organic compounds
D-Glutamic acid hydrochloride
aLaboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A. C., Carretetera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico, bDepartamento de Física, Universidad de Sonora (UNISON), Edificio 3R (Planta Alta), Blvd. Luis Encinas J. y Rosales s/n, Col. Centro, Hermosillo 83000, Sonora, Mexico, cDepartamento de Ciencias Químico Biologicas, Universidad de Sonora (UNISON), Edificio 5A, Blvd. Luis Encinas J. y Rosales s/n, Col. Centro, Hermosillo 83000, Sonora, Mexico, dDepartamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico, and eDepartamento de Investigación en Polímeros y Materiales, Universidad de Sonora (UNISON), Edificio 3G, Blvd. Luis Encinas J. y Rosales s/n, Col. Centro, Hermosillo 83000, Sonora, Mexico
*Correspondence e-mail: rrs@ciad.mx
The D-glutamic acid hydrochloride [systematic name: (R)-1,3-dicarboxypropan-1-aminium chloride], C5H10NO4+·Cl−, has been determined by single-crystal X-ray diffraction at room temperature using Cu Kα radiation.
ofKeywords: crystal structure; amino acids; absolute structure; Flack parameter; Hooft parameter.
CCDC reference: 1515166
Structure description
The ) contains one halide ion (Cl−) and one positively charged molecule of glutamic acid. The molecule of glutamic acid (Glu hereafter) is protonated at the γ-COOH group. The carbon chain C1—C2—C3—C4—C5 is almost coplanar. The planes of the α-COOH and the γ-COOH groups form angles of 72.4 (16) and 9.3 (10)°, respectively, to the C1–C5 plane.
of the title compound (Fig. 1In the crystal structures of the α and β forms of pure L-glutamic acid (L-Glu), molecules of the amino acid that are bound to each other by O—H⋯O hydrogen bonds, forming infinite chains (Hirayama et al., 1980). In the of the title compound reported herein, the Cl− anion disrupts the characteristic head-to-tail self-assembly between Glu molecules, leading to the formation of an O4—H4⋯Cl1 hydrogen bond [3.0436 (13) Å]. Furthermore, the Cl− anion is also bound to two Glu neighbouring molecules by two hydrogen bonds, N1—H1B⋯Cl1 [3.1447 (17) Å] and N1—H1C⋯Cl1 [3.1959 (18) Å]. It is also observed that all the possible hydrogen-bond donors form interactions with all the available hydrogen-bond acceptors in the crystal (Table 1).
The solution obtained by SHELXT (Sheldrick, 2015a) was refined to convergence and the resulting parameters are listed in Table 2 and R-factors are listed in Table 3. The of C2 in this model is R, which is that expected based on the D-Glu starting material. To confirm this, the structure was inverted (i.e. C2 S configuration) corresponding to L-Glu) and re-refined to give a second set of parameters (Table 2), which clearly indicate the wrong and significantly higher residuals of R(F) = 0.045 and wR(F2) = 0.1172. We may conclude that this data collection at room temperature has established the of the title salt with a high degree of reliability.
|
|
Synthesis and crystallization
All materials were purchased from Sigma–Aldrich (Toluca, Mexico) and used without further purification. 50 mmol of (R)-2-aminopentanedioic acid (D-Glu; ≥99% pure) and 50 mmol of CaCl2 were mixed in a final volume of 1 ml ultrapure water (Milli-Q water, Merck Millipore, Mexico). The solution was left to evaporate at 298 K in a 5 ml glass vial. Good quality crystals of D-Glu·HCl were obtained after four weeks.
Structural data
CCDC reference: 1515166
https://doi.org/10.1107/S2414314619004589/bh4043sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2414314619004589/bh4043Isup3.cdx
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C5H10NO4+·Cl− | F(000) = 384 |
Mr = 183.59 | Dx = 1.512 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9897 reflections |
a = 5.1363 (2) Å | θ = 5.0–74.4° |
b = 11.7497 (4) Å | µ = 4.03 mm−1 |
c = 13.2871 (5) Å | T = 300 K |
V = 801.88 (5) Å3 | Plate, colourless |
Z = 4 | 0.25 × 0.10 × 0.03 mm |
Bruker D8 QUEST diffractometer | 1630 independent reflections |
Radiation source: Microfocus sealed tube, Incoatec IµS HB | 1609 reflections with I > 2σ(I) |
Multiyaler mirrors monochromator | Rint = 0.034 |
Detector resolution: 102.4 pixels mm-1 | θmax = 74.4°, θmin = 5.0° |
φ and ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | k = −14→14 |
Tmin = 0.494, Tmax = 0.754 | l = −16→16 |
15237 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.022 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.059 | w = 1/[σ2(Fo2) + (0.040P)2 + 0.0618P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
1630 reflections | Δρmax = 0.16 e Å−3 |
114 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Absolute structure: See 'Structure description' section |
0 constraints | Absolute structure parameter: 0.055 (4) |
Primary atom site location: dual |
Refinement. Hydrogen atoms for CH and CH2 groups were placed in geometrically calculated positions using the riding model. Hydrogen atom H1 has setting as an idealized OH group, with C1—O1—H1 angle tetrahedral. Hydrogen atoms involved in X—H···Cl interactions (H1A, H1B, H1C and H4) have been located from a difference map and refined with free coordinates. All H atoms were refined with calculated isotropic displacement parameters. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.55328 (8) | 0.57267 (4) | 0.26144 (3) | 0.03036 (14) | |
O1 | 0.4381 (4) | 0.53718 (11) | 0.92637 (12) | 0.0451 (4) | |
H1 | 0.349 (6) | 0.5155 (14) | 0.956 (3) | 0.068* | |
N1 | 0.5594 (4) | 0.82112 (12) | 0.84223 (10) | 0.0251 (3) | |
C1 | 0.3874 (3) | 0.64434 (14) | 0.91039 (11) | 0.0245 (4) | |
H1A | 0.572 (5) | 0.8424 (17) | 0.9058 (16) | 0.029* | |
H1B | 0.696 (5) | 0.8561 (19) | 0.8065 (16) | 0.029* | |
H1C | 0.414 (5) | 0.8528 (19) | 0.8208 (16) | 0.029* | |
O2 | 0.2122 (3) | 0.69746 (11) | 0.94905 (10) | 0.0347 (3) | |
C2 | 0.5687 (4) | 0.69496 (13) | 0.83245 (11) | 0.0213 (3) | |
H2 | 0.7466 | 0.6683 | 0.8448 | 0.026* | |
O3 | 0.4199 (4) | 0.55187 (12) | 0.54442 (9) | 0.0440 (4) | |
C3 | 0.4791 (3) | 0.65493 (14) | 0.72847 (11) | 0.0237 (3) | |
H3A | 0.4571 | 0.573 | 0.7302 | 0.028* | |
H3B | 0.3101 | 0.6883 | 0.7145 | 0.028* | |
O4 | 0.6959 (3) | 0.66860 (12) | 0.46696 (9) | 0.0362 (3) | |
C4 | 0.6617 (4) | 0.68448 (15) | 0.64312 (12) | 0.0261 (4) | |
H4A | 0.6646 | 0.7664 | 0.6338 | 0.031* | |
H4B | 0.8367 | 0.66 | 0.6601 | 0.031* | |
H4 | 0.648 (5) | 0.6340 (19) | 0.4144 (17) | 0.031* | |
C5 | 0.5778 (4) | 0.62819 (14) | 0.54680 (11) | 0.0257 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0287 (2) | 0.0363 (2) | 0.0260 (2) | 0.00446 (18) | −0.00205 (16) | −0.00294 (15) |
O1 | 0.0502 (9) | 0.0344 (7) | 0.0507 (8) | 0.0051 (7) | 0.0244 (8) | 0.0169 (6) |
N1 | 0.0279 (7) | 0.0276 (7) | 0.0200 (6) | −0.0064 (7) | 0.0007 (7) | −0.0023 (5) |
C1 | 0.0256 (9) | 0.0307 (8) | 0.0171 (7) | −0.0042 (7) | 0.0011 (6) | 0.0009 (6) |
O2 | 0.0369 (8) | 0.0361 (7) | 0.0310 (6) | 0.0010 (6) | 0.0142 (6) | 0.0010 (5) |
C2 | 0.0208 (8) | 0.0250 (7) | 0.0180 (6) | −0.0021 (7) | 0.0008 (7) | 0.0013 (5) |
O3 | 0.0610 (10) | 0.0453 (8) | 0.0256 (6) | −0.0267 (8) | −0.0041 (7) | −0.0047 (5) |
C3 | 0.0240 (8) | 0.0272 (7) | 0.0198 (7) | −0.0051 (6) | −0.0003 (7) | −0.0032 (6) |
O4 | 0.0476 (9) | 0.0432 (8) | 0.0177 (5) | −0.0119 (7) | 0.0048 (6) | −0.0061 (5) |
C4 | 0.0290 (9) | 0.0317 (8) | 0.0176 (7) | −0.0086 (7) | −0.0008 (7) | −0.0026 (6) |
C5 | 0.0314 (10) | 0.0262 (8) | 0.0196 (7) | −0.0017 (8) | −0.0013 (7) | −0.0020 (6) |
O1—C1 | 1.303 (2) | O3—C5 | 1.209 (2) |
O1—H1 | 0.66 (4) | C3—C4 | 1.512 (2) |
N1—C2 | 1.489 (2) | C3—H3A | 0.97 |
N1—H1A | 0.88 (2) | C3—H3B | 0.97 |
N1—H1B | 0.94 (3) | O4—C5 | 1.311 (2) |
N1—H1C | 0.88 (3) | O4—H4 | 0.84 (2) |
C1—O2 | 1.210 (2) | C4—C5 | 1.504 (2) |
C1—C2 | 1.514 (2) | C4—H4A | 0.97 |
C2—C3 | 1.530 (2) | C4—H4B | 0.97 |
C2—H2 | 0.98 | ||
C1—O1—H1 | 109.5 | C4—C3—C2 | 114.83 (14) |
C2—N1—H1A | 111.3 (13) | C4—C3—H3A | 108.6 |
C2—N1—H1B | 111.6 (14) | C2—C3—H3A | 108.6 |
H1A—N1—H1B | 108 (2) | C4—C3—H3B | 108.6 |
C2—N1—H1C | 114.7 (14) | C2—C3—H3B | 108.6 |
H1A—N1—H1C | 105 (2) | H3A—C3—H3B | 107.5 |
H1B—N1—H1C | 106.5 (18) | C5—O4—H4 | 111.0 (16) |
O2—C1—O1 | 125.29 (16) | C5—C4—C3 | 111.06 (14) |
O2—C1—C2 | 123.04 (15) | C5—C4—H4A | 109.4 |
O1—C1—C2 | 111.61 (15) | C3—C4—H4A | 109.4 |
N1—C2—C1 | 108.17 (13) | C5—C4—H4B | 109.4 |
N1—C2—C3 | 112.04 (13) | C3—C4—H4B | 109.4 |
C1—C2—C3 | 108.18 (14) | H4A—C4—H4B | 108 |
N1—C2—H2 | 109.5 | O3—C5—O4 | 123.88 (15) |
C1—C2—H2 | 109.5 | O3—C5—C4 | 122.73 (15) |
C3—C2—H2 | 109.5 | O4—C5—C4 | 113.38 (15) |
O2—C1—C2—N1 | 20.8 (2) | C1—C2—C3—C4 | −171.82 (14) |
O1—C1—C2—N1 | −161.84 (16) | C2—C3—C4—C5 | 172.09 (14) |
O2—C1—C2—C3 | −100.72 (18) | C3—C4—C5—O3 | −14.3 (2) |
O1—C1—C2—C3 | 76.60 (19) | C3—C4—C5—O4 | 166.94 (16) |
N1—C2—C3—C4 | 69.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.66 | 1.98 | 2.634 (2) | 179 |
N1—H1A···O2ii | 0.88 (2) | 2.11 (2) | 2.8904 (18) | 146.7 (19) |
N1—H1A···O3iii | 0.88 (2) | 2.55 (2) | 3.1033 (19) | 121.6 (16) |
N1—H1B···Cl1iv | 0.94 (3) | 2.21 (3) | 3.1447 (17) | 172 (2) |
N1—H1C···Cl1v | 0.88 (3) | 2.32 (3) | 3.1959 (18) | 171 (2) |
O4—H4···Cl1 | 0.84 (2) | 2.21 (2) | 3.0436 (13) | 169 (2) |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) x+1/2, −y+3/2, −z+2; (iii) −x+1, y+1/2, −z+3/2; (iv) x+1/2, −y+3/2, −z+1; (v) x−1/2, −y+3/2, −z+1. |
Flack (x) | Parsons (z) | Hooft (y) | Hooft (G) | |
D-Glu·HCl | 0.055 (4) | 0.057 (6) | 0.058 (6) | 0.88 (1) |
L-Glu·HCl | 0.944 (4) | 0.944 (6) | 0.946 (6) | -0.89 (1) |
Funding information
Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (scholarship to L. Y. Fox-Uribe; grant No. CB-2014–237963 to R. R. Sotelo-Mundo; grant No. INFR-2014–01-225455); Red Temática de Química Supramolecular (grant No. 294810); Instituto de Biotecnología-CIC-UNAM and CIAD ; Secretaría de Educación Pública (PRODEP) (grant No. 511–6/18–8537 to J. Hernández-Paredes; grant No. 35986 to I. Valenzuela-Chavira).
References
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hirayama, N., Shirahata, K., Ohashi, Y. & Sasada, Y. (1980). Bull. Chem. Soc. Jpn, 53, 30–35. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.