organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(4-Chloro­phen­yl)-9H-fluoren-9-imine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06050, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 April 2019; accepted 23 April 2019; online 30 April 2019)

The title compound, C19H12ClN, was synthesized via reaction of 9-fluorenone and 4-chloro­aniline using p-toluene­sulfonic acid in toluene. The dihedral angle between the fluorene moiety (r.m.s. deviation = 0.027 Å) and the chloro­phenyl ring is 64.59 (6)° and a possible weak intra­molecular C—H⋯π inter­action occurs.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Acid-catalyzed imine formation reactions between 9-fluorenone and anilines are easy, high-yield projects for undergraduate research. Fluoren-9-imines are of inter­est because of their inter­esting fluorescence (Dufresne et al., 2011[Dufresne, S., Skalski, T. & Skene, W. G. (2011). Can. J. Chem. 89, 173-180.]) and use as potential organics in materials with tunable HLG (HOMO–LUMO gap) systems (Eakins et al., 2013[Eakins, G. L., Cooper, M. W., Gerasimchuk, N. N., Phillips, T. J., Breyfogle, B. E. & Stearman, C. J. (2013). Can. J. Chem. 91, 1059-1071.]). The crystal structure of N-phenyl-9H-fluoren-9-imine, the stripped-down combination between 9-fluorenone and aniline, has been published three times. The first paper described the structure of a monoclinic benzene solvate (Peters et al., 1998[Peters, K., Peters, E.-M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607-608.]). Unsolvated monoclinic and ortho­rhom­bic forms were published by Eakins et al. (2013[Eakins, G. L., Cooper, M. W., Gerasimchuk, N. N., Phillips, T. J., Breyfogle, B. E. & Stearman, C. J. (2013). Can. J. Chem. 91, 1059-1071.]) and Dufresne et al. (2011[Dufresne, S., Skalski, T. & Skene, W. G. (2011). Can. J. Chem. 89, 173-180.]), respectively. Four additional complexes made from 9-fluorenone and substituted anilines have been published: a 4-methyl­aniline derivate (Bai et al., 2009[Bai, S.-Z., Lou, X.-H., Li, H.-M. & Shi, H. (2009). Acta Cryst. E65, o1545.]) and 3,4-di­methyl­aniline, 2-meth­oxy aniline and 4-meth­oxy­aniline derivatives (Glagovich et al., 2004a[Glagovich, N. M., Reed, E. M., Crundwell, G., Updegraff III, J. B., Zeller, M. & Hunter, A. D. (2004a). Acta Cryst. E60, o1269-o1270.],b[Glagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B., Zeller, M. & Hunter, A. D. (2004b). Acta Cryst. E60, o2000-o2001.],c[Glagovich, N., Reed, E., Crundwell, G., Updegraff III, J. B., Zeller, M. & Hunter, A. D. (2004c). Acta Cryst. E60, o623-o625.]). Finally, the crystal structure of N-mesityl-9H-fluoren-9-imine was communicated privately to the CSD in 2016 (Evans et al. 2016[Evans, P., Izod, K. & Waddell, P. G. (2016). Private communication (refcode CCDC 1488084). CCDC, Cambridge, England.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

In the title mol­ecule (Fig. 1[link]), all bond lengths and angles are within expected values: the dihedral angle between the fluorene ring system and the chloro­phenyl ring is 64.59 (6)°. A possible weak intra­molecular C3—H3⋯π inter­action (Table 1[link]) occurs. In the crystal, the mol­ecules pack in inter­weaving layers (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg4 0.93 2.98 3.7347 (16) 139
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The unit-cell packing in the title compound as viewed along [010]. The C—H⋯π contact is shown as a black dashed line.

Synthesis and crystallization

To a 100 ml round-bottom flask were added 0.326 g (1.81 mmol) of 9-fluorenone, 0.46 g (3.62 mmol) of 4-chloro­aniline, 0.0017 g (9.05 × 10 −6 mol) p-toluene­sulfonic acid, and 25 ml of toluene. The flask was fitted with a Hickman still and condenser and the solution was refluxed for 16 h. After this time, the toluene was removed under reduced pressure and the resulting brown solid was purified by column chromatography (SiO2, 95% hexa­ne/5% EtOAc) to produce 0.395 g (79%) of product. Yellow needles for the diffraction study were crystallized from methyl­ene chloride solution (m.p. 420 K). ATR–IR (cm−1) 3063, 2962, 1640, 838, 816, 732; 1H NMR (300 MHz, CDCl3): δ 7.92 (dd, 1H), 7.63 (dd, 2H), 7.44 (dt, 1H), 7.40 (m, 4H), 7.00 (m, 3H), 6.68 (d, 1H); 13C (75 MHz, CDCl3): δ 163.45, 150.22, 143.97, 141.90, 137.32, 132.11, 132.08, 131.06, 129.46, 129.32, 128.54, 127.78, 127.03, 123.39, 120.40, 119.83, 119.70. FTIR, 1H NMR, COSY and 13C NMR are given in the supplementary materials.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H12ClN
Mr 289.75
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 14.2842 (14), 5.2148 (2), 25.923 (3)
β (°) 132.024 (17)
V3) 1434.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.45 × 0.21 × 0.20
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.767, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 35328, 5301, 3925
Rint 0.031
(sin θ/λ)max−1) 0.780
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.03
No. of reflections 5301
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.36
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N-(4-Chlorophenyl)-9H-fluoren-9-imine top
Crystal data top
C19H12ClNDx = 1.342 Mg m3
Mr = 289.75Melting point: 420 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.2842 (14) ÅCell parameters from 7600 reflections
b = 5.2148 (2) Åθ = 4.5–32.3°
c = 25.923 (3) ŵ = 0.26 mm1
β = 132.024 (17)°T = 293 K
V = 1434.5 (2) Å3Needle, yellow
Z = 40.45 × 0.21 × 0.20 mm
F(000) = 600
Data collection top
Rigaku Oxford Diffraction Xcalibur, Sapphire3
diffractometer
5301 independent reflections
Radiation source: Enhance (Mo) X-ray Source3925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1790 pixels mm-1θmax = 33.7°, θmin = 4.2°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 87
Tmin = 0.767, Tmax = 1.000l = 3839
35328 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4392P]
where P = (Fo2 + 2Fc2)/3
5301 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The H atoms were included in calculated positions (C—H = 0.93Å) and refined as riding with Uĩso~ = 1.2Ueq (carrier atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45087 (4)0.83251 (10)0.46185 (2)0.06331 (14)
N10.00458 (10)0.2458 (2)0.57276 (5)0.0404 (2)
C10.09621 (12)0.2050 (2)0.63725 (6)0.0355 (2)
C20.12964 (12)0.3141 (2)0.70134 (6)0.0362 (2)
C30.07819 (14)0.5127 (3)0.71103 (7)0.0443 (3)
H30.00920.60450.67340.053*
C40.13234 (15)0.5717 (3)0.77866 (8)0.0521 (4)
H40.09840.70320.78600.063*
C50.23516 (16)0.4380 (4)0.83459 (8)0.0545 (4)
H50.26860.47850.87910.065*
C60.28949 (15)0.2448 (3)0.82579 (7)0.0495 (3)
H60.35960.15660.86380.059*
C70.23708 (12)0.1852 (3)0.75893 (7)0.0383 (3)
C80.27774 (12)0.0020 (3)0.73491 (6)0.0375 (3)
C90.37545 (14)0.1769 (3)0.77105 (8)0.0481 (3)
H90.43020.18820.81920.058*
C100.38990 (16)0.3354 (3)0.73379 (9)0.0537 (4)
H100.45550.45350.75730.064*
C110.30817 (15)0.3205 (3)0.66212 (9)0.0516 (4)
H110.31990.42830.63830.062*
C120.20892 (13)0.1468 (3)0.62532 (7)0.0441 (3)
H120.15320.13860.57710.053*
C130.19547 (12)0.0136 (2)0.66253 (6)0.0360 (2)
C140.10002 (12)0.3955 (3)0.54933 (6)0.0373 (3)
C150.13495 (13)0.6099 (3)0.50817 (7)0.0425 (3)
H150.08600.66250.49840.051*
C160.24244 (14)0.7457 (3)0.48156 (7)0.0460 (3)
H160.26510.89120.45470.055*
C170.31558 (12)0.6632 (3)0.49532 (7)0.0426 (3)
C180.28392 (14)0.4484 (3)0.53493 (8)0.0477 (3)
H180.33450.39420.54350.057*
C190.17632 (14)0.3145 (3)0.56179 (8)0.0456 (3)
H190.15450.16870.58850.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0434 (2)0.0768 (3)0.0626 (2)0.01057 (18)0.03256 (19)0.0050 (2)
N10.0410 (5)0.0500 (6)0.0365 (5)0.0016 (5)0.0285 (5)0.0018 (5)
C10.0387 (6)0.0387 (6)0.0366 (6)0.0032 (5)0.0283 (5)0.0029 (5)
C20.0398 (6)0.0382 (6)0.0381 (6)0.0052 (5)0.0292 (5)0.0057 (5)
C30.0463 (7)0.0457 (7)0.0460 (7)0.0008 (6)0.0330 (6)0.0067 (6)
C40.0576 (8)0.0556 (9)0.0557 (8)0.0057 (7)0.0431 (8)0.0174 (7)
C50.0591 (9)0.0689 (10)0.0416 (7)0.0081 (8)0.0363 (7)0.0162 (7)
C60.0509 (8)0.0590 (9)0.0361 (6)0.0022 (7)0.0281 (6)0.0047 (6)
C70.0421 (6)0.0410 (6)0.0373 (6)0.0056 (5)0.0288 (5)0.0044 (5)
C80.0405 (6)0.0379 (6)0.0393 (6)0.0034 (5)0.0289 (5)0.0021 (5)
C90.0472 (7)0.0489 (8)0.0463 (7)0.0053 (6)0.0304 (6)0.0048 (6)
C100.0517 (8)0.0469 (8)0.0658 (10)0.0086 (6)0.0407 (8)0.0033 (7)
C110.0542 (8)0.0486 (8)0.0640 (9)0.0005 (6)0.0444 (8)0.0097 (7)
C120.0468 (7)0.0488 (7)0.0462 (7)0.0036 (6)0.0351 (6)0.0082 (6)
C130.0388 (6)0.0376 (6)0.0393 (6)0.0033 (5)0.0292 (5)0.0035 (5)
C140.0372 (6)0.0465 (7)0.0319 (5)0.0017 (5)0.0246 (5)0.0048 (5)
C150.0449 (7)0.0513 (8)0.0413 (6)0.0007 (6)0.0330 (6)0.0006 (6)
C160.0486 (7)0.0505 (8)0.0416 (7)0.0043 (6)0.0314 (6)0.0045 (6)
C170.0357 (6)0.0525 (8)0.0372 (6)0.0007 (5)0.0234 (5)0.0096 (6)
C180.0453 (7)0.0559 (8)0.0544 (8)0.0052 (6)0.0385 (7)0.0043 (7)
C190.0482 (7)0.0502 (8)0.0488 (7)0.0000 (6)0.0367 (6)0.0034 (6)
Geometric parameters (Å, º) top
Cl1—C171.7384 (14)C9—H90.9300
N1—C11.2742 (17)C9—C101.388 (2)
N1—C141.4127 (17)C10—H100.9300
C1—C21.4999 (16)C10—C111.384 (2)
C1—C131.4805 (18)C11—H110.9300
C2—C31.3869 (18)C11—C121.389 (2)
C2—C71.4029 (19)C12—H120.9300
C3—H30.9300C12—C131.3840 (17)
C3—C41.397 (2)C14—C151.3870 (19)
C4—H40.9300C14—C191.3936 (18)
C4—C51.376 (2)C15—H150.9300
C5—H50.9300C15—C161.384 (2)
C5—C61.381 (2)C16—H160.9300
C6—H60.9300C16—C171.379 (2)
C6—C71.3871 (18)C17—C181.375 (2)
C7—C81.4702 (18)C18—H180.9300
C8—C91.381 (2)C18—C191.379 (2)
C8—C131.3986 (18)C19—H190.9300
C1—N1—C14121.21 (10)C11—C10—C9121.05 (14)
N1—C1—C2132.51 (12)C11—C10—H10119.5
N1—C1—C13122.11 (11)C10—C11—H11119.5
C13—C1—C2105.36 (10)C10—C11—C12120.96 (13)
C3—C2—C1132.03 (13)C12—C11—H11119.5
C3—C2—C7120.00 (12)C11—C12—H12121.0
C7—C2—C1107.90 (11)C13—C12—C11118.00 (13)
C2—C3—H3120.8C13—C12—H12121.0
C2—C3—C4118.46 (14)C8—C13—C1109.18 (10)
C4—C3—H3120.8C12—C13—C1129.62 (12)
C3—C4—H4119.5C12—C13—C8121.06 (12)
C5—C4—C3120.97 (14)C15—C14—N1120.55 (11)
C5—C4—H4119.5C15—C14—C19119.23 (12)
C4—C5—H5119.4C19—C14—N1119.92 (12)
C4—C5—C6121.13 (13)C14—C15—H15119.9
C6—C5—H5119.4C16—C15—C14120.22 (12)
C5—C6—H6120.8C16—C15—H15119.9
C5—C6—C7118.49 (14)C15—C16—H16120.3
C7—C6—H6120.8C17—C16—C15119.39 (14)
C2—C7—C8109.16 (11)C17—C16—H16120.3
C6—C7—C2120.88 (13)C16—C17—Cl1119.58 (12)
C6—C7—C8129.95 (13)C18—C17—Cl1119.11 (11)
C9—C8—C7131.12 (12)C18—C17—C16121.31 (13)
C9—C8—C13120.55 (12)C17—C18—H18120.4
C13—C8—C7108.32 (11)C17—C18—C19119.19 (13)
C8—C9—H9120.8C19—C18—H18120.4
C8—C9—C10118.37 (14)C14—C19—H19119.7
C10—C9—H9120.8C18—C19—C14120.62 (14)
C9—C10—H10119.5C18—C19—H19119.7
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg40.932.983.7347 (16)139
 

Funding information

Funding for this research was provided by: CSU-AAUP Reseach Grant.

References

First citationBai, S.-Z., Lou, X.-H., Li, H.-M. & Shi, H. (2009). Acta Cryst. E65, o1545.  CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDufresne, S., Skalski, T. & Skene, W. G. (2011). Can. J. Chem. 89, 173–180.  CrossRef CAS Google Scholar
First citationEakins, G. L., Cooper, M. W., Gerasimchuk, N. N., Phillips, T. J., Breyfogle, B. E. & Stearman, C. J. (2013). Can. J. Chem. 91, 1059–1071.  CrossRef CAS Google Scholar
First citationEvans, P., Izod, K. & Waddell, P. G. (2016). Private communication (refcode CCDC 1488084). CCDC, Cambridge, England.  Google Scholar
First citationGlagovich, N. M., Reed, E. M., Crundwell, G., Updegraff III, J. B., Zeller, M. & Hunter, A. D. (2004a). Acta Cryst. E60, o1269–o1270.  CrossRef IUCr Journals Google Scholar
First citationGlagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B., Zeller, M. & Hunter, A. D. (2004b). Acta Cryst. E60, o2000–o2001.  CrossRef IUCr Journals Google Scholar
First citationGlagovich, N., Reed, E., Crundwell, G., Updegraff III, J. B., Zeller, M. & Hunter, A. D. (2004c). Acta Cryst. E60, o623–o625.  CrossRef IUCr Journals Google Scholar
First citationPeters, K., Peters, E.-M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607–608.  CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds