organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl-2-phenyl­pent-2-enal thio­semicarbazone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram 695 004, Kerala, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: msithambaresan@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 March 2019; accepted 31 March 2019; online 5 April 2019)

In the title compound, C13H17N3S, the dihedral angle between the thio­semicarbazone moiety [maximum deviation = 0.055 (2) Å] and the phenyl ring is 53.15 (12)°. In the crystal, N—H⋯S hydrogen bonds generate (100) layers, with the S atom accepting two such bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­semicarbazones are a family of nitro­gen–sulfur donor ligands with a wide range of biological applications due in part to their ability to form terdentate chelates with transition metal ions (e.g. Scovill et al., 1982[Scovill, J. P., Klayman, D. L. & Franchino, C. F. (1982). J. Med. Chem. 25, 1261-1264.]; Joseph et al., 2004[Joseph, M., Suni, V., Prathapachandra Kurup, M. R., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069-3080.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

The C1=S1 [1.689 (3) Å], C2=N3 [1.270 (3) Å], N2—N3 [1.376 (3) Å] and C1—N2 [1.352 (3) Å] bond lengths show good agreement with the equivalent data for related structures (Palenik et al., 1974[Palenik, G. J., Rendle, D. F. & Carter, W. S. (1974). Acta Cryst. B30, 2390-2395.]; Nandi et al., 1984[Nandi, A. K., Chaudhuri, S., Mazumdar, S. K. & Ghosh, S. (1984). Acta Cryst. C40, 1193-1196.]). The title mol­ecule exists in the E and Z configurations with respect to the C2=N2 and C3=C4 bonds, respectively. The thio­semicarbazone moiety is almost planar as a result of the extended conjugation along the moiety [maximum deviation = 0.055 (2) Å for N2] and subtends a dihedral angle of 53.15 (12)° with the pendant C8–C13 phenyl ring.

In the crystal, the mol­ecules are linked by pairwise N1—H1A⋯S1 hydrogen bonds (Table 1[link]), generating inversion dimers (Fig. 2[link]). The dimers are linked into (100) sheets by N2—H2A⋯S1 bonds. There are no significant ππ inter­actions present in this crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 (2) 2.56 (2) 3.409 (3) 168 (3)
N2—H2A⋯S1ii 0.88 (2) 2.59 (2) 3.456 (2) 167 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x, -y+2, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
N—H⋯S hydrogen-bonding inter­actions (dashed lines) in the title compound.

Synthesis and crystallization

A mixture of thio­semicarbazide (0.091 g; 1 mmol) and 4-methyl-2-phenyl-2-pentenal (0.18 g; 1 mmol) was refluxed in 30 ml methanol for 2–3 h. The resultant solution was concentrated and cooled to room temperature. A precipitate formed with a yield of 56% and was filtered and washed with methanol. Brown block-shaped crystals were grown by slow evaporation using ethanol as the solvent, m.p. = 199–202°C. Analysis calculated for C13H17N3S: C 63.07; H 6.87; N 16.97; S 12.94%; found: C 62.92; H 7.18; N 16.91; S 12.58%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H17N3S
Mr 247.35
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 30.3184 (13), 11.0972 (5), 8.0354 (3)
β (°) 93.127 (5)
V3) 2699.5 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXIII CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.611, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15555, 2373, 1723
Rint 0.065
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.135, 1.06
No. of reflections 2373
No. of parameters 168
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

4-Methyl-2-phenylpent-2-enal thiosemicarbazone top
Crystal data top
C13H17N3SF(000) = 1056
Mr = 247.35Dx = 1.217 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.3184 (13) ÅCell parameters from 5545 reflections
b = 11.0972 (5) Åθ = 3.2–27.9°
c = 8.0354 (3) ŵ = 0.22 mm1
β = 93.127 (5)°T = 296 K
V = 2699.5 (2) Å3Block, brown
Z = 80.15 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXIII CMOS
diffractometer
2373 independent reflections
Radiation source: fine-focus sealed tube1723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω and φ scanθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 3636
Tmin = 0.611, Tmax = 0.746k = 1313
15555 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0658P)2 + 1.9983P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2373 reflectionsΔρmax = 0.47 e Å3
168 parametersΔρmin = 0.22 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms bound to carbon atoms were placed in calculated positions with C—H = 0.93–0.96 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The N–H hydrogen atoms of the molecule were located from difference maps and N—H was restrained to 0.85 ±0.02 Å and the H···H distance to 1.38±0.02.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.73348 (9)0.8377 (2)0.2590 (3)0.0333 (6)
C20.67138 (9)0.8558 (2)0.6111 (3)0.0383 (7)
H20.68810.91410.66890.046*
C30.63249 (8)0.8067 (2)0.6863 (3)0.0326 (6)
C40.62187 (9)0.8526 (2)0.8338 (3)0.0386 (7)
H40.64080.91230.87690.046*
C50.58446 (9)0.8221 (3)0.9380 (3)0.0412 (7)
H50.56880.75210.88960.049*
C60.60133 (12)0.7917 (4)1.1154 (4)0.0690 (10)
H6A0.61930.72041.11410.104*
H6B0.57670.77791.18320.104*
H6C0.61870.85751.16060.104*
C70.55250 (11)0.9280 (3)0.9420 (4)0.0649 (10)
H7A0.56800.99820.98360.097*
H7B0.52910.90891.01350.097*
H7C0.54030.94360.83140.097*
C80.60645 (8)0.7130 (2)0.5914 (3)0.0318 (6)
C90.62684 (9)0.6100 (2)0.5307 (3)0.0383 (7)
H90.65690.59810.55430.046*
C100.60319 (11)0.5259 (3)0.4366 (4)0.0488 (8)
H100.61740.45840.39660.059*
C110.55885 (12)0.5411 (3)0.4016 (4)0.0554 (9)
H110.54300.48450.33750.066*
C120.53782 (10)0.6413 (3)0.4624 (4)0.0523 (8)
H120.50760.65140.44010.063*
C130.56145 (9)0.7264 (3)0.5560 (3)0.0402 (7)
H130.54700.79360.59560.048*
N10.71567 (10)0.7372 (3)0.2016 (4)0.0586 (8)
N20.71870 (8)0.8787 (2)0.4043 (3)0.0389 (6)
N30.68323 (7)0.8216 (2)0.4694 (3)0.0369 (6)
S10.77299 (2)0.91402 (6)0.16283 (9)0.0398 (3)
H1A0.7209 (9)0.709 (3)0.105 (3)0.063 (10)*
H2A0.7316 (8)0.940 (2)0.457 (3)0.045 (8)*
H1B0.6953 (8)0.704 (3)0.245 (3)0.048 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0404 (15)0.0315 (15)0.0279 (15)0.0029 (12)0.0019 (12)0.0007 (12)
C20.0447 (17)0.0358 (15)0.0343 (16)0.0075 (13)0.0028 (13)0.0050 (13)
C30.0395 (15)0.0304 (14)0.0280 (14)0.0002 (12)0.0014 (11)0.0011 (12)
C40.0446 (16)0.0336 (15)0.0379 (17)0.0035 (13)0.0041 (13)0.0042 (13)
C50.0513 (18)0.0384 (16)0.0348 (16)0.0021 (13)0.0101 (13)0.0056 (13)
C60.086 (3)0.084 (3)0.0379 (19)0.003 (2)0.0090 (17)0.0054 (18)
C70.065 (2)0.063 (2)0.068 (2)0.0127 (17)0.0193 (18)0.0117 (19)
C80.0422 (16)0.0322 (15)0.0217 (13)0.0010 (12)0.0071 (11)0.0030 (11)
C90.0476 (17)0.0335 (15)0.0342 (15)0.0005 (12)0.0051 (13)0.0016 (12)
C100.071 (2)0.0356 (16)0.0407 (17)0.0073 (15)0.0081 (15)0.0059 (14)
C110.078 (2)0.0484 (19)0.0391 (18)0.0258 (18)0.0012 (16)0.0064 (15)
C120.0470 (18)0.065 (2)0.0441 (18)0.0146 (16)0.0035 (14)0.0077 (16)
C130.0466 (17)0.0412 (16)0.0331 (16)0.0027 (13)0.0040 (13)0.0036 (13)
N10.078 (2)0.0532 (18)0.0479 (18)0.0259 (15)0.0292 (15)0.0187 (15)
N20.0449 (14)0.0393 (14)0.0333 (14)0.0106 (11)0.0095 (11)0.0079 (11)
N30.0440 (14)0.0381 (13)0.0290 (13)0.0063 (11)0.0068 (10)0.0008 (10)
S10.0449 (4)0.0393 (4)0.0361 (4)0.0001 (3)0.0096 (3)0.0032 (3)
Geometric parameters (Å, º) top
C1—N11.312 (4)C7—H7B0.9600
C1—N21.352 (3)C7—H7C0.9600
C1—S11.689 (3)C8—C131.386 (4)
C2—N31.270 (3)C8—C91.401 (4)
C2—C31.459 (4)C9—C101.377 (4)
C2—H20.9300C9—H90.9300
C3—C41.345 (4)C10—C111.369 (4)
C3—C81.490 (3)C10—H100.9300
C4—C51.485 (4)C11—C121.384 (5)
C4—H40.9300C11—H110.9300
C5—C71.524 (4)C12—C131.383 (4)
C5—C61.526 (4)C12—H120.9300
C5—H50.9800C13—H130.9300
C6—H6A0.9600N1—H1A0.859 (17)
C6—H6B0.9600N1—H1B0.816 (16)
C6—H6C0.9600N2—N31.376 (3)
C7—H7A0.9600N2—H2A0.881 (17)
N1—C1—N2116.1 (3)H7A—C7—H7C109.5
N1—C1—S1123.6 (2)H7B—C7—H7C109.5
N2—C1—S1120.2 (2)C13—C8—C9117.6 (2)
N3—C2—C3122.3 (2)C13—C8—C3121.2 (2)
N3—C2—H2118.9C9—C8—C3121.1 (2)
C3—C2—H2118.9C10—C9—C8121.2 (3)
C4—C3—C2117.5 (2)C10—C9—H9119.4
C4—C3—C8124.7 (2)C8—C9—H9119.4
C2—C3—C8117.8 (2)C11—C10—C9120.3 (3)
C3—C4—C5129.6 (3)C11—C10—H10119.8
C3—C4—H4115.2C9—C10—H10119.8
C5—C4—H4115.2C10—C11—C12119.5 (3)
C4—C5—C7110.0 (2)C10—C11—H11120.2
C4—C5—C6110.5 (2)C12—C11—H11120.2
C7—C5—C6109.4 (3)C13—C12—C11120.4 (3)
C4—C5—H5109.0C13—C12—H12119.8
C7—C5—H5109.0C11—C12—H12119.8
C6—C5—H5109.0C12—C13—C8120.9 (3)
C5—C6—H6A109.5C12—C13—H13119.6
C5—C6—H6B109.5C8—C13—H13119.6
H6A—C6—H6B109.5C1—N1—H1A122 (2)
C5—C6—H6C109.5C1—N1—H1B123 (2)
H6A—C6—H6C109.5H1A—N1—H1B114 (2)
H6B—C6—H6C109.5C1—N2—N3118.4 (2)
C5—C7—H7A109.5C1—N2—H2A120.8 (19)
C5—C7—H7B109.5N3—N2—H2A120.7 (19)
H7A—C7—H7B109.5C2—N3—N2117.9 (2)
C5—C7—H7C109.5
N3—C2—C3—C4177.4 (3)C3—C8—C9—C10177.1 (2)
N3—C2—C3—C80.3 (4)C8—C9—C10—C110.6 (4)
C2—C3—C4—C5179.3 (3)C9—C10—C11—C120.4 (4)
C8—C3—C4—C51.8 (5)C10—C11—C12—C130.8 (5)
C3—C4—C5—C7112.3 (3)C11—C12—C13—C80.3 (4)
C3—C4—C5—C6126.8 (3)C9—C8—C13—C120.6 (4)
C4—C3—C8—C1351.8 (4)C3—C8—C13—C12177.5 (2)
C2—C3—C8—C13125.7 (3)N1—C1—N2—N37.6 (4)
C4—C3—C8—C9130.1 (3)S1—C1—N2—N3172.97 (18)
C2—C3—C8—C952.4 (3)C3—C2—N3—N2175.9 (2)
C13—C8—C9—C101.1 (4)C1—N2—N3—C2175.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.86 (2)2.56 (2)3.409 (3)168 (3)
N2—H2A···S1ii0.88 (2)2.59 (2)3.456 (2)167 (2)
Symmetry codes: (i) x+3/2, y+3/2, z; (ii) x, y+2, z+1/2.
 

Acknowledgements

The authors thank SAIF, Chennai, India, for the data collection and Professor M. R. P. Kurup, Department of Applied Chemistry, Cochi University of Science and Technology, India for the use of DIAMONDsoftware.

Funding information

Funding for this research was provided by: University of Kerala, Thiruvananthapuram, India in the form of a Junior Research Fellowship..

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJoseph, M., Suni, V., Prathapachandra Kurup, M. R., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.  Web of Science CSD CrossRef CAS Google Scholar
First citationNandi, A. K., Chaudhuri, S., Mazumdar, S. K. & Ghosh, S. (1984). Acta Cryst. C40, 1193–1196.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPalenik, G. J., Rendle, D. F. & Carter, W. S. (1974). Acta Cryst. B30, 2390–2395.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationScovill, J. P., Klayman, D. L. & Franchino, C. F. (1982). J. Med. Chem. 25, 1261–1264.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds