organic compounds
N-(4-Chlorophenyl)-9H-fluoren-9-imine
aDepartment of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06050, USA
*Correspondence e-mail: crundwellg@ccsu.edu
The title compound, C19H12ClN, was synthesized via reaction of 9-fluorenone and 4-chloroaniline using p-toluenesulfonic acid in toluene. The dihedral angle between the fluorene moiety (r.m.s. deviation = 0.027 Å) and the chlorophenyl ring is 64.59 (6)° and a possible weak intramolecular C—H⋯π interaction occurs.
Keywords: crystal structure; imine; fluorenone derivative.
CCDC reference: 1911702
Structure description
Acid-catalyzed imine formation reactions between 9-fluorenone and anilines are easy, high-yield projects for undergraduate research. Fluoren-9-imines are of interest because of their interesting fluorescence (Dufresne et al., 2011) and use as potential organics in materials with tunable HLG (HOMO–LUMO gap) systems (Eakins et al., 2013). The of N-phenyl-9H-fluoren-9-imine, the stripped-down combination between 9-fluorenone and aniline, has been published three times. The first paper described the structure of a monoclinic benzene solvate (Peters et al., 1998). Unsolvated monoclinic and orthorhombic forms were published by Eakins et al. (2013) and Dufresne et al. (2011), respectively. Four additional complexes made from 9-fluorenone and substituted anilines have been published: a 4-methylaniline derivate (Bai et al., 2009) and 3,4-dimethylaniline, 2-methoxy aniline and 4-methoxyaniline derivatives (Glagovich et al., 2004a,b,c). Finally, the of N-mesityl-9H-fluoren-9-imine was communicated privately to the CSD in 2016 (Evans et al. 2016). As part of our studies in this area, we now describe the synthesis and structure of the title compound.
In the title molecule (Fig. 1), all bond lengths and angles are within expected values: the dihedral angle between the fluorene ring system and the chlorophenyl ring is 64.59 (6)°. A possible weak intramolecular C3—H3⋯π interaction (Table 1) occurs. In the crystal, the molecules pack in interweaving layers (Fig. 2).
|
Synthesis and crystallization
To a 100 ml round-bottom flask were added 0.326 g (1.81 mmol) of 9-fluorenone, 0.46 g (3.62 mmol) of 4-chloroaniline, 0.0017 g (9.05 × 10 −6 mol) p-toluenesulfonic acid, and 25 ml of toluene. The flask was fitted with a Hickman still and condenser and the solution was refluxed for 16 h. After this time, the toluene was removed under reduced pressure and the resulting brown solid was purified by (SiO2, 95% hexane/5% EtOAc) to produce 0.395 g (79%) of product. Yellow needles for the diffraction study were crystallized from methylene chloride solution (m.p. 420 K). ATR–IR (cm−1) 3063, 2962, 1640, 838, 816, 732; 1H NMR (300 MHz, CDCl3): δ 7.92 (dd, 1H), 7.63 (dd, 2H), 7.44 (dt, 1H), 7.40 (m, 4H), 7.00 (m, 3H), 6.68 (d, 1H); 13C (75 MHz, CDCl3): δ 163.45, 150.22, 143.97, 141.90, 137.32, 132.11, 132.08, 131.06, 129.46, 129.32, 128.54, 127.78, 127.03, 123.39, 120.40, 119.83, 119.70. FTIR, 1H NMR, COSY and 13C NMR are given in the supplementary materials.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1911702
https://doi.org/10.1107/S2414314619005558/hb4296sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619005558/hb4296Isup2.hkl
Supplementary Info: 1H, COSY, 13C, and IR data. DOI: https://doi.org/10.1107/S2414314619005558/hb4296sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2414314619005558/hb4296Isup4.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C19H12ClN | Dx = 1.342 Mg m−3 |
Mr = 289.75 | Melting point: 420 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.2842 (14) Å | Cell parameters from 7600 reflections |
b = 5.2148 (2) Å | θ = 4.5–32.3° |
c = 25.923 (3) Å | µ = 0.26 mm−1 |
β = 132.024 (17)° | T = 293 K |
V = 1434.5 (2) Å3 | Needle, yellow |
Z = 4 | 0.45 × 0.21 × 0.20 mm |
F(000) = 600 |
Rigaku Oxford Diffraction Xcalibur, Sapphire3 diffractometer | 5301 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3925 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 16.1790 pixels mm-1 | θmax = 33.7°, θmin = 4.2° |
ω scans | h = −21→21 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −8→7 |
Tmin = 0.767, Tmax = 1.000 | l = −38→39 |
35328 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4392P] where P = (Fo2 + 2Fc2)/3 |
5301 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were included in calculated positions (C—H = 0.93Å) and refined as riding with Uĩso~ = 1.2Ueq (carrier atom). |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.45087 (4) | 0.83251 (10) | 0.46185 (2) | 0.06331 (14) | |
N1 | 0.00458 (10) | 0.2458 (2) | 0.57276 (5) | 0.0404 (2) | |
C1 | 0.09621 (12) | 0.2050 (2) | 0.63725 (6) | 0.0355 (2) | |
C2 | 0.12964 (12) | 0.3141 (2) | 0.70134 (6) | 0.0362 (2) | |
C3 | 0.07819 (14) | 0.5127 (3) | 0.71103 (7) | 0.0443 (3) | |
H3 | 0.0092 | 0.6045 | 0.6734 | 0.053* | |
C4 | 0.13234 (15) | 0.5717 (3) | 0.77866 (8) | 0.0521 (4) | |
H4 | 0.0984 | 0.7032 | 0.7860 | 0.063* | |
C5 | 0.23516 (16) | 0.4380 (4) | 0.83459 (8) | 0.0545 (4) | |
H5 | 0.2686 | 0.4785 | 0.8791 | 0.065* | |
C6 | 0.28949 (15) | 0.2448 (3) | 0.82579 (7) | 0.0495 (3) | |
H6 | 0.3596 | 0.1566 | 0.8638 | 0.059* | |
C7 | 0.23708 (12) | 0.1852 (3) | 0.75893 (7) | 0.0383 (3) | |
C8 | 0.27774 (12) | −0.0020 (3) | 0.73491 (6) | 0.0375 (3) | |
C9 | 0.37545 (14) | −0.1769 (3) | 0.77105 (8) | 0.0481 (3) | |
H9 | 0.4302 | −0.1882 | 0.8192 | 0.058* | |
C10 | 0.38990 (16) | −0.3354 (3) | 0.73379 (9) | 0.0537 (4) | |
H10 | 0.4555 | −0.4535 | 0.7573 | 0.064* | |
C11 | 0.30817 (15) | −0.3205 (3) | 0.66212 (9) | 0.0516 (4) | |
H11 | 0.3199 | −0.4283 | 0.6383 | 0.062* | |
C12 | 0.20892 (13) | −0.1468 (3) | 0.62532 (7) | 0.0441 (3) | |
H12 | 0.1532 | −0.1386 | 0.5771 | 0.053* | |
C13 | 0.19547 (12) | 0.0136 (2) | 0.66253 (6) | 0.0360 (2) | |
C14 | −0.10002 (12) | 0.3955 (3) | 0.54933 (6) | 0.0373 (3) | |
C15 | −0.13495 (13) | 0.6099 (3) | 0.50817 (7) | 0.0425 (3) | |
H15 | −0.0860 | 0.6625 | 0.4984 | 0.051* | |
C16 | −0.24244 (14) | 0.7457 (3) | 0.48156 (7) | 0.0460 (3) | |
H16 | −0.2651 | 0.8912 | 0.4547 | 0.055* | |
C17 | −0.31558 (12) | 0.6632 (3) | 0.49532 (7) | 0.0426 (3) | |
C18 | −0.28392 (14) | 0.4484 (3) | 0.53493 (8) | 0.0477 (3) | |
H18 | −0.3345 | 0.3942 | 0.5435 | 0.057* | |
C19 | −0.17632 (14) | 0.3145 (3) | 0.56179 (8) | 0.0456 (3) | |
H19 | −0.1545 | 0.1687 | 0.5885 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0434 (2) | 0.0768 (3) | 0.0626 (2) | −0.01057 (18) | 0.03256 (19) | 0.0050 (2) |
N1 | 0.0410 (5) | 0.0500 (6) | 0.0365 (5) | −0.0016 (5) | 0.0285 (5) | 0.0018 (5) |
C1 | 0.0387 (6) | 0.0387 (6) | 0.0366 (6) | 0.0032 (5) | 0.0283 (5) | 0.0029 (5) |
C2 | 0.0398 (6) | 0.0382 (6) | 0.0381 (6) | 0.0052 (5) | 0.0292 (5) | 0.0057 (5) |
C3 | 0.0463 (7) | 0.0457 (7) | 0.0460 (7) | 0.0008 (6) | 0.0330 (6) | 0.0067 (6) |
C4 | 0.0576 (8) | 0.0556 (9) | 0.0557 (8) | 0.0057 (7) | 0.0431 (8) | 0.0174 (7) |
C5 | 0.0591 (9) | 0.0689 (10) | 0.0416 (7) | 0.0081 (8) | 0.0363 (7) | 0.0162 (7) |
C6 | 0.0509 (8) | 0.0590 (9) | 0.0361 (6) | 0.0022 (7) | 0.0281 (6) | 0.0047 (6) |
C7 | 0.0421 (6) | 0.0410 (6) | 0.0373 (6) | 0.0056 (5) | 0.0288 (5) | 0.0044 (5) |
C8 | 0.0405 (6) | 0.0379 (6) | 0.0393 (6) | 0.0034 (5) | 0.0289 (5) | 0.0021 (5) |
C9 | 0.0472 (7) | 0.0489 (8) | 0.0463 (7) | −0.0053 (6) | 0.0304 (6) | −0.0048 (6) |
C10 | 0.0517 (8) | 0.0469 (8) | 0.0658 (10) | −0.0086 (6) | 0.0407 (8) | −0.0033 (7) |
C11 | 0.0542 (8) | 0.0486 (8) | 0.0640 (9) | −0.0005 (6) | 0.0444 (8) | 0.0097 (7) |
C12 | 0.0468 (7) | 0.0488 (7) | 0.0462 (7) | 0.0036 (6) | 0.0351 (6) | 0.0082 (6) |
C13 | 0.0388 (6) | 0.0376 (6) | 0.0393 (6) | 0.0033 (5) | 0.0292 (5) | 0.0035 (5) |
C14 | 0.0372 (6) | 0.0465 (7) | 0.0319 (5) | 0.0017 (5) | 0.0246 (5) | 0.0048 (5) |
C15 | 0.0449 (7) | 0.0513 (8) | 0.0413 (6) | 0.0007 (6) | 0.0330 (6) | −0.0006 (6) |
C16 | 0.0486 (7) | 0.0505 (8) | 0.0416 (7) | −0.0043 (6) | 0.0314 (6) | −0.0045 (6) |
C17 | 0.0357 (6) | 0.0525 (8) | 0.0372 (6) | 0.0007 (5) | 0.0234 (5) | 0.0096 (6) |
C18 | 0.0453 (7) | 0.0559 (8) | 0.0544 (8) | 0.0052 (6) | 0.0385 (7) | 0.0043 (7) |
C19 | 0.0482 (7) | 0.0502 (8) | 0.0488 (7) | 0.0000 (6) | 0.0367 (6) | −0.0034 (6) |
Cl1—C17 | 1.7384 (14) | C9—H9 | 0.9300 |
N1—C1 | 1.2742 (17) | C9—C10 | 1.388 (2) |
N1—C14 | 1.4127 (17) | C10—H10 | 0.9300 |
C1—C2 | 1.4999 (16) | C10—C11 | 1.384 (2) |
C1—C13 | 1.4805 (18) | C11—H11 | 0.9300 |
C2—C3 | 1.3869 (18) | C11—C12 | 1.389 (2) |
C2—C7 | 1.4029 (19) | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | C12—C13 | 1.3840 (17) |
C3—C4 | 1.397 (2) | C14—C15 | 1.3870 (19) |
C4—H4 | 0.9300 | C14—C19 | 1.3936 (18) |
C4—C5 | 1.376 (2) | C15—H15 | 0.9300 |
C5—H5 | 0.9300 | C15—C16 | 1.384 (2) |
C5—C6 | 1.381 (2) | C16—H16 | 0.9300 |
C6—H6 | 0.9300 | C16—C17 | 1.379 (2) |
C6—C7 | 1.3871 (18) | C17—C18 | 1.375 (2) |
C7—C8 | 1.4702 (18) | C18—H18 | 0.9300 |
C8—C9 | 1.381 (2) | C18—C19 | 1.379 (2) |
C8—C13 | 1.3986 (18) | C19—H19 | 0.9300 |
C1—N1—C14 | 121.21 (10) | C11—C10—C9 | 121.05 (14) |
N1—C1—C2 | 132.51 (12) | C11—C10—H10 | 119.5 |
N1—C1—C13 | 122.11 (11) | C10—C11—H11 | 119.5 |
C13—C1—C2 | 105.36 (10) | C10—C11—C12 | 120.96 (13) |
C3—C2—C1 | 132.03 (13) | C12—C11—H11 | 119.5 |
C3—C2—C7 | 120.00 (12) | C11—C12—H12 | 121.0 |
C7—C2—C1 | 107.90 (11) | C13—C12—C11 | 118.00 (13) |
C2—C3—H3 | 120.8 | C13—C12—H12 | 121.0 |
C2—C3—C4 | 118.46 (14) | C8—C13—C1 | 109.18 (10) |
C4—C3—H3 | 120.8 | C12—C13—C1 | 129.62 (12) |
C3—C4—H4 | 119.5 | C12—C13—C8 | 121.06 (12) |
C5—C4—C3 | 120.97 (14) | C15—C14—N1 | 120.55 (11) |
C5—C4—H4 | 119.5 | C15—C14—C19 | 119.23 (12) |
C4—C5—H5 | 119.4 | C19—C14—N1 | 119.92 (12) |
C4—C5—C6 | 121.13 (13) | C14—C15—H15 | 119.9 |
C6—C5—H5 | 119.4 | C16—C15—C14 | 120.22 (12) |
C5—C6—H6 | 120.8 | C16—C15—H15 | 119.9 |
C5—C6—C7 | 118.49 (14) | C15—C16—H16 | 120.3 |
C7—C6—H6 | 120.8 | C17—C16—C15 | 119.39 (14) |
C2—C7—C8 | 109.16 (11) | C17—C16—H16 | 120.3 |
C6—C7—C2 | 120.88 (13) | C16—C17—Cl1 | 119.58 (12) |
C6—C7—C8 | 129.95 (13) | C18—C17—Cl1 | 119.11 (11) |
C9—C8—C7 | 131.12 (12) | C18—C17—C16 | 121.31 (13) |
C9—C8—C13 | 120.55 (12) | C17—C18—H18 | 120.4 |
C13—C8—C7 | 108.32 (11) | C17—C18—C19 | 119.19 (13) |
C8—C9—H9 | 120.8 | C19—C18—H18 | 120.4 |
C8—C9—C10 | 118.37 (14) | C14—C19—H19 | 119.7 |
C10—C9—H9 | 120.8 | C18—C19—C14 | 120.62 (14) |
C9—C10—H10 | 119.5 | C18—C19—H19 | 119.7 |
Cg4 is the centroid of the C14–C19 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cg4 | 0.93 | 2.98 | 3.7347 (16) | 139 |
Funding information
Funding for this research was provided by: CSU-AAUP Reseach Grant.
References
Bai, S.-Z., Lou, X.-H., Li, H.-M. & Shi, H. (2009). Acta Cryst. E65, o1545. CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dufresne, S., Skalski, T. & Skene, W. G. (2011). Can. J. Chem. 89, 173–180. CrossRef CAS Google Scholar
Eakins, G. L., Cooper, M. W., Gerasimchuk, N. N., Phillips, T. J., Breyfogle, B. E. & Stearman, C. J. (2013). Can. J. Chem. 91, 1059–1071. CrossRef CAS Google Scholar
Evans, P., Izod, K. & Waddell, P. G. (2016). Private communication (refcode CCDC 1488084). CCDC, Cambridge, England. Google Scholar
Glagovich, N. M., Reed, E. M., Crundwell, G., Updegraff III, J. B., Zeller, M. & Hunter, A. D. (2004a). Acta Cryst. E60, o1269–o1270. CrossRef IUCr Journals Google Scholar
Glagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B., Zeller, M. & Hunter, A. D. (2004b). Acta Cryst. E60, o2000–o2001. CrossRef IUCr Journals Google Scholar
Glagovich, N., Reed, E., Crundwell, G., Updegraff III, J. B., Zeller, M. & Hunter, A. D. (2004c). Acta Cryst. E60, o623–o625. CrossRef IUCr Journals Google Scholar
Peters, K., Peters, E.-M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607–608. CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.