organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(R,R/S,S)-9-Benzyl-3-methyl-7-phenyl-1,6-dioxa-3,9-di­aza­spiro­[4.4]nonane-2,8-dione

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Monash University, Clayton 3800, Australia, and bSchool of Chemistry, Shahid Beheshti University G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: craig.forsyth@monash.edu

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 15 February 2019; accepted 16 April 2019; online 30 April 2019)

The title compound, C19H18N2O4, a rare example of a spiro­cyclic ortho­amide, was synthesized by a double cyclization of a N-Boc protected sarcosine derivative. The crystal structure of the racemic (R,R/S,S) modification reveals two near-orthogonal five-membered heterocyclic ring systems, each in an envelope configuration.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The biological significance of spiro­cyclic mol­ecules has inspired considerable research towards the discovery of new synthetic routes to such compounds (Rios, 2012[Rios, R. (2012). Chem. Soc. Rev. 41, 1060-1074.]). We have recently reported (Naza­rian & Forsyth, 2016[Nazarian, Z. & Forsyth, C. M. (2016). RSC Adv. 6, 55534-55538.]) the preparation of 1,6-dioxa-3,9-di­aza­spiro­[4,4]nonane-2,8-diones, a new class of spiro­cyclic otho­amide. These were achieved by double cyclization of O-acyl­ated hydroxamides utilizing a modification of an analogous procedure for 2-oxy-1,3-oxazolidin-4-ones (Kamimura et al., 2002[Kamimura, A., Omata, Y., Kakehi, A. & Shirai, M. (2002). Tetrahedron, 58, 8763-8770.], 2003[Kamimura, A., Omata, Y., Tanaka, K. & Shirai, M. (2003). Tetrahedron, 59, 6291-6299.], 2006[Kamimura, A., Tanaka, K., Hayashi, T. & Omata, Y. (2006). Tetrahedron Lett. 47, 3625-3627.]).

As part of this study, we prepared the title compound (B) from the N-Boc-protected sarcosine derivative (A). Two diastereomers, solid B1 and liquid B2 (Fig. 1[link]) were formed with the solid diastereomer B1 as the major product. However, attempted crystallization of B1 in EtOH resulted instead in the formation of crystals of the racemic modification (R,R/S,S), presumably due to thermal instability of the spiro­cyclic nonane and subsequent change in the configuration profile during crystal growth.

[Figure 1]
Figure 1
Reaction scheme for the synthesis of 9-benzyl-3-methyl-7-phenyl-1,6-dioxa-3,9-di­aza­spiro­[4,4]nonane-2,8-dione from the sarcosine derivative A.

The mol­ecular structure and atom numbering scheme of the title compound are shown in Fig. 2[link]. The structure comprises two approximately orthogonal five-membered heterocyclic ring systems [angle between least squares planes = 87.12 (5)°]. The geometry about the central C1 atom is slightly distorted, with a larger N2—C1—C2 angle of 117.4 (1)°, presumably due to the steric influence of the CH2Ph substituent on N2. The individual heterocycles each have an envelope configuration, on C2 (ring I) and on O3 (ring II) and are similar to previous examples of isolated oxazolidin-2-one or oxazolidine-4-one ring systems (Obijalska et al., 2010[Obijalska, E., Mlostoń, G., Linden, A. & Heimgartner, H. (2010). Helv. Chim. Acta, 93, 1725-1736.]; El Bouakher et al., 2016[El Bouakher, A., Le Goff, R., Tasserie, J., Lhoste, J., Martel, A. & Comesse, S. (2016). Org. Lett. 18, 2382-2386.]).

[Figure 2]
Figure 2
Mol­ecular structure of (R,R/S,S)-9-benzyl-3-methyl-7-phenyl-1,6-dioxa-3,9- di­aza­spiro­[4,4]nonane-2,8-dione with non-hydrogen atoms represented by 50% displacement ellipsoids and hydrogen atoms as spheres of arbitrary size. The 5-S,7-S diastereomer is shown.

The crystal packing of mol­ecules of B1 reveals a weak inter­molecular offset ππ ring inter­action between parallel, inversion-related, phenyl rings [Cg1⋯Cg1i 4.608 (1) Å, offset 3.196 Å, inter­planar separation ca 3.32 Å, Cg1 defined by atoms C7–C12; symmetry code: (i) −x, −y, −z]. In addition, there are minor C—H⋯O and C—H⋯π contacts that link mol­ecules into a supra­molecular network (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.95 2.34 3.1642 (19) 144
C10—H10⋯Cg2ii 0.95 2.80 3.6106 (16) 144
Symmetry codes: (i) x-1, y, z; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

A search of the Cambridge Structural Database (CSD Version 5.39, August 2018; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1,6-dioxa-3,9-di­aza­spiro­[4,4]nonane-2,8-dione skeleton yielded hits for three substituted analogues from our previous study (CSD refcodes IAPDIO, IAPDOU, IAPDUA; Naza­rian & Forsyth, 2016[Nazarian, Z. & Forsyth, C. M. (2016). RSC Adv. 6, 55534-55538.]). Additionally, there was one example of an oxazolidine-4-one ring in a spiro­cyclic multi-ring natural product analogue (CSD refcode KEMXOR; Oguri et al., 2012[Oguri, H., Mizoguchi, H., Oikawa, H., Ishiyama, A., Iwatsuki, M., Otoguro, K. & Ōmura, S. (2012). Beilstein J. Org. Chem. 8, 930-940.]) in which the heterocyclic ring has an envelope configuration on the ether oxygen atom, similar to the current structure.

Synthesis and crystallization

(R)-2(Benzyl­amino)-2-oxo-1-phenyl­ethyl-2-{(t-but­oxy­carbon­yl)(meth­yl)amino}­acetate (A).

To a solution of R-N-benzyl-2-hy­droxy-2-phenyl­acetamide (0.30 g,1.24 mmol) in anhydrous CH2Cl2 at 0°C, were added N-Boc-sarcosine (0.234 g, 1.24 mmol), EDCl·HCl (0.378 g, 1.98 mmol) and DMAP (0.124 g, 0.015 mmol) under an atmosphere of N2. To the resulting suspension, dried Et3N (1.61 mmol) was added dropwise while stirring vigorously. The mixture was warmed to room temperature and stirred for 7–8 h. The resulting mixture was diluted with CH2Cl2, washed successively with 1M HCl(aq) and water, then dried over MgSO4. Solvent removal in vacuo gave a yellow oil that was purified by flash chromatography (20% EtOAc/hexa­nes) to afford the title compound (0.449 g, 88%) as a white foam. (Mixture of two rotomers) 1H NMR (400 MHz, CDCl3) δ 7.47–7.20 (m, 10 H, ArH), 6.15 (s, 1 H, H7), 4.54–4.32 (m, 2 H, PhCH2NH), 4.15–3.82 (m, 2 H, H4), 2.91 and 2.89 (2 × s, 3 H, NCH3), 1.37 and 1.30 (2 × s, 9 H, C(CH3)3). 13C NMR (100 MHz, CDCl3) δ 168.5 and 168.3 (OC=O), 168 (PhCH2N(H)C=O), 156.8 (OCO-t-Bu), 138.0 (ArC quaternary), 135.2 (ArC quaternary), 129.2 (ArC), 128.9 (ArC), 128.8 (ArC), 128.7 (ArC), 128.5 (ArC), 127.7 (ArC), 127.6 (ArC), 127.5 (ArC), 127.3 (ArC), 127.3 (ArC), 80.7 and 80.4 (C(CH3)3), 76.0 (C7), 51.3 and 51.0 (C4), 43.2 (PhCH2NH), 36.3 and 35.5 (NCH3), 28.2 and 28.1 (C(CH3)3). IR νmax 3301 (br, w), 2975 (w), 2929 (w), 1754 (m), 1663 (s), 1536 (w), 1453 (w), 1389 (m), 1366 (m), 1239 (w), 1144 (s), 732 (w), 696 (w) cm−1. HRMS calculated for C23H28N2O5 [M+Na]+ m/z = 435.1890; found 435.1891. Specific rotation [α]D −51.8 (c 1.0, CH2Cl2).

9-Benzyl-3-methyl-7-phenyl-1,6-dioxa-3,9-di­aza­spiro­[4,4]nonane-2,8-dione (B)

To a stirring solution of A (0.191 g, 0.463 mmol) in dry CH2Cl2 at 0°C under N2, was added Et3N (0.161 ml, 1.15 mmol), followed by TBSOTf (0.301 mL, 1.15 mmol). The reaction mixture was stirred at 0°C for 15–20 min, then warmed to room temperature and stirred for a further 13–14 h. The solvent was removed in vacuo and the crude product was purified by flash chromatography, eluting with a solvent gradient of 20–40% EtOAc/hexa­nes to yield the title compound as a mixture of diastereomers in a 1:1.2 dr ratio (87 mg, 56% combined yield). Major diastereomer B1 (solid) 1H NMR (400 MHz, CDCl3) δ 7.44–7.25 (m, 10 H, ArH), 5.52 (s, 1 H, H7), 5.10 (d, J = 15.6 Hz, 1 H, NCH2Ph), 4.09 (d, J = 15.7 Hz, 1 H, NCH2Ph), 3.58 (d, J = 11.1 Hz, 1 H, H4), 3.33 (d, J = 11.1 Hz, 1 H, H4), 2.80 (s, 3 H, NCH3). 13C NMR (100 MHz, CDCl3) δ 170.4 (C8), 154.6 (C2), 135.4 (ArC quaternary), 133.9 (ArC quaternary), 129.3 (ArC), 129.1 (ArC), 129.0 (ArC), 128.4 (ArC), 127.9 (ArC), 126.5 (ArC), 111.8 (C5), 78.4 (C7), 54.2 (C4), 43.8 (NCH2Ph), 30.2 (NCH3). IR νmax 3033 (w), 2928 (w), 1769 (s), 1731 (s), 1413 (w), 1396 (m), 1365 (w), 974 (w) cm−1. HRMS calculated for C19H18N2O4 [M+H]+ m/z = 339.1339; found 339.1345. Specific rotation [α]D −86 (c 0.73, CH3OH). Minor diastereomer B2 (liquid) 1H NMR (400 MHz, CDCl3) δ 7.55–7.26 (m, 10 H, ArH), 5.48 (s, 1 H, H7), 5.04 (d, J = 15.5 Hz, 1 H, NCH2Ph), 4.09 (d, J = 15.5 Hz, 1 H, NCH2Ph), 3.56 (d, J = 11.0 Hz, 1 H, H4), 3.23 (d, J = 11.0 Hz, 1 H, H4), 2.78 (s, 3 H, NCH3). 13C NMR (100 MHz, CDCl3) δ 169.9 (C8), 154.7 (C2), 135.4 (ArC quaternary), 134.4 (ArC quaternary), 129.2 (ArC), 129.0 (ArC), 128.7 (ArC), 128.4 (ArC), 126.6 (ArC), 112.4 (C5), 79.7 (C7), 54.9 (C4), 43.9 (NCH2Ph), 30.3 (NCH3). IR νmax 3032 (w), 2929 (w), 1768 (s), 1728 (s), 1413 (w), 1398 (m), 1364 (w), 976 (w) cm−1. HRMS calculated for C19H18N2O4 [M+H]+ 339.1339; found 339.1345. Specific rotation [α]D +10.16 (c 0.41 CH2Cl2).

Attempted crystallization of the major diastereomer B1 by dissolution of the solid compound in hot EtOH gave colourless prisms of the R,R/S,S racemate.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H18N2O4
Mr 338.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 123
a, b, c (Å) 11.0914 (4), 13.6412 (4), 11.9739 (4)
β (°) 113.863 (4)
V3) 1656.78 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.79
Crystal size (mm) 0.25 × 0.10 × 0.05
 
Data collection
Diffractometer Rigaku Xcalibur Ruby Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.927, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17312, 2944, 2699
Rint 0.027
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.05
No. of reflections 2944
No. of parameters 227
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.25
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

(R,R/S,S)-9-Benzyl-3-methyl-7-phenyl-1,6-dioxa-3,9-diazaspiro[4.4]nonane-2,8-dione top
Crystal data top
C19H18N2O4F(000) = 712
Mr = 338.35Dx = 1.356 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 11.0914 (4) ÅCell parameters from 7087 reflections
b = 13.6412 (4) Åθ = 3.2–66.9°
c = 11.9739 (4) ŵ = 0.79 mm1
β = 113.863 (4)°T = 123 K
V = 1656.78 (11) Å3Prism, colourless
Z = 40.25 × 0.10 × 0.05 mm
Data collection top
Rigaku Xcalibur Ruby Gemini ultra
diffractometer
2944 independent reflections
Radiation source: fine focus sealed tube2699 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.3389 pixels mm-1θmax = 67.0°, θmin = 4.6°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1616
Tmin = 0.927, Tmax = 1.000l = 1314
17312 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.5909P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2944 reflectionsΔρmax = 0.20 e Å3
227 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were included in the refinement at calculated positions with C—H = 0.95–0.98 Å and treated as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Geometrical calculations were performed using PLATON (Spek, 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30052 (8)0.18504 (7)0.42698 (8)0.0240 (2)
O20.51661 (9)0.15756 (9)0.53756 (10)0.0370 (3)
O30.13155 (9)0.08339 (7)0.30163 (8)0.0262 (2)
O40.09916 (9)0.27442 (7)0.23543 (8)0.0265 (2)
N10.35613 (11)0.05967 (8)0.55571 (10)0.0257 (3)
N20.07999 (10)0.20997 (8)0.39423 (9)0.0212 (2)
C10.17850 (12)0.13722 (9)0.41040 (11)0.0212 (3)
C20.21542 (12)0.06973 (10)0.52047 (12)0.0245 (3)
H2A0.1955780.1000510.5862480.029*
H2B0.1697560.0057730.4978680.029*
C30.40365 (12)0.13439 (10)0.51217 (12)0.0256 (3)
C40.43909 (16)0.00450 (12)0.66301 (14)0.0382 (4)
H4A0.5311050.0087690.6730220.057*
H4B0.4112390.0642950.6530820.057*
H4C0.4309200.0317650.7353490.057*
C50.03485 (12)0.14058 (9)0.20589 (11)0.0229 (3)
H50.0770930.1733870.1561650.028*
C60.00674 (12)0.21743 (9)0.27596 (11)0.0221 (3)
C70.07615 (12)0.07618 (9)0.12528 (12)0.0230 (3)
C80.14058 (15)0.01396 (11)0.17482 (13)0.0341 (3)
H80.1143800.0116380.2607660.041*
C90.24301 (16)0.04480 (12)0.09927 (15)0.0389 (4)
H90.2866650.0874320.1335860.047*
C100.28201 (14)0.04155 (11)0.02631 (14)0.0332 (3)
H100.3523340.0818130.0779970.040*
C110.21818 (14)0.02050 (11)0.07603 (13)0.0309 (3)
H110.2447340.0229500.1620140.037*
C120.11513 (13)0.07931 (10)0.00018 (12)0.0259 (3)
H120.0713170.1217730.0345270.031*
C130.08804 (12)0.27981 (9)0.48963 (11)0.0224 (3)
H13A0.0536590.3439550.4512910.027*
H13B0.1817830.2889030.5453090.027*
C140.01220 (12)0.24816 (9)0.56362 (11)0.0206 (3)
C150.06565 (13)0.26214 (11)0.68900 (12)0.0288 (3)
H150.1525640.2873060.7287760.035*
C160.00679 (15)0.23967 (11)0.75711 (13)0.0340 (3)
H160.0306220.2499800.8429070.041*
C170.13275 (14)0.20246 (10)0.70050 (13)0.0305 (3)
H170.1824980.1877610.7469610.037*
C180.18620 (13)0.18667 (11)0.57578 (13)0.0294 (3)
H180.2724840.1602590.5365770.035*
C190.11400 (13)0.20934 (10)0.50763 (12)0.0263 (3)
H190.1512910.1982000.4219910.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0182 (4)0.0298 (5)0.0253 (5)0.0012 (4)0.0101 (4)0.0011 (4)
O20.0182 (5)0.0530 (7)0.0397 (6)0.0017 (4)0.0116 (4)0.0089 (5)
O30.0244 (5)0.0284 (5)0.0216 (5)0.0056 (4)0.0049 (4)0.0035 (4)
O40.0241 (5)0.0270 (5)0.0255 (5)0.0058 (4)0.0071 (4)0.0037 (4)
N10.0203 (5)0.0271 (6)0.0236 (6)0.0049 (4)0.0026 (4)0.0001 (4)
N20.0189 (5)0.0240 (5)0.0202 (5)0.0016 (4)0.0076 (4)0.0005 (4)
C10.0167 (6)0.0253 (6)0.0215 (6)0.0001 (5)0.0077 (5)0.0005 (5)
C20.0222 (6)0.0250 (6)0.0244 (7)0.0002 (5)0.0074 (5)0.0024 (5)
C30.0197 (6)0.0321 (7)0.0240 (6)0.0027 (5)0.0078 (5)0.0066 (5)
C40.0376 (8)0.0362 (8)0.0287 (7)0.0121 (7)0.0010 (6)0.0022 (6)
C50.0227 (6)0.0259 (7)0.0199 (6)0.0016 (5)0.0082 (5)0.0009 (5)
C60.0206 (6)0.0227 (6)0.0226 (6)0.0013 (5)0.0083 (5)0.0026 (5)
C70.0219 (6)0.0240 (6)0.0221 (6)0.0038 (5)0.0076 (5)0.0011 (5)
C80.0369 (8)0.0383 (8)0.0252 (7)0.0067 (6)0.0108 (6)0.0012 (6)
C90.0392 (8)0.0355 (8)0.0395 (9)0.0112 (7)0.0134 (7)0.0010 (7)
C100.0275 (7)0.0293 (7)0.0340 (8)0.0018 (6)0.0034 (6)0.0050 (6)
C110.0272 (7)0.0352 (7)0.0240 (7)0.0037 (6)0.0038 (5)0.0035 (6)
C120.0248 (6)0.0283 (7)0.0246 (7)0.0036 (5)0.0098 (5)0.0008 (5)
C130.0226 (6)0.0226 (6)0.0228 (6)0.0026 (5)0.0098 (5)0.0046 (5)
C140.0202 (6)0.0189 (6)0.0230 (6)0.0019 (5)0.0090 (5)0.0017 (5)
C150.0246 (6)0.0354 (7)0.0237 (7)0.0044 (6)0.0070 (5)0.0045 (6)
C160.0404 (8)0.0407 (8)0.0214 (7)0.0044 (7)0.0131 (6)0.0027 (6)
C170.0362 (8)0.0302 (7)0.0331 (7)0.0002 (6)0.0224 (6)0.0009 (6)
C180.0218 (6)0.0335 (7)0.0347 (7)0.0031 (5)0.0134 (6)0.0030 (6)
C190.0226 (6)0.0334 (7)0.0223 (6)0.0011 (5)0.0083 (5)0.0031 (5)
Geometric parameters (Å, º) top
O1—C31.3719 (16)C8—C91.386 (2)
O1—C11.4418 (15)C8—H80.9500
O2—C31.2058 (17)C9—C101.387 (2)
O3—C11.3992 (15)C9—H90.9500
O3—C51.4417 (15)C10—C111.383 (2)
O4—C61.2199 (16)C10—H100.9500
N1—C31.3457 (19)C11—C121.391 (2)
N1—C21.4490 (17)C11—H110.9500
N1—C41.4516 (18)C12—H120.9500
N2—C61.3560 (16)C13—C141.5105 (17)
N2—C11.4300 (16)C13—H13A0.9900
N2—C131.4622 (16)C13—H13B0.9900
C1—C21.5218 (18)C14—C151.3862 (18)
C2—H2A0.9900C14—C191.3892 (18)
C2—H2B0.9900C15—C161.391 (2)
C4—H4A0.9800C15—H150.9500
C4—H4B0.9800C16—C171.379 (2)
C4—H4C0.9800C16—H160.9500
C5—C71.5025 (18)C17—C181.383 (2)
C5—C61.5260 (18)C17—H170.9500
C5—H51.0000C18—C191.3898 (19)
C7—C121.3857 (18)C18—H180.9500
C7—C81.388 (2)C19—H190.9500
C3—O1—C1109.17 (10)C8—C7—C5120.85 (12)
C1—O3—C5109.46 (9)C9—C8—C7120.18 (14)
C3—N1—C2111.10 (10)C9—C8—H8119.9
C3—N1—C4121.89 (12)C7—C8—H8119.9
C2—N1—C4121.95 (12)C8—C9—C10120.20 (14)
C6—N2—C1111.95 (10)C8—C9—H9119.9
C6—N2—C13124.08 (11)C10—C9—H9119.9
C1—N2—C13123.00 (10)C11—C10—C9119.79 (13)
O3—C1—N2105.19 (9)C11—C10—H10120.1
O3—C1—O1109.93 (10)C9—C10—H10120.1
N2—C1—O1109.14 (10)C10—C11—C12120.02 (13)
O3—C1—C2110.92 (10)C10—C11—H11120.0
N2—C1—C2117.40 (10)C12—C11—H11120.0
O1—C1—C2104.22 (9)C7—C12—C11120.24 (13)
N1—C2—C1100.97 (10)C7—C12—H12119.9
N1—C2—H2A111.6C11—C12—H12119.9
C1—C2—H2A111.6N2—C13—C14113.54 (10)
N1—C2—H2B111.6N2—C13—H13A108.9
C1—C2—H2B111.6C14—C13—H13A108.9
H2A—C2—H2B109.4N2—C13—H13B108.9
O2—C3—N1129.11 (13)C14—C13—H13B108.9
O2—C3—O1121.61 (13)H13A—C13—H13B107.7
N1—C3—O1109.27 (10)C15—C14—C19118.75 (12)
N1—C4—H4A109.5C15—C14—C13120.01 (11)
N1—C4—H4B109.5C19—C14—C13121.16 (11)
H4A—C4—H4B109.5C14—C15—C16120.62 (13)
N1—C4—H4C109.5C14—C15—H15119.7
H4A—C4—H4C109.5C16—C15—H15119.7
H4B—C4—H4C109.5C17—C16—C15120.23 (13)
O3—C5—C7110.31 (10)C17—C16—H16119.9
O3—C5—C6103.16 (9)C15—C16—H16119.9
C7—C5—C6113.79 (10)C16—C17—C18119.64 (13)
O3—C5—H5109.8C16—C17—H17120.2
C7—C5—H5109.8C18—C17—H17120.2
C6—C5—H5109.8C17—C18—C19120.16 (13)
O4—C6—N2126.17 (12)C17—C18—H18119.9
O4—C6—C5127.68 (11)C19—C18—H18119.9
N2—C6—C5106.15 (10)C14—C19—C18120.59 (12)
C12—C7—C8119.57 (13)C14—C19—H19119.7
C12—C7—C5119.58 (12)C18—C19—H19119.7
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.952.343.1642 (19)144
C10—H10···Cg2ii0.952.803.6106 (16)144
Symmetry codes: (i) x1, y, z; (ii) x1/2, y1/2, z+1/2.
 

Funding information

The authors are grateful for financial support from the Monash Institute of Graduate Research through the award of a PhD scholarship to ZN.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationEl Bouakher, A., Le Goff, R., Tasserie, J., Lhoste, J., Martel, A. & Comesse, S. (2016). Org. Lett. 18, 2382–2386.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKamimura, A., Omata, Y., Kakehi, A. & Shirai, M. (2002). Tetrahedron, 58, 8763–8770.  CrossRef CAS Google Scholar
First citationKamimura, A., Omata, Y., Tanaka, K. & Shirai, M. (2003). Tetrahedron, 59, 6291–6299.  CrossRef CAS Google Scholar
First citationKamimura, A., Tanaka, K., Hayashi, T. & Omata, Y. (2006). Tetrahedron Lett. 47, 3625–3627.  CrossRef CAS Google Scholar
First citationNazarian, Z. & Forsyth, C. M. (2016). RSC Adv. 6, 55534–55538.  CrossRef CAS Google Scholar
First citationObijalska, E., Mlostoń, G., Linden, A. & Heimgartner, H. (2010). Helv. Chim. Acta, 93, 1725–1736.  CrossRef CAS Google Scholar
First citationOguri, H., Mizoguchi, H., Oikawa, H., Ishiyama, A., Iwatsuki, M., Otoguro, K. & Ōmura, S. (2012). Beilstein J. Org. Chem. 8, 930–940.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRios, R. (2012). Chem. Soc. Rev. 41, 1060–1074.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds