organic compounds
(E)-N-(3,4-Dimethylphenyl)-1-[5-(phenylethynyl)thiophen-2-yl]methanimine
aDepartment of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu
The title compound, C21H17NS, was synthesized via the reaction of 5-(2-phenyleth-1-ynyl)thiophene-2-carbaldehyde and 3,4-dimethylaniline using ammonium bifluoride (NH4HF2) as an acid catalyst in methanol. The molecule has three aryl rings: a phenyl (A), a thiophene (B), and a dimethylbenzene ring (C). The dihedral angles between the mean planes defined by these individual rings are 14.88 (6)° for A/B and 43.93 (4)° for B/C.
Keywords: crystal structure; imine; thiophene.
CCDC reference: 1903308
Structure description
Imine formation between thiophenecarbaldehydes and anilines are prevalent in the chemical literature. Not only are they of interest as potential drug candidates, as antibacterial and/or antifungal agents (Shanty et al., 2017), but they are also interesting ligands (Belkhiria et al., 2018). Our interests are in quinoxaline formation. The synthetic method using ammonium bifluoride as an acid catalyst outlined by Lassagne and co-workers (Lassagne et al., 2015) has proven to be a clean high-yielding method for the synthesis quinoxalines and in addition for the production of This reaction is proof for the clean high-yield production of as well.
In the molecule (Fig. 1), all bond lengths and angles are within expected values. Molecules associated by inversion have intermolecular contacts between the imine nitrogen (N1) and a hydrogen on a neighboring methyl group (C20). The overall packing (Fig. 2) resembles the classic herringbone pattern.
Synthesis and crystallization
To a 50 ml Erlenmeyer flask, 1.00 mmol of 5-(2-phenyleth-1-ynyl)thiophene-2-carbaldehyde (212 mg) was stirred into 10 ml of 2.5 × 10−3 mol l−1 solution of NH4HF2 in methanol. After the solid aldehyde had dissolved, 1.00 mmol of 3,4-dimethylaniline (121 mg) was added. Within the first 5 min, the amine also dissolved; however, within an hour, the product had begun to precipitate. The reaction was allowed to continue stirring overnight to ensure completion. Once filtered, the yellow solid product was washed with two 2 ml aliquots of ice cold 50:50 methanol–water, and once dried, 287 mg of product was formed (91.0% yield). This procedure is similar, though not identical, to a method used by Lassagne and co-workers to form quinoxalines and pyrido[2,3-b]pyrazines (Lassagne et al., 2015). Crystals for diffraction study were crystallized from methylene chloride (m.p. 410 K). ATR–IR (cm−1): 3059, 2971, 2918, 1882, 1612, 1486, 1440, 1020, 826, 806. 1H NMR (300 MHz, CDCl3): δ 8.54 (s, 1H), 7.58 (m, 2H), 7.40 (m, 4H), 7.30 (t, 1H), 7.17 (d, 1H), 7.08 (d, 1H), 7.04 (dd, 1H), 2.31 (d, 6H). 13C (75 MHz, CDCl3): δ 151.17, 148.88, 144.11, 137.42, 134.96, 132.37, 131.58, 131.40, 130.32, 128.83, 128.46, 127.35, 122.56, 118.24, 95.68, 82.86, 19.86, 19.40. F T–IR, 1H NMR, COSY and 13C NMR are given in the supporting information.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1903308
https://doi.org/10.1107/S2414314619003638/bh4045sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619003638/bh4045Isup2.hkl
Supplementary Material (FTIR/NMR). DOI: https://doi.org/10.1107/S2414314619003638/bh4045sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2414314619003638/bh4045Isup4.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C21H17NS | Dx = 1.238 Mg m−3 |
Mr = 315.42 | Melting point: 410 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.9435 (3) Å | Cell parameters from 8633 reflections |
b = 22.7785 (7) Å | θ = 4.2–31.1° |
c = 15.0910 (9) Å | µ = 0.19 mm−1 |
β = 124.087 (8)° | T = 293 K |
V = 1692.06 (14) Å3 | Plate, yellow |
Z = 4 | 0.49 × 0.43 × 0.23 mm |
F(000) = 664 |
Xcalibur, Sapphire3 diffractometer | 6330 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 4181 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 16.1790 pixels mm-1 | θmax = 33.6°, θmin = 4.2° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −35→35 |
Tmin = 0.754, Tmax = 1.000 | l = −23→23 |
42768 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0574P)2 + 0.2177P] where P = (Fo2 + 2Fc2)/3 |
6330 reflections | (Δ/σ)max = 0.001 |
210 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4721 (3) | 0.73831 (6) | −0.25547 (12) | 0.0574 (3) | |
H1 | 0.6539 | 0.7351 | −0.1992 | 0.069* | |
C2 | 0.3977 (4) | 0.77446 (7) | −0.34126 (14) | 0.0692 (4) | |
H2 | 0.5296 | 0.7957 | −0.3424 | 0.083* | |
C3 | 0.1302 (4) | 0.77907 (7) | −0.42473 (14) | 0.0712 (4) | |
H3 | 0.0812 | 0.8035 | −0.4823 | 0.085* | |
C4 | −0.0653 (3) | 0.74777 (7) | −0.42359 (13) | 0.0678 (4) | |
H4 | −0.2463 | 0.7509 | −0.4806 | 0.081* | |
C5 | 0.0053 (3) | 0.71160 (6) | −0.33820 (11) | 0.0538 (3) | |
H5 | −0.1283 | 0.6906 | −0.3378 | 0.065* | |
C6 | 0.2751 (3) | 0.70658 (5) | −0.25309 (9) | 0.0442 (3) | |
C7 | 0.3453 (3) | 0.66938 (6) | −0.16471 (10) | 0.0491 (3) | |
C8 | 0.3928 (3) | 0.63856 (6) | −0.09161 (10) | 0.0496 (3) | |
C9 | 0.4458 (3) | 0.60085 (5) | −0.00742 (9) | 0.0445 (3) | |
C10 | 0.2630 (3) | 0.57639 (6) | 0.00958 (11) | 0.0505 (3) | |
H10 | 0.0772 | 0.5837 | −0.0334 | 0.061* | |
C11 | 0.3859 (3) | 0.53910 (6) | 0.09894 (11) | 0.0500 (3) | |
H11 | 0.2902 | 0.5195 | 0.1219 | 0.060* | |
C12 | 0.6603 (3) | 0.53453 (5) | 0.14866 (10) | 0.0436 (3) | |
C13 | 0.8443 (3) | 0.49621 (5) | 0.23642 (10) | 0.0458 (3) | |
H13 | 0.7823 | 0.4768 | 0.2731 | 0.055* | |
C14 | 1.2578 (2) | 0.45061 (5) | 0.35353 (10) | 0.0427 (2) | |
C15 | 1.2450 (3) | 0.44648 (6) | 0.44287 (10) | 0.0458 (3) | |
H15 | 1.1172 | 0.4688 | 0.4451 | 0.055* | |
C16 | 1.4172 (3) | 0.41012 (5) | 0.52816 (10) | 0.0454 (3) | |
C17 | 1.6122 (3) | 0.37701 (5) | 0.52561 (10) | 0.0475 (3) | |
C18 | 1.6256 (3) | 0.38167 (6) | 0.43691 (11) | 0.0511 (3) | |
H18 | 1.7548 | 0.3599 | 0.4348 | 0.061* | |
C19 | 1.4519 (3) | 0.41790 (6) | 0.35167 (11) | 0.0484 (3) | |
H19 | 1.4652 | 0.4203 | 0.2932 | 0.058* | |
C20 | 1.3950 (3) | 0.40764 (8) | 0.62267 (12) | 0.0634 (4) | |
H20A | 1.5619 | 0.4210 | 0.6855 | 0.095* | |
H20B | 1.3602 | 0.3680 | 0.6332 | 0.095* | |
H20C | 1.2486 | 0.4324 | 0.6096 | 0.095* | |
C21 | 1.8056 (3) | 0.33707 (8) | 0.61696 (13) | 0.0674 (4) | |
H21A | 1.9227 | 0.3601 | 0.6799 | 0.101* | |
H21B | 1.9131 | 0.3156 | 0.5986 | 0.101* | |
H21C | 1.7042 | 0.3101 | 0.6305 | 0.101* | |
N1 | 1.0880 (2) | 0.48807 (5) | 0.26526 (8) | 0.0469 (2) | |
S1 | 0.77294 (7) | 0.578178 (15) | 0.08798 (3) | 0.04885 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0533 (8) | 0.0607 (8) | 0.0519 (7) | −0.0092 (6) | 0.0255 (6) | −0.0024 (6) |
C2 | 0.0825 (11) | 0.0612 (9) | 0.0725 (10) | −0.0169 (8) | 0.0487 (9) | 0.0023 (8) |
C3 | 0.0916 (12) | 0.0555 (8) | 0.0620 (9) | 0.0016 (8) | 0.0402 (9) | 0.0168 (7) |
C4 | 0.0609 (9) | 0.0654 (9) | 0.0572 (9) | 0.0076 (7) | 0.0208 (7) | 0.0174 (7) |
C5 | 0.0488 (7) | 0.0535 (7) | 0.0527 (7) | −0.0009 (6) | 0.0246 (6) | 0.0068 (6) |
C6 | 0.0510 (7) | 0.0400 (6) | 0.0396 (6) | −0.0003 (5) | 0.0242 (5) | −0.0015 (4) |
C7 | 0.0533 (7) | 0.0476 (6) | 0.0422 (6) | −0.0008 (5) | 0.0242 (6) | −0.0013 (5) |
C8 | 0.0549 (7) | 0.0470 (6) | 0.0416 (6) | 0.0017 (5) | 0.0238 (6) | −0.0011 (5) |
C9 | 0.0516 (7) | 0.0426 (6) | 0.0374 (5) | 0.0029 (5) | 0.0238 (5) | −0.0018 (5) |
C10 | 0.0455 (7) | 0.0518 (7) | 0.0509 (7) | 0.0035 (5) | 0.0250 (6) | 0.0023 (6) |
C11 | 0.0497 (7) | 0.0507 (7) | 0.0540 (7) | −0.0002 (5) | 0.0317 (6) | 0.0042 (6) |
C12 | 0.0502 (7) | 0.0426 (6) | 0.0420 (6) | 0.0006 (5) | 0.0284 (5) | 0.0004 (5) |
C13 | 0.0514 (7) | 0.0450 (6) | 0.0437 (6) | −0.0014 (5) | 0.0283 (6) | 0.0039 (5) |
C14 | 0.0433 (6) | 0.0425 (6) | 0.0413 (6) | −0.0043 (5) | 0.0229 (5) | 0.0037 (5) |
C15 | 0.0488 (7) | 0.0460 (6) | 0.0442 (6) | −0.0003 (5) | 0.0270 (6) | 0.0006 (5) |
C16 | 0.0487 (7) | 0.0458 (6) | 0.0393 (6) | −0.0086 (5) | 0.0231 (5) | −0.0007 (5) |
C17 | 0.0433 (6) | 0.0455 (6) | 0.0455 (6) | −0.0052 (5) | 0.0200 (5) | 0.0040 (5) |
C18 | 0.0452 (7) | 0.0537 (7) | 0.0551 (7) | 0.0020 (5) | 0.0284 (6) | 0.0027 (6) |
C19 | 0.0485 (7) | 0.0551 (7) | 0.0478 (7) | −0.0014 (5) | 0.0308 (6) | 0.0036 (5) |
C20 | 0.0668 (9) | 0.0800 (10) | 0.0464 (7) | −0.0015 (8) | 0.0336 (7) | 0.0066 (7) |
C21 | 0.0597 (9) | 0.0708 (10) | 0.0608 (9) | 0.0082 (7) | 0.0271 (8) | 0.0204 (8) |
N1 | 0.0496 (6) | 0.0479 (5) | 0.0422 (5) | −0.0003 (4) | 0.0251 (5) | 0.0063 (4) |
S1 | 0.04729 (18) | 0.05599 (19) | 0.04635 (18) | 0.00247 (13) | 0.02812 (15) | 0.00812 (13) |
C1—H1 | 0.9300 | C12—S1 | 1.7210 (12) |
C1—C2 | 1.381 (2) | C13—H13 | 0.9300 |
C1—C6 | 1.3933 (19) | C13—N1 | 1.2706 (16) |
C2—H2 | 0.9300 | C14—C15 | 1.3956 (17) |
C2—C3 | 1.372 (3) | C14—C19 | 1.3866 (18) |
C3—H3 | 0.9300 | C14—N1 | 1.4192 (15) |
C3—C4 | 1.372 (2) | C15—H15 | 0.9300 |
C4—H4 | 0.9300 | C15—C16 | 1.3835 (17) |
C4—C5 | 1.3818 (19) | C16—C17 | 1.4013 (19) |
C5—H5 | 0.9300 | C16—C20 | 1.5054 (18) |
C5—C6 | 1.3880 (18) | C17—C18 | 1.3889 (19) |
C6—C7 | 1.4308 (17) | C17—C21 | 1.5076 (19) |
C7—C8 | 1.2002 (18) | C18—H18 | 0.9300 |
C8—C9 | 1.4151 (17) | C18—C19 | 1.3833 (18) |
C9—C10 | 1.3673 (19) | C19—H19 | 0.9300 |
C9—S1 | 1.7270 (13) | C20—H20A | 0.9600 |
C10—H10 | 0.9300 | C20—H20B | 0.9600 |
C10—C11 | 1.4033 (18) | C20—H20C | 0.9600 |
C11—H11 | 0.9300 | C21—H21A | 0.9600 |
C11—C12 | 1.3647 (18) | C21—H21B | 0.9600 |
C12—C13 | 1.4452 (17) | C21—H21C | 0.9600 |
C2—C1—H1 | 120.0 | N1—C13—H13 | 118.9 |
C2—C1—C6 | 120.08 (14) | C15—C14—N1 | 123.50 (11) |
C6—C1—H1 | 120.0 | C19—C14—C15 | 118.68 (11) |
C1—C2—H2 | 119.9 | C19—C14—N1 | 117.79 (11) |
C3—C2—C1 | 120.24 (15) | C14—C15—H15 | 119.1 |
C3—C2—H2 | 119.9 | C16—C15—C14 | 121.77 (12) |
C2—C3—H3 | 119.9 | C16—C15—H15 | 119.1 |
C4—C3—C2 | 120.20 (14) | C15—C16—C17 | 119.26 (12) |
C4—C3—H3 | 119.9 | C15—C16—C20 | 119.46 (13) |
C3—C4—H4 | 119.8 | C17—C16—C20 | 121.26 (12) |
C3—C4—C5 | 120.33 (15) | C16—C17—C21 | 121.21 (12) |
C5—C4—H4 | 119.8 | C18—C17—C16 | 118.71 (12) |
C4—C5—H5 | 119.9 | C18—C17—C21 | 120.08 (13) |
C4—C5—C6 | 120.10 (13) | C17—C18—H18 | 119.1 |
C6—C5—H5 | 119.9 | C19—C18—C17 | 121.72 (12) |
C1—C6—C7 | 121.40 (12) | C19—C18—H18 | 119.1 |
C5—C6—C1 | 119.04 (12) | C14—C19—H19 | 120.1 |
C5—C6—C7 | 119.56 (12) | C18—C19—C14 | 119.84 (12) |
C8—C7—C6 | 177.09 (15) | C18—C19—H19 | 120.1 |
C7—C8—C9 | 178.38 (14) | C16—C20—H20A | 109.5 |
C8—C9—S1 | 120.67 (10) | C16—C20—H20B | 109.5 |
C10—C9—C8 | 127.98 (12) | C16—C20—H20C | 109.5 |
C10—C9—S1 | 111.32 (10) | H20A—C20—H20B | 109.5 |
C9—C10—H10 | 123.6 | H20A—C20—H20C | 109.5 |
C9—C10—C11 | 112.74 (12) | H20B—C20—H20C | 109.5 |
C11—C10—H10 | 123.6 | C17—C21—H21A | 109.5 |
C10—C11—H11 | 123.4 | C17—C21—H21B | 109.5 |
C12—C11—C10 | 113.12 (12) | C17—C21—H21C | 109.5 |
C12—C11—H11 | 123.4 | H21A—C21—H21B | 109.5 |
C11—C12—C13 | 127.39 (11) | H21A—C21—H21C | 109.5 |
C11—C12—S1 | 111.39 (9) | H21B—C21—H21C | 109.5 |
C13—C12—S1 | 121.09 (10) | C13—N1—C14 | 118.94 (10) |
C12—C13—H13 | 118.9 | C12—S1—C9 | 91.40 (6) |
N1—C13—C12 | 122.27 (11) |
Acknowledgements
Funding for this research was provided by a CSU-AAUP Research Grant.
References
Belkhiria, M., Mechria, A., Dridi, S., Cruz, T. F. C., Gomes, C. S. B., Gomes, P. T. & Msaddek, M. (2018). J. Mol. Struct. 1171, 827–833. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680–2689. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Shanty, A. A., Philip, J. E., Sneha, E. J., Prathapachandra Kurup, M. R., Balachandran, S. & Mohanan, P. V. (2017). Bioorg. Chem. 70, 67–73. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.