organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

The crystal structure of 2-[(tert-butyl­di­phenyl­sil­yl)­­oxy]-1,2-di­phenyl­ethan-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
*Correspondence e-mail: pcorfield@fordham.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 2 April 2019; accepted 8 April 2019; online 12 April 2019)

The title compound, C30H30O2Si, was synthesized and structurally characterized in order to determine the influence of the bulky silyl protecting group on the conformation of the benzoin moiety, with a view to directing the stereochemistry of the borohydride reduction of the benzoin. The crystal structure shows a benzoin O—C—C—O torsion angle of 38.34 (1)°, not greatly different from that found in benzoin itself. In the crystal, a weak C—H⋯O hydrogen bond between the carbonyl group and a phenyl H atom of a symmetry-related mol­ecule forms chains along [100].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of a program designed to alter the stereoselectivity of the reduction of benzoin derivatives, the oxysilyl benzoin derivative named in the title was synthesized in an attempt to explore the stereochemical effect of the large hydroxyl-protecting silyl group. The stereochemistry of this reduction can be explained by the Felkin–Anh or the Cram chelation model (Rowland, 1983[Rowland, A. T. (1983). J. Chem. Educ. 60, 1084-1085.]). Given the need for a method that would afford the alternate racemic diols, the bulky silyl protecting group tert-butyl­diphenyl­silyl (TBDPS) was introduced with the expectation that this large substituent would allow for the production of the alternate diastereoisomer (as a racemic mixture). In the crystal structure reported here (Fig. 1[link]), however, the conformation is close to that of benzoin itself (Haisa et al., 1980[Haisa, M., Kashino, S. & Morimoto, M. (1980). Acta Cryst. B36, 2832-2834.]; Fajardo et al., 1984[Fajardo, F., Shepelev, Y. F. & Smolin, Y. I. (1984). Revista Cubana de Fisica, 4, 25-31.]; Solé et al., 1998[Solé, S., Gornitzka, H., Guerret, U. & Bertrand, G. (1998). J. Am. Chem. Soc. 120, 9100-9101.]) in spite of the presence of the TBDPS group and the differing crystalline environments of the two mol­ecules. The O1—C1—C2—O2 torsion angle of 38.34 (16)° and the torsion angle C3—C1—C2—C9 between the ethane phenyl groups of 96.20 (13)° in the present structure are similar to the corresponding values of 26.4 and 85.5° given for benzoin. The phenyl ring on C1 in the present structure is almost co-planar with the sp2 plane at C1, with an angle of 12.68 (5)° between the plane through the phenyl group and the best plane through C1/O1/C2/O9. This leads to the short intra­molecular contact H2 ⋯ H8 = 2.04 Å. In benzoin this phenyl group is twisted 11.6° from the sp2 C1 plane, with an H ⋯ H distance of 2.36 Å. The phenyl group bonded to C2 in the present structure is oriented so as to almost eclipse the C2—O2 bond, with torsion angle O2—C2—C9—C10 = −9.07 (16)°, which brings the H10 ⋯ O2 distance to 2.40 Å. This orientation is not however seen in the benzoin structure, where the corresponding torsion angle is −48.4°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Displacement parameters for the H atoms are arbitrary.

Formation of the sil­yloxy derivative prohibits the strong O—H⋯O hydrogen bonding expected in benzoin and its other derivatives, but a C=O ⋯H—C inter­molecular inter­action is seen (Table 1[link] and Fig. 2[link]), linking the mol­ecules in chains along the a-axis direction. Only three inter­molecular H ⋯ H contacts are closer than 2.6 Å, with the shortest contact H4 ⋯ H12(x,1 + y,z) at 2.48 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.93 2.49 3.211 (2) 135
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
Projection along the b axis for the title compound, tilted by 4° for clarity. The reference mol­ecule is in black. Silicon atoms are green, oxygen atoms red.

The stereochemical outcome of the reduction of the title compound will be reported elsewhere.

Synthesis and crystallization

The title compound was easily prepared in high yield (t-butyl­diphenyl­silyl chloride (TBDPS-Cl), imidazole, (±)-benzoin, DMF, RT) from (±)-benzoin and was isolated after column chromatography as a low-melting, crystalline solid. Suitable crystals were obtained by recrystallization from hexa­nes (m.p. 346–345 K).

1H (400 MHz) NMR spectra were recorded on a Bruker Avance 400 spectrometer in CDCl3 with tetra­methyl­silane (TMS) as the inter­nal standard, and chemical shifts are reported in parts per million (p.p.m., δ): 7.57–7.69 ppm, 2H, m; 7.51–7.55 ppm, 4H, m; 7.23–7.47 ppm, 14H, m; 5.82 ppm, 1H, s; 1.08 ppm, 9H, s. An infrared spectrum obtained with a Nicolet iS50 FT–IR machine showed μ(C=O) at 1694 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C30H30O2Si
Mr 450.63
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 300
a, b, c (Å) 10.3403 (3), 10.3926 (3), 14.1442 (3)
α, β, γ (°) 78.9928 (14), 83.6739 (15), 60.2736 (11)
V3) 1295.45 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.5 × 0.4 × 0.2
 
Data collection
Diffractometer Enraf–Nonius KappaCCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 6102, 6102, 5246
Rint 0.032
(sin θ/λ)max−1) 0.655
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.04
No. of reflections 6102
No. of parameters 301
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.18
Computer programs: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, les Pays-Bas.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]a), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]b), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.]),ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

2-[(tert-Butyldiphenylsilyl)oxy]-1,2-diphenylethan-1-one top
Crystal data top
C30H30O2SiZ = 2
Mr = 450.63F(000) = 480
Triclinic, P1Dx = 1.155 Mg m3
a = 10.3403 (3) ÅMo Kα radiation, λ = 0.71070 Å
b = 10.3926 (3) ÅCell parameters from 4557 reflections
c = 14.1442 (3) Åθ = 1.0–25.0°
α = 78.9928 (14)°µ = 0.11 mm1
β = 83.6739 (15)°T = 300 K
γ = 60.2736 (11)°Block, colorless
V = 1295.45 (6) Å30.5 × 0.4 × 0.2 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
5246 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 27.7°, θmin = 2.3°
Detector resolution: 9 pixels mm-1h = 013
combination of ω and φ scansk = 1113
6102 measured reflectionsl = 1818
6102 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.060P)2 + 0.290P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6102 reflectionsΔρmax = 0.27 e Å3
301 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed at ideal positions and refined riding on their parent C atoms, with C—H distances of 0.93 Å for the phenyl H atoms, 0.96 Å for the methyl H atoms and 0.98 Å for the methine H atom H2. Uiso values of the H atoms were set at 1.2xUeq(C) or 1.5xUeq(Cmethyl) of the bonded atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.28262 (4)0.65987 (4)0.79919 (2)0.03862 (11)
O10.01496 (12)0.63949 (13)0.63925 (9)0.0617 (3)
O20.21373 (11)0.71114 (10)0.68988 (6)0.0429 (2)
C10.14561 (15)0.55370 (15)0.62691 (9)0.0412 (3)
C20.25752 (14)0.61237 (14)0.62185 (9)0.0362 (3)
H20.3578810.5281870.6358550.043*
C30.19912 (16)0.39651 (15)0.61292 (10)0.0436 (3)
C40.0932 (2)0.35680 (19)0.59831 (13)0.0591 (4)
H40.0074160.4277400.5975440.071*
C50.1373 (3)0.2125 (2)0.58496 (16)0.0779 (6)
H50.0664490.1870900.5737930.093*
C60.2845 (3)0.1068 (2)0.58808 (17)0.0820 (6)
H60.3133080.0094750.5796520.098*
C70.3901 (2)0.1432 (2)0.60358 (17)0.0760 (5)
H70.4902020.0705870.6060470.091*
C80.34815 (19)0.28761 (17)0.61550 (13)0.0588 (4)
H80.4202620.3121080.6253420.071*
C90.25367 (13)0.69454 (14)0.52002 (9)0.0364 (3)
C100.19247 (16)0.84890 (16)0.50123 (10)0.0462 (3)
H100.1542300.9042140.5516750.055*
C110.18776 (19)0.92173 (18)0.40766 (12)0.0591 (4)
H110.1485541.0253260.3956930.071*
C120.24112 (19)0.8407 (2)0.33231 (11)0.0636 (4)
H120.2377590.8895590.2695120.076*
C130.29938 (19)0.6874 (2)0.35035 (11)0.0606 (4)
H130.3338300.6329340.2994480.073*
C140.30696 (16)0.61416 (17)0.44335 (10)0.0487 (3)
H140.3479580.5103440.4549590.058*
C150.46458 (15)0.65965 (16)0.78902 (10)0.0435 (3)
C160.51811 (16)0.69987 (16)0.69988 (10)0.0476 (3)
H160.4638050.7236160.6449680.057*
C170.6500 (2)0.7053 (2)0.69108 (13)0.0650 (4)
H170.6844050.7304680.6306690.078*
C180.7301 (2)0.6735 (3)0.77164 (16)0.0814 (6)
H180.8176110.6792820.7659840.098*
C190.6807 (2)0.6332 (3)0.86067 (15)0.0875 (7)
H190.7348850.6115840.9152860.105*
C200.5509 (2)0.6250 (2)0.86883 (12)0.0670 (5)
H200.5198970.5953830.9292640.080*
C210.31257 (17)0.46557 (17)0.84700 (9)0.0477 (3)
C220.1945 (2)0.4339 (2)0.85593 (13)0.0671 (5)
H220.0981580.5121690.8436690.081*
C230.2182 (3)0.2883 (3)0.88267 (16)0.0908 (7)
H230.1380770.2700040.8880590.109*
C240.3597 (4)0.1713 (3)0.90119 (17)0.1016 (8)
H240.3755780.0736120.9183010.122*
C250.4775 (3)0.1987 (2)0.89439 (16)0.0878 (7)
H250.5731340.1197910.9078160.105*
C260.4540 (2)0.34389 (19)0.86758 (11)0.0610 (4)
H260.5350380.3606550.8631680.073*
C270.14080 (17)0.81037 (18)0.86866 (10)0.0522 (3)
C280.0120 (2)0.8198 (2)0.86986 (16)0.0762 (5)
H28A0.0078140.7308190.9079110.114*
H28B0.0388140.8282910.8052120.114*
H28C0.0850880.9060990.8972270.114*
C290.1260 (2)0.9610 (2)0.81732 (16)0.0788 (6)
H29A0.2203440.9580320.8168220.118*
H29B0.0531431.0400750.8507270.118*
H29C0.0951760.9792300.7522890.118*
C300.1904 (3)0.7799 (3)0.97251 (14)0.0974 (8)
H30A0.2817460.7829160.9722410.146*
H30B0.2057070.6826181.0028550.146*
H30C0.1148950.8549711.0074820.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.03999 (19)0.0469 (2)0.03221 (17)0.02263 (16)0.00197 (13)0.01050 (14)
O10.0417 (6)0.0639 (7)0.0825 (8)0.0269 (5)0.0105 (5)0.0214 (6)
O20.0513 (5)0.0426 (5)0.0349 (4)0.0207 (4)0.0033 (4)0.0114 (4)
C10.0410 (7)0.0477 (7)0.0397 (6)0.0252 (6)0.0001 (5)0.0069 (5)
C20.0381 (6)0.0373 (6)0.0359 (6)0.0189 (5)0.0015 (5)0.0096 (5)
C30.0509 (7)0.0466 (7)0.0418 (7)0.0307 (6)0.0044 (5)0.0031 (5)
C40.0608 (9)0.0594 (9)0.0695 (10)0.0399 (8)0.0159 (8)0.0021 (8)
C50.0936 (14)0.0661 (11)0.1005 (15)0.0584 (11)0.0289 (11)0.0014 (10)
C60.1014 (16)0.0496 (9)0.1096 (16)0.0451 (11)0.0234 (13)0.0081 (10)
C70.0701 (12)0.0462 (9)0.1123 (16)0.0259 (8)0.0117 (11)0.0152 (9)
C80.0550 (9)0.0470 (8)0.0814 (11)0.0279 (7)0.0079 (8)0.0128 (7)
C90.0323 (6)0.0424 (6)0.0372 (6)0.0198 (5)0.0006 (4)0.0079 (5)
C100.0507 (8)0.0439 (7)0.0462 (7)0.0240 (6)0.0011 (6)0.0102 (6)
C110.0625 (10)0.0473 (8)0.0590 (9)0.0242 (7)0.0005 (7)0.0027 (7)
C120.0610 (10)0.0707 (11)0.0418 (8)0.0241 (8)0.0020 (7)0.0042 (7)
C130.0613 (9)0.0672 (10)0.0407 (7)0.0217 (8)0.0083 (6)0.0141 (7)
C140.0498 (8)0.0476 (7)0.0437 (7)0.0191 (6)0.0046 (6)0.0128 (6)
C150.0424 (7)0.0507 (7)0.0408 (7)0.0243 (6)0.0030 (5)0.0121 (6)
C160.0498 (8)0.0517 (8)0.0435 (7)0.0262 (6)0.0040 (6)0.0106 (6)
C170.0603 (10)0.0818 (12)0.0615 (10)0.0437 (9)0.0153 (8)0.0130 (8)
C180.0597 (11)0.1225 (18)0.0823 (13)0.0603 (12)0.0062 (9)0.0188 (12)
C190.0668 (12)0.149 (2)0.0667 (11)0.0673 (14)0.0089 (9)0.0136 (12)
C200.0596 (10)0.1078 (15)0.0454 (8)0.0507 (10)0.0025 (7)0.0078 (9)
C210.0597 (8)0.0558 (8)0.0322 (6)0.0328 (7)0.0008 (5)0.0035 (5)
C220.0788 (12)0.0796 (12)0.0576 (9)0.0536 (10)0.0062 (8)0.0037 (8)
C230.132 (2)0.1018 (17)0.0746 (13)0.0906 (17)0.0119 (13)0.0104 (12)
C240.163 (3)0.0748 (14)0.0804 (15)0.0748 (18)0.0191 (16)0.0176 (11)
C250.1129 (18)0.0577 (11)0.0726 (13)0.0308 (12)0.0133 (12)0.0099 (9)
C260.0708 (10)0.0601 (9)0.0458 (8)0.0297 (8)0.0022 (7)0.0002 (7)
C270.0490 (8)0.0610 (9)0.0424 (7)0.0209 (7)0.0063 (6)0.0205 (6)
C280.0490 (9)0.0847 (13)0.0845 (13)0.0246 (9)0.0164 (9)0.0235 (10)
C290.0812 (13)0.0592 (10)0.0931 (14)0.0285 (10)0.0175 (11)0.0334 (10)
C300.0848 (14)0.1205 (19)0.0525 (10)0.0135 (13)0.0004 (9)0.0453 (11)
Geometric parameters (Å, º) top
Si1—O21.6534 (9)C15—C201.396 (2)
Si1—C151.8701 (14)C16—C171.384 (2)
Si1—C211.8802 (15)C16—H160.9300
Si1—C271.8860 (14)C17—C181.373 (3)
O1—C11.2097 (17)C17—H170.9300
O2—C21.4158 (14)C18—C191.375 (3)
C1—C31.4888 (19)C18—H180.9300
C1—C21.5430 (17)C19—C201.378 (2)
C2—C91.5213 (17)C19—H190.9300
C2—H20.9800C20—H200.9300
C3—C81.387 (2)C21—C261.394 (2)
C3—C41.3940 (19)C21—C221.401 (2)
C4—C51.380 (3)C22—C231.388 (3)
C4—H40.9300C22—H220.9300
C5—C61.365 (3)C23—C241.373 (4)
C5—H50.9300C23—H230.9300
C6—C71.371 (3)C24—C251.372 (4)
C6—H60.9300C24—H240.9300
C7—C81.379 (2)C25—C261.385 (3)
C7—H70.9300C25—H250.9300
C8—H80.9300C26—H260.9300
C9—C101.3828 (19)C27—C281.532 (2)
C9—C141.3911 (18)C27—C291.535 (3)
C10—C111.386 (2)C27—C301.532 (2)
C10—H100.9300C28—H28A0.9600
C11—C121.379 (2)C28—H28B0.9600
C11—H110.9300C28—H28C0.9600
C12—C131.376 (2)C29—H29A0.9600
C12—H120.9300C29—H29B0.9600
C13—C141.377 (2)C29—H29C0.9600
C13—H130.9300C30—H30A0.9600
C14—H140.9300C30—H30B0.9600
C15—C161.3947 (19)C30—H30C0.9600
O2—Si1—C15107.79 (6)C17—C16—H16119.2
O2—Si1—C21108.53 (6)C15—C16—H16119.2
C15—Si1—C21110.02 (7)C16—C17—C18119.94 (16)
O2—Si1—C27104.30 (6)C16—C17—H17120.0
C15—Si1—C27110.93 (7)C18—C17—H17120.0
C21—Si1—C27114.88 (7)C17—C18—C19119.95 (17)
C2—O2—Si1123.85 (8)C17—C18—H18120.0
O1—C1—C3121.75 (12)C19—C18—H18120.0
O1—C1—C2118.40 (12)C20—C19—C18119.89 (18)
C3—C1—C2119.81 (11)C20—C19—H19120.1
O2—C2—C9110.69 (10)C18—C19—H19120.1
O2—C2—C1108.95 (10)C19—C20—C15121.91 (16)
C9—C2—C1107.17 (10)C19—C20—H20119.0
O2—C2—H2110.0C15—C20—H20119.0
C9—C2—H2110.0C26—C21—C22116.57 (16)
C1—C2—H2110.0C26—C21—Si1121.98 (12)
C8—C3—C4118.63 (14)C22—C21—Si1121.23 (13)
C8—C3—C1123.36 (12)C23—C22—C21121.5 (2)
C4—C3—C1118.00 (13)C23—C22—H22119.3
C5—C4—C3120.15 (17)C21—C22—H22119.3
C5—C4—H4119.9C22—C23—C24120.1 (2)
C3—C4—H4119.9C22—C23—H23119.9
C4—C5—C6120.32 (17)C24—C23—H23119.9
C4—C5—H5119.8C25—C24—C23119.8 (2)
C6—C5—H5119.8C25—C24—H24120.1
C7—C6—C5120.36 (17)C23—C24—H24120.1
C7—C6—H6119.8C24—C25—C26120.1 (2)
C5—C6—H6119.8C24—C25—H25120.0
C6—C7—C8120.06 (18)C26—C25—H25120.0
C6—C7—H7120.0C21—C26—C25121.90 (19)
C8—C7—H7120.0C21—C26—H26119.1
C3—C8—C7120.47 (15)C25—C26—H26119.1
C3—C8—H8119.8C28—C27—C29108.18 (15)
C7—C8—H8119.8C28—C27—C30109.19 (16)
C10—C9—C14118.92 (12)C29—C27—C30109.94 (17)
C10—C9—C2121.38 (11)C28—C27—Si1111.09 (12)
C14—C9—C2119.64 (12)C29—C27—Si1107.71 (11)
C9—C10—C11120.41 (13)C30—C27—Si1110.68 (12)
C9—C10—H10119.8C27—C28—H28A109.5
C11—C10—H10119.8C27—C28—H28B109.5
C12—C11—C10120.08 (15)H28A—C28—H28B109.5
C12—C11—H11120.0C27—C28—H28C109.5
C10—C11—H11120.0H28A—C28—H28C109.5
C13—C12—C11119.78 (14)H28B—C28—H28C109.5
C13—C12—H12120.1C27—C29—H29A109.5
C11—C12—H12120.1C27—C29—H29B109.5
C12—C13—C14120.38 (15)H29A—C29—H29B109.5
C12—C13—H13119.8C27—C29—H29C109.5
C14—C13—H13119.8H29A—C29—H29C109.5
C13—C14—C9120.40 (14)H29B—C29—H29C109.5
C13—C14—H14119.8C27—C30—H30A109.5
C9—C14—H14119.8C27—C30—H30B109.5
C16—C15—C20116.62 (14)H30A—C30—H30B109.5
C16—C15—Si1120.66 (11)C27—C30—H30C109.5
C20—C15—Si1122.69 (11)H30A—C30—H30C109.5
C17—C16—C15121.65 (14)H30B—C30—H30C109.5
C15—Si1—O2—C281.57 (10)C27—Si1—C15—C16113.04 (12)
C21—Si1—O2—C237.55 (11)O2—Si1—C15—C20178.38 (14)
C27—Si1—O2—C2160.47 (10)C21—Si1—C15—C2063.45 (15)
Si1—O2—C2—C9146.22 (9)C27—Si1—C15—C2064.77 (16)
Si1—O2—C2—C196.18 (11)C20—C15—C16—C170.1 (2)
O1—C1—C2—O238.34 (16)Si1—C15—C16—C17177.83 (13)
C3—C1—C2—O2143.99 (11)C15—C16—C17—C181.3 (3)
O1—C1—C2—C981.47 (15)C16—C17—C18—C191.4 (3)
C3—C1—C2—C996.20 (13)C17—C18—C19—C200.1 (4)
O1—C1—C3—C8168.27 (15)C18—C19—C20—C151.4 (4)
C2—C1—C3—C814.1 (2)C16—C15—C20—C191.5 (3)
O1—C1—C3—C410.5 (2)Si1—C15—C20—C19176.41 (18)
C2—C1—C3—C4167.10 (13)O2—Si1—C21—C26116.05 (12)
C8—C3—C4—C51.2 (2)C15—Si1—C21—C261.66 (14)
C1—C3—C4—C5179.98 (16)C27—Si1—C21—C26127.68 (13)
C3—C4—C5—C61.4 (3)O2—Si1—C21—C2258.46 (14)
C4—C5—C6—C70.6 (4)C15—Si1—C21—C22176.18 (12)
C5—C6—C7—C80.4 (4)C27—Si1—C21—C2257.80 (15)
C4—C3—C8—C70.2 (3)C26—C21—C22—C230.8 (3)
C1—C3—C8—C7178.91 (17)Si1—C21—C22—C23173.96 (15)
C6—C7—C8—C30.7 (3)C21—C22—C23—C240.1 (3)
O2—C2—C9—C109.07 (16)C22—C23—C24—C250.8 (4)
C1—C2—C9—C10109.62 (13)C23—C24—C25—C260.9 (4)
O2—C2—C9—C14173.66 (11)C22—C21—C26—C250.7 (2)
C1—C2—C9—C1467.66 (15)Si1—C21—C26—C25174.02 (14)
C14—C9—C10—C111.6 (2)C24—C25—C26—C210.1 (3)
C2—C9—C10—C11178.85 (13)O2—Si1—C27—C2859.42 (13)
C9—C10—C11—C121.5 (2)C15—Si1—C27—C28175.21 (12)
C10—C11—C12—C130.2 (3)C21—Si1—C27—C2859.24 (14)
C11—C12—C13—C141.1 (3)O2—Si1—C27—C2958.89 (13)
C12—C13—C14—C91.0 (3)C15—Si1—C27—C2956.90 (14)
C10—C9—C14—C130.3 (2)C21—Si1—C27—C29177.55 (12)
C2—C9—C14—C13177.65 (13)O2—Si1—C27—C30179.10 (15)
O2—Si1—C15—C160.57 (13)C15—Si1—C27—C3063.31 (17)
C21—Si1—C15—C16118.74 (12)C21—Si1—C27—C3062.24 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.493.211 (2)135
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We are grateful to the Office of the Dean at Fordham University for its generous financial support. We thank Fordham University colleagues Paul Smith and Christopher Koenigsmann for assistance in setting up the kappa-ccd system.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFajardo, F., Shepelev, Y. F. & Smolin, Y. I. (1984). Revista Cubana de Fisica, 4, 25-31.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaisa, M., Kashino, S. & Morimoto, M. (1980). Acta Cryst. B36, 2832–2834.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNonius (1997). KappaCCD Server Software. Nonius BV, Delft, les Pays-Bas.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRowland, A. T. (1983). J. Chem. Educ. 60, 1084–1085.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolé, S., Gornitzka, H., Guerret, U. & Bertrand, G. (1998). J. Am. Chem. Soc. 120, 9100–9101.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds