organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

D-Glutamic acid hydro­chloride

CROSSMARK_Color_square_no_text.svg

aLaboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A. C., Carretetera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico, bDepartamento de Física, Universidad de Sonora (UNISON), Edificio 3R (Planta Alta), Blvd. Luis Encinas J. y Rosales s/n, Col. Centro, Hermosillo 83000, Sonora, Mexico, cDepartamento de Ciencias Químico Biologicas, Universidad de Sonora (UNISON), Edificio 5A, Blvd. Luis Encinas J. y Rosales s/n, Col. Centro, Hermosillo 83000, Sonora, Mexico, dDepartamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico, and eDepartamento de Investigación en Polímeros y Materiales, Universidad de Sonora (UNISON), Edificio 3G, Blvd. Luis Encinas J. y Rosales s/n, Col. Centro, Hermosillo 83000, Sonora, Mexico
*Correspondence e-mail: rrs@ciad.mx

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 6 December 2018; accepted 3 April 2019; online 25 April 2019)

The absolute structure of D-glutamic acid hydro­chloride [systematic name: (R)-1,3-dicarboxypropan-1-aminium chloride], C5H10NO4+·Cl, has been determined by single-crystal X-ray diffraction at room temperature using Cu Kα radiation.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit of the title compound (Fig. 1[link]) contains one halide ion (Cl) and one positively charged mol­ecule of glutamic acid. The mol­ecule of glutamic acid (Glu hereafter) is protonated at the γ-COOH group. The carbon chain C1—C2—C3—C4—C5 is almost coplanar. The planes of the α-COOH and the γ-COOH groups form angles of 72.4 (16) and 9.3 (10)°, respectively, to the C1–C5 plane.

[Figure 1]
Figure 1
ORTEP representation of the asymmetric unit of D-Glu·HCl. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal structures of the α and β forms of pure L-glutamic acid (L-Glu), mol­ecules of the amino acid that are bound to each other by O—H⋯O hydrogen bonds, forming infinite chains (Hirayama et al., 1980[Hirayama, N., Shirahata, K., Ohashi, Y. & Sasada, Y. (1980). Bull. Chem. Soc. Jpn, 53, 30-35.]). In the crystal structure of the title compound reported herein, the Cl anion disrupts the characteristic head-to-tail self-assembly between Glu mol­ecules, leading to the formation of an O4—H4⋯Cl1 hydrogen bond [3.0436 (13) Å]. Furthermore, the Cl anion is also bound to two Glu neighbouring mol­ecules by two hydrogen bonds, N1—H1B⋯Cl1 [3.1447 (17) Å] and N1—H1C⋯Cl1 [3.1959 (18) Å]. It is also observed that all the possible hydrogen-bond donors form inter­actions with all the available hydrogen-bond acceptors in the crystal (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.66 1.98 2.634 (2) 179
N1—H1A⋯O2ii 0.88 (2) 2.11 (2) 2.8904 (18) 146.7 (19)
N1—H1B⋯Cl1iii 0.94 (3) 2.21 (3) 3.1447 (17) 172 (2)
N1—H1C⋯Cl1iv 0.88 (3) 2.32 (3) 3.1959 (18) 171 (2)
O4—H4⋯Cl1 0.84 (2) 2.21 (2) 3.0436 (13) 169 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

The solution obtained by SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) was refined to convergence and the resulting absolute structure parameters are listed in Table 2[link] and R-factors are listed in Table 3[link]. The absolute configuration of C2 in this model is R, which is that expected based on the D-Glu starting material. To confirm this, the structure was inverted (i.e. C2 S configuration) corresponding to L-Glu) and re-refined to give a second set of absolute structure parameters (Table 2[link]), which clearly indicate the wrong absolute structure and significantly higher residuals of R(F) = 0.045 and wR(F2) = 0.1172. We may conclude that this data collection at room temperature has established the absolute structure of the title salt with a high degree of reliability.

Table 2
Comparison of parameters for absolute structures

  Flack (x) Parsons (z) Hooft (y) Hooft (G)
D-Glu·HCl 0.055 (4) 0.057 (6) 0.058 (6) 0.88 (1)
L-Glu·HCl 0.944 (4) 0.944 (6) 0.946 (6) −0.89 (1)

Table 3
Experimental details

Crystal data
Chemical formula C5H10NO4+·Cl
Mr 183.59
Crystal system, space group Orthorhombic, P212121
Temperature (K) 300
a, b, c (Å) 5.1363 (2), 11.7497 (4), 13.2871 (5)
V3) 801.88 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.03
Crystal size (mm) 0.25 × 0.10 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Bruker, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.])
Tmin, Tmax 0.494, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 15237, 1630, 1609
Rint 0.034
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 1.07
No. of reflections 1630
No. of parameters 114
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.23
Absolute structure See 'Structure description' section
Absolute structure parameter 0.055 (4)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windowsand WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Synthesis and crystallization

All materials were purchased from Sigma–Aldrich (Toluca, Mexico) and used without further purification. 50 mmol of (R)-2-amino­penta­nedioic acid (D-Glu; ≥99% pure) and 50 mmol of CaCl2 were mixed in a final volume of 1 ml ultrapure water (Milli-Q water, Merck Millipore, Mexico). The solution was left to evaporate at 298 K in a 5 ml glass vial. Good quality crystals of D-Glu·HCl were obtained after four weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

(R)-1,3-Dicarboxypropan-1-aminium chloride top
Crystal data top
C5H10NO4+·ClF(000) = 384
Mr = 183.59Dx = 1.512 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 9897 reflections
a = 5.1363 (2) Åθ = 5.0–74.4°
b = 11.7497 (4) ŵ = 4.03 mm1
c = 13.2871 (5) ÅT = 300 K
V = 801.88 (5) Å3Plate, colourless
Z = 40.25 × 0.10 × 0.03 mm
Data collection top
Bruker D8 QUEST
diffractometer
1630 independent reflections
Radiation source: Microfocus sealed tube, Incoatec IµS HB1609 reflections with I > 2σ(I)
Multiyaler mirrors monochromatorRint = 0.034
Detector resolution: 102.4 pixels mm-1θmax = 74.4°, θmin = 5.0°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1414
Tmin = 0.494, Tmax = 0.754l = 1616
15237 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.040P)2 + 0.0618P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1630 reflectionsΔρmax = 0.16 e Å3
114 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: See 'Structure description' section
0 constraintsAbsolute structure parameter: 0.055 (4)
Primary atom site location: dual
Special details top

Refinement. Hydrogen atoms for CH and CH2 groups were placed in geometrically calculated positions using the riding model. Hydrogen atom H1 has setting as an idealized OH group, with C1—O1—H1 angle tetrahedral. Hydrogen atoms involved in X—H···Cl interactions (H1A, H1B, H1C and H4) have been located from a difference map and refined with free coordinates. All H atoms were refined with calculated isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.55328 (8)0.57267 (4)0.26144 (3)0.03036 (14)
O10.4381 (4)0.53718 (11)0.92637 (12)0.0451 (4)
H10.349 (6)0.5155 (14)0.956 (3)0.068*
N10.5594 (4)0.82112 (12)0.84223 (10)0.0251 (3)
C10.3874 (3)0.64434 (14)0.91039 (11)0.0245 (4)
H1A0.572 (5)0.8424 (17)0.9058 (16)0.029*
H1B0.696 (5)0.8561 (19)0.8065 (16)0.029*
H1C0.414 (5)0.8528 (19)0.8208 (16)0.029*
O20.2122 (3)0.69746 (11)0.94905 (10)0.0347 (3)
C20.5687 (4)0.69496 (13)0.83245 (11)0.0213 (3)
H20.74660.66830.84480.026*
O30.4199 (4)0.55187 (12)0.54442 (9)0.0440 (4)
C30.4791 (3)0.65493 (14)0.72847 (11)0.0237 (3)
H3A0.45710.5730.73020.028*
H3B0.31010.68830.71450.028*
O40.6959 (3)0.66860 (12)0.46696 (9)0.0362 (3)
C40.6617 (4)0.68448 (15)0.64312 (12)0.0261 (4)
H4A0.66460.76640.63380.031*
H4B0.83670.660.66010.031*
H40.648 (5)0.6340 (19)0.4144 (17)0.031*
C50.5778 (4)0.62819 (14)0.54680 (11)0.0257 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0287 (2)0.0363 (2)0.0260 (2)0.00446 (18)0.00205 (16)0.00294 (15)
O10.0502 (9)0.0344 (7)0.0507 (8)0.0051 (7)0.0244 (8)0.0169 (6)
N10.0279 (7)0.0276 (7)0.0200 (6)0.0064 (7)0.0007 (7)0.0023 (5)
C10.0256 (9)0.0307 (8)0.0171 (7)0.0042 (7)0.0011 (6)0.0009 (6)
O20.0369 (8)0.0361 (7)0.0310 (6)0.0010 (6)0.0142 (6)0.0010 (5)
C20.0208 (8)0.0250 (7)0.0180 (6)0.0021 (7)0.0008 (7)0.0013 (5)
O30.0610 (10)0.0453 (8)0.0256 (6)0.0267 (8)0.0041 (7)0.0047 (5)
C30.0240 (8)0.0272 (7)0.0198 (7)0.0051 (6)0.0003 (7)0.0032 (6)
O40.0476 (9)0.0432 (8)0.0177 (5)0.0119 (7)0.0048 (6)0.0061 (5)
C40.0290 (9)0.0317 (8)0.0176 (7)0.0086 (7)0.0008 (7)0.0026 (6)
C50.0314 (10)0.0262 (8)0.0196 (7)0.0017 (8)0.0013 (7)0.0020 (6)
Geometric parameters (Å, º) top
O1—C11.303 (2)O3—C51.209 (2)
O1—H10.66 (4)C3—C41.512 (2)
N1—C21.489 (2)C3—H3A0.97
N1—H1A0.88 (2)C3—H3B0.97
N1—H1B0.94 (3)O4—C51.311 (2)
N1—H1C0.88 (3)O4—H40.84 (2)
C1—O21.210 (2)C4—C51.504 (2)
C1—C21.514 (2)C4—H4A0.97
C2—C31.530 (2)C4—H4B0.97
C2—H20.98
C1—O1—H1109.5C4—C3—C2114.83 (14)
C2—N1—H1A111.3 (13)C4—C3—H3A108.6
C2—N1—H1B111.6 (14)C2—C3—H3A108.6
H1A—N1—H1B108 (2)C4—C3—H3B108.6
C2—N1—H1C114.7 (14)C2—C3—H3B108.6
H1A—N1—H1C105 (2)H3A—C3—H3B107.5
H1B—N1—H1C106.5 (18)C5—O4—H4111.0 (16)
O2—C1—O1125.29 (16)C5—C4—C3111.06 (14)
O2—C1—C2123.04 (15)C5—C4—H4A109.4
O1—C1—C2111.61 (15)C3—C4—H4A109.4
N1—C2—C1108.17 (13)C5—C4—H4B109.4
N1—C2—C3112.04 (13)C3—C4—H4B109.4
C1—C2—C3108.18 (14)H4A—C4—H4B108
N1—C2—H2109.5O3—C5—O4123.88 (15)
C1—C2—H2109.5O3—C5—C4122.73 (15)
C3—C2—H2109.5O4—C5—C4113.38 (15)
O2—C1—C2—N120.8 (2)C1—C2—C3—C4171.82 (14)
O1—C1—C2—N1161.84 (16)C2—C3—C4—C5172.09 (14)
O2—C1—C2—C3100.72 (18)C3—C4—C5—O314.3 (2)
O1—C1—C2—C376.60 (19)C3—C4—C5—O4166.94 (16)
N1—C2—C3—C469.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.661.982.634 (2)179
N1—H1A···O2ii0.88 (2)2.11 (2)2.8904 (18)146.7 (19)
N1—H1A···O3iii0.88 (2)2.55 (2)3.1033 (19)121.6 (16)
N1—H1B···Cl1iv0.94 (3)2.21 (3)3.1447 (17)172 (2)
N1—H1C···Cl1v0.88 (3)2.32 (3)3.1959 (18)171 (2)
O4—H4···Cl10.84 (2)2.21 (2)3.0436 (13)169 (2)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+3/2, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1/2, y+3/2, z+1; (v) x1/2, y+3/2, z+1.
Comparison of parameters for absolute structures top
Flack (x)Parsons (z)Hooft (y)Hooft (G)
D-Glu·HCl0.055 (4)0.057 (6)0.058 (6)0.88 (1)
L-Glu·HCl0.944 (4)0.944 (6)0.946 (6)-0.89 (1)
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (scholarship to L. Y. Fox-Uribe; grant No. CB-2014–237963 to R. R. Sotelo-Mundo; grant No. INFR-2014–01-225455); Red Temática de Química Supramolecular (grant No. 294810); Instituto de Biotecnología-CIC-UNAM and CIAD ; Secretaría de Educación Pública (PRODEP) (grant No. 511–6/18–8537 to J. Hernández-Paredes; grant No. 35986 to I. Valenzuela-Chavira).

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHirayama, N., Shirahata, K., Ohashi, Y. & Sasada, Y. (1980). Bull. Chem. Soc. Jpn, 53, 30–35.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds