7 |
N1—C3—O1 | 109.27 (10) | C15—C14—C19 | 118.75 (12) |
N1—C4—H4A | 109.5 | C15—C14—C13 | 120.01 (11) |
N1—C4—H4B | 109.5 | C19—C14—C13 | 121.16 (11) |
H4A—C4—H4B | 109.5 | C14—C15—C16 | 120.62 (13) |
N1—C4—H4C | 109.5 | C14—C15—H15 | 119.7 |
H4A—C4—H4C | 109.5 | C16—C15—H15 | 119.7 |
H4B—C4—H4C | 109.5 | C17—C16—C15 | 120.23 (13) |
O3—C5—C7 | 110.31 (10) | C17—C16—H16 | 119.9 |
O3—C5—C6 | 103.16 (9) | C15—C16—H16 | 119.9 |
C7—C5—C6 | 113.79 (10) | C16—C17—C18 | 119.64 (13) |
O3—C5—H5 | 109.8 | C16—C17—H17 | 120.2 |
C7—C5—H5 | 109.8 | C18—C17—H17 | 120.2 |
C6—C5—H5 | 109.8 | C17—C18—C19 | 120.16 (13) |
O4—C6—N2 | 126.17 (12) | C17—C18—H18 | 119.9 |
O4—C6—C5 | 127.68 (11) | C19—C18—H18 | 119.9 |
N2—C6—C5 | 106.15 (10) | C14—C19—C18 | 120.59 (12) |
C12—C7—C8 | 119.57 (13) | C14—C19—H19 | 119.7 |
C12—C7—C5 | 119.58 (12) | C18—C19—H19 | 119.7 |
Cg2 is the centroid of the C14–C19 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···O2i | 0.95 | 2.34 | 3.1642 (19) | 144 |
C10—H10···Cg2ii | 0.95 | 2.80 | 3.6106 (16) | 144 |
Symmetry codes: (i) x−1, y, z; (ii) −x−1/2, y−1/2, −z+1/2. |
Funding information
The authors are grateful for financial support from the Monash Institute of Graduate Research through the award of a PhD scholarship to ZN.
References
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
El Bouakher, A., Le Goff, R., Tasserie, J., Lhoste, J., Martel, A. & Comesse, S. (2016). Org. Lett. 18, 2382–2386. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kamimura, A., Omata, Y., Kakehi, A. & Shirai, M. (2002). Tetrahedron, 58, 8763–8770. CrossRef CAS Google Scholar
Kamimura, A., Omata, Y., Tanaka, K. & Shirai, M. (2003). Tetrahedron, 59, 6291–6299. CrossRef CAS Google Scholar
Kamimura, A., Tanaka, K., Hayashi, T. & Omata, Y. (2006). Tetrahedron Lett. 47, 3625–3627. CrossRef CAS Google Scholar
Nazarian, Z. & Forsyth, C. M. (2016). RSC Adv. 6, 55534–55538. CrossRef CAS Google Scholar
Obijalska, E., Mlostoń, G., Linden, A. & Heimgartner, H. (2010). Helv. Chim. Acta, 93, 1725–1736. CrossRef CAS Google Scholar
Oguri, H., Mizoguchi, H., Oikawa, H., Ishiyama, A., Iwatsuki, M., Otoguro, K. & Ōmura, S. (2012). Beilstein J. Org. Chem. 8, 930–940. CrossRef CAS PubMed Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rios, R. (2012). Chem. Soc. Rev. 41, 1060–1074. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.