metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Aceto­nitrile-κN)chlorido­{2-[4-(3,5-di­fluorophen­yl)-6-phenyl­pyridin-2-yl]phen­yl-κ2C1,N}platinum(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei 230601, Peoples Republic of China, Key Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230601, People's Republic of China
*Correspondence e-mail: jywu1957@163.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 January 2019; accepted 26 February 2019; online 7 March 2019)

The title compound, [Pt(C23H14F2N)Cl(CH3CN)], comprises of a PtII atom in a distorted square-planar coordination, defined by a C,N-chelating 4-(3,5-di­fluoro­phen­yl)-2,6-di­phenyl­pyridine ligand, a chlorido and an aceto­nitrile ligand. Hydrogen-bonding inter­actions between the H atoms of the 3,5-di­fluoro­phenyl ring and the aceto­nitrile ligand with Cl and F acceptor atoms of neighbouring ligands consolidate the packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Platinum complexes have received attention because of their chemical and photophysical properties, such as high stabilities, emissions in the visible region, high fluorescent quantum yields and long excited lifetimes (Fang et al., 2018[Fang, B., Zhu, Y. Z., Hu, L., Shen, Y., Jiang, G., Zhang, Q., Tian, X., Li, S., Zhou, H., Wu, J. & Tian, Y. (2018). Inorg. Chem. 57, 14134-14143.]). In this study, we report the crystal structure of a novel platinum(II) complex, [PtCl(C23H14F2N)(CH3CN)].

The platinum(II) atom has a distorted square-planar coordination environment defined by a (C,N)-chelating 4-(3,5-di­fluoro­phen­yl)-2,6-di­phenyl­pyridine ligand, one chlorido ligand and one aceto­nitrile ligand (Fig. 1[link]). Relevant bond lengths and angles are given in Table 1[link]. The considerable distortion from planarity is reflected by the r.m.s. deviation of 0.1265 Å of the least-squares plane through Pt1, C1, N1, C2, with a highest deviation of 0.1641 (12) Å for C1. The chelating ligand is not planar, with dihedral angles between the central pyridine ring and the two phenyl rings of 3.88 (13)° for ring C1–C6 and of 52.97 (14)° for ring C18–C23; the dihedral angle between the central pyridine ring and the di­fluoro­phenyl ring amounts to 20.35 (13)°. The bond length between C9 and C10 of 1.487 (4) Å is inter­mediate between a single and double C—C bond and thus indicates a highly π-conjugated system (Coe, 2013[Coe, B. J. (2013). Coord. Chem. Rev. 257, 1438-1458.]). As shown in Fig. 2[link], there are inter­molecular hydrogen bonds between one H atom of the 3,5-di­fluoro­phenyl ring and the Cl atom, and between the aceto­nitrile ligand and F and Cl atoms of neighbouring mol­ecules (Table 2[link]), leading to the formation of a three-dimensional network.

Table 1
Selected geometric parameters (Å, °)

Pt1—C1 1.981 (3) Pt1—N2 2.106 (2)
Pt1—N1 2.046 (2) Pt1—Cl1 2.3036 (9)
       
C1—Pt1—N1 81.55 (10) C1—Pt1—Cl1 93.84 (8)
C1—Pt1—N2 166.63 (10) N1—Pt1—Cl1 174.90 (6)
N1—Pt1—N2 99.24 (9) N2—Pt1—Cl1 85.75 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cl1i 0.93 2.77 3.545 (3) 142
C25—H25A⋯F1ii 0.96 2.42 3.202 (4) 138
C25—H25B⋯Cl1iii 0.96 2.66 3.613 (3) 169
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms were omitted for clarity.
[Figure 2]
Figure 2
Hydrogen bonding in the title compound, shown as dashed lines.

Synthesis and crystallization

4-(3,5-Di­fluoro­phen­yl)-2,6-di­phenyl­pyridine 0.35 g (1 mmol), potassium hexa­chlorido­platinate 0.41 g (1 mmol) and 100 ml glacial acetic acid were added to a 250 ml round-bottom flask at room temperature and stirred for 10 min. After dissolution, the temperature was raised to 403 K for 72 h during which time the reaction mixture was slowly converted from a colourless liquid to a yellow solid. The solid was filtered when cooling to room temperature and washed by acetone. Yellow crystals for X-ray analysis were obtained from an aceto­nitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Pt(C23H14F2N)Cl(C2H3N)]
Mr 613.94
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 8.770 (5), 18.226 (5), 13.670 (5)
β (°) 104.414 (5)
V3) 2116.3 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.79
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.235, 0.344
No. of measured, independent and observed [I > 2σ(I)] reflections 15021, 3835, 3578
Rint 0.023
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.040, 1.07
No. of reflections 3835
No. of parameters 281
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.60
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2016[Brandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2016); software used to prepare material for publication: publCIF (Westrip, 2010).

(Acetonitrile-κN)chlorido{2-[4-(3,5-difluorophenyl)-6-phenylpyridin-2-yl]phenylκ2C1,N}platinum(II) top
Crystal data top
[Pt(C23H14F2N)Cl(C2H3N)]F(000) = 1176
Mr = 613.94Dx = 1.927 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 8.770 (5) ÅCell parameters from 9960 reflections
b = 18.226 (5) Åθ = 2.2–27.2°
c = 13.670 (5) ŵ = 6.79 mm1
β = 104.414 (5)°T = 298 K
V = 2116.3 (15) Å3Block, yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3578 reflections with I > 2σ(I)
ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.3°, θmin = 1.9°
Tmin = 0.235, Tmax = 0.344h = 1010
15021 measured reflectionsk = 2118
3835 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.016P)2 + 2.1931P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.009
3835 reflectionsΔρmax = 0.63 e Å3
281 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.55963 (2)1.05151 (2)0.78384 (2)0.02038 (5)
Cl10.38721 (9)1.13087 (4)0.68065 (5)0.03611 (18)
C141.1855 (3)0.76355 (16)1.1856 (2)0.0275 (6)
C50.6207 (3)1.09210 (15)1.0927 (2)0.0231 (6)
H50.6702231.0661951.1504550.028*
C230.8746 (3)0.98091 (17)0.7086 (2)0.0260 (6)
H230.8874011.0272740.7379520.031*
C20.4788 (3)1.17075 (15)0.9194 (2)0.0250 (6)
H20.4327281.1982850.8624290.030*
C90.8932 (3)0.89937 (15)1.04021 (19)0.0212 (5)
F11.3038 (2)0.72059 (11)1.16971 (13)0.0432 (5)
C210.8798 (4)0.90177 (19)0.5687 (2)0.0361 (7)
H210.8962660.8949230.5046600.043*
C40.5330 (3)1.15460 (15)1.1003 (2)0.0250 (6)
H40.5193791.1694821.1626040.030*
C151.1063 (3)0.80721 (15)1.1077 (2)0.0248 (6)
H151.1346510.8080011.0465670.030*
C30.4662 (3)1.19436 (15)1.0137 (2)0.0259 (6)
H30.4120381.2374961.0188250.031*
C240.4648 (4)0.94075 (16)0.5940 (2)0.0259 (6)
C10.5593 (3)1.10670 (14)0.90866 (19)0.0205 (5)
C220.9030 (4)0.97014 (19)0.6141 (2)0.0347 (7)
H220.9376781.0090180.5812180.042*
N10.7183 (3)0.98863 (12)0.88429 (16)0.0199 (5)
C70.7222 (3)1.00335 (14)0.98306 (19)0.0192 (5)
C180.8269 (3)0.92247 (15)0.75956 (19)0.0211 (6)
C160.8928 (3)0.88772 (15)0.93942 (19)0.0220 (6)
H160.9496920.8486660.9227130.026*
N20.5145 (3)0.98045 (14)0.65843 (17)0.0260 (5)
C250.4001 (4)0.88949 (18)0.5126 (2)0.0363 (7)
H25A0.4000440.8409320.5398240.054*
H25B0.4633950.8901710.4645470.054*
H25C0.2942510.9035550.4798120.054*
C170.8092 (3)0.93322 (14)0.8635 (2)0.0202 (6)
C100.9817 (3)0.85061 (14)1.12207 (19)0.0197 (5)
C60.6342 (3)1.06843 (14)0.9978 (2)0.0204 (6)
C200.8323 (4)0.84396 (18)0.6188 (2)0.0327 (7)
H200.8168870.7980200.5883590.039*
C190.8072 (3)0.85342 (16)0.7143 (2)0.0266 (6)
H190.7772680.8137480.7480590.032*
C110.9428 (3)0.84817 (16)1.21572 (18)0.0234 (6)
H110.8594290.8757031.2268340.028*
C80.8095 (3)0.95953 (14)1.06091 (19)0.0201 (6)
H80.8115550.9708491.1275600.024*
C121.0303 (3)0.80438 (16)1.29028 (19)0.0248 (6)
C131.1537 (3)0.76078 (17)1.2789 (2)0.0282 (6)
H131.2112360.7315681.3308460.034*
F20.9943 (2)0.80220 (10)1.38172 (12)0.0373 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02230 (7)0.02281 (7)0.01527 (6)0.00164 (4)0.00324 (4)0.00162 (4)
Cl10.0398 (4)0.0472 (5)0.0205 (3)0.0205 (4)0.0060 (3)0.0072 (3)
C140.0213 (14)0.0318 (16)0.0297 (15)0.0065 (12)0.0070 (12)0.0021 (12)
C50.0257 (15)0.0208 (14)0.0207 (13)0.0047 (11)0.0022 (11)0.0020 (11)
C230.0274 (15)0.0274 (16)0.0227 (14)0.0006 (12)0.0053 (12)0.0015 (11)
C20.0235 (15)0.0223 (15)0.0270 (14)0.0003 (11)0.0022 (11)0.0025 (11)
C90.0211 (14)0.0197 (14)0.0211 (13)0.0035 (11)0.0024 (11)0.0007 (11)
F10.0396 (10)0.0612 (13)0.0312 (9)0.0285 (10)0.0135 (8)0.0136 (9)
C210.0363 (18)0.053 (2)0.0191 (14)0.0089 (15)0.0072 (13)0.0036 (14)
C40.0260 (15)0.0247 (15)0.0238 (14)0.0061 (12)0.0053 (11)0.0075 (11)
C150.0266 (15)0.0295 (16)0.0183 (13)0.0005 (12)0.0056 (11)0.0016 (11)
C30.0241 (15)0.0194 (14)0.0327 (15)0.0011 (12)0.0040 (12)0.0060 (12)
C240.0288 (16)0.0291 (16)0.0197 (14)0.0047 (12)0.0060 (12)0.0050 (12)
C10.0194 (13)0.0198 (14)0.0221 (13)0.0028 (11)0.0049 (10)0.0022 (11)
C220.0418 (19)0.0403 (18)0.0242 (15)0.0002 (15)0.0126 (14)0.0050 (13)
N10.0225 (12)0.0183 (11)0.0177 (11)0.0040 (9)0.0027 (9)0.0010 (9)
C70.0201 (14)0.0177 (13)0.0191 (13)0.0059 (11)0.0033 (10)0.0015 (10)
C180.0180 (13)0.0255 (14)0.0178 (13)0.0031 (11)0.0008 (10)0.0008 (11)
C160.0254 (14)0.0182 (14)0.0217 (13)0.0018 (11)0.0045 (11)0.0000 (11)
N20.0251 (13)0.0322 (14)0.0197 (12)0.0038 (11)0.0039 (10)0.0029 (11)
C250.051 (2)0.0323 (18)0.0257 (15)0.0007 (15)0.0088 (14)0.0035 (13)
C170.0200 (14)0.0198 (14)0.0197 (13)0.0040 (11)0.0028 (11)0.0018 (10)
C100.0194 (13)0.0194 (13)0.0180 (12)0.0048 (11)0.0001 (10)0.0005 (10)
C60.0201 (14)0.0178 (13)0.0223 (13)0.0057 (11)0.0036 (11)0.0015 (10)
C200.0320 (17)0.0352 (17)0.0266 (15)0.0082 (14)0.0007 (12)0.0118 (13)
C190.0256 (15)0.0268 (15)0.0242 (14)0.0040 (12)0.0005 (11)0.0013 (12)
C110.0266 (15)0.0208 (14)0.0223 (14)0.0011 (11)0.0051 (11)0.0010 (11)
C80.0236 (14)0.0211 (14)0.0148 (12)0.0039 (11)0.0030 (10)0.0002 (10)
C120.0295 (15)0.0282 (16)0.0170 (13)0.0004 (12)0.0062 (11)0.0009 (11)
C130.0260 (15)0.0338 (17)0.0222 (14)0.0062 (13)0.0011 (11)0.0067 (12)
F20.0452 (11)0.0492 (11)0.0194 (8)0.0183 (9)0.0115 (8)0.0097 (8)
Geometric parameters (Å, º) top
Pt1—C11.981 (3)C3—H30.9300
Pt1—N12.046 (2)C24—N21.139 (4)
Pt1—N22.106 (2)C24—C251.456 (4)
Pt1—Cl12.3036 (9)C1—C61.416 (4)
C14—F11.360 (3)C22—H220.9300
C14—C151.371 (4)N1—C171.359 (3)
C14—C131.372 (4)N1—C71.369 (3)
C5—C41.393 (4)C7—C81.397 (4)
C5—C61.399 (4)C7—C61.456 (4)
C5—H50.9300C18—C191.394 (4)
C23—C221.389 (4)C18—C171.481 (4)
C23—C181.392 (4)C16—C171.387 (4)
C23—H230.9300C16—H160.9300
C2—C31.389 (4)C25—H25A0.9600
C2—C11.390 (4)C25—H25B0.9600
C2—H20.9300C25—H25C0.9600
C9—C81.387 (4)C10—C111.405 (4)
C9—C161.393 (4)C20—C191.387 (4)
C9—C101.487 (4)C20—H200.9300
C21—C201.377 (5)C19—H190.9300
C21—C221.385 (5)C11—C121.369 (4)
C21—H210.9300C11—H110.9300
C4—C31.387 (4)C8—H80.9300
C4—H40.9300C12—F21.364 (3)
C15—C101.402 (4)C12—C131.382 (4)
C15—H150.9300C13—H130.9300
C1—Pt1—N181.55 (10)N1—C7—C8120.9 (2)
C1—Pt1—N2166.63 (10)N1—C7—C6114.4 (2)
N1—Pt1—N299.24 (9)C8—C7—C6124.7 (2)
C1—Pt1—Cl193.84 (8)C23—C18—C19119.2 (3)
N1—Pt1—Cl1174.90 (6)C23—C18—C17119.7 (2)
N2—Pt1—Cl185.75 (7)C19—C18—C17121.0 (2)
F1—C14—C15118.0 (2)C17—C16—C9121.3 (3)
F1—C14—C13117.8 (2)C17—C16—H16119.4
C15—C14—C13124.2 (3)C9—C16—H16119.4
C4—C5—C6119.8 (3)C24—N2—Pt1168.0 (2)
C4—C5—H5120.1C24—C25—H25A109.5
C6—C5—H5120.1C24—C25—H25B109.5
C22—C23—C18120.2 (3)H25A—C25—H25B109.5
C22—C23—H23119.9C24—C25—H25C109.5
C18—C23—H23119.9H25A—C25—H25C109.5
C3—C2—C1121.2 (3)H25B—C25—H25C109.5
C3—C2—H2119.4N1—C17—C16121.1 (2)
C1—C2—H2119.4N1—C17—C18120.4 (2)
C8—C9—C16116.8 (2)C16—C17—C18118.5 (2)
C8—C9—C10121.5 (2)C15—C10—C11118.9 (2)
C16—C9—C10121.7 (2)C15—C10—C9120.7 (2)
C20—C21—C22119.6 (3)C11—C10—C9120.3 (2)
C20—C21—H21120.2C5—C6—C1121.2 (3)
C22—C21—H21120.2C5—C6—C7123.4 (2)
C3—C4—C5119.2 (2)C1—C6—C7115.5 (2)
C3—C4—H4120.4C21—C20—C19120.8 (3)
C5—C4—H4120.4C21—C20—H20119.6
C14—C15—C10118.7 (2)C19—C20—H20119.6
C14—C15—H15120.6C20—C19—C18119.9 (3)
C10—C15—H15120.6C20—C19—H19120.0
C4—C3—C2121.0 (3)C18—C19—H19120.0
C4—C3—H3119.5C12—C11—C10118.6 (3)
C2—C3—H3119.5C12—C11—H11120.7
N2—C24—C25179.2 (3)C10—C11—H11120.7
C2—C1—C6117.5 (2)C9—C8—C7120.9 (2)
C2—C1—Pt1128.8 (2)C9—C8—H8119.5
C6—C1—Pt1113.04 (19)C7—C8—H8119.5
C21—C22—C23120.3 (3)F2—C12—C11119.0 (2)
C21—C22—H22119.9F2—C12—C13116.9 (2)
C23—C22—H22119.9C11—C12—C13124.1 (2)
C17—N1—C7118.7 (2)C14—C13—C12115.5 (3)
C17—N1—Pt1127.75 (17)C14—C13—H13122.3
C7—N1—Pt1113.46 (17)C12—C13—H13122.3
C6—C5—C4—C32.9 (4)C16—C9—C10—C1521.0 (4)
F1—C14—C15—C10178.6 (3)C8—C9—C10—C1121.4 (4)
C13—C14—C15—C101.8 (5)C16—C9—C10—C11159.8 (3)
C5—C4—C3—C23.3 (4)C4—C5—C6—C10.4 (4)
C1—C2—C3—C40.2 (4)C4—C5—C6—C7179.4 (2)
C3—C2—C1—C63.0 (4)C2—C1—C6—C53.3 (4)
C3—C2—C1—Pt1166.9 (2)Pt1—C1—C6—C5168.2 (2)
C20—C21—C22—C231.7 (5)C2—C1—C6—C7177.6 (2)
C18—C23—C22—C211.8 (5)Pt1—C1—C6—C710.9 (3)
C17—N1—C7—C84.1 (4)N1—C7—C6—C5178.7 (2)
Pt1—N1—C7—C8172.12 (19)C8—C7—C6—C53.6 (4)
C17—N1—C7—C6173.7 (2)N1—C7—C6—C10.4 (3)
Pt1—N1—C7—C610.0 (3)C8—C7—C6—C1177.4 (2)
C22—C23—C18—C190.4 (4)C22—C21—C20—C190.1 (5)
C22—C23—C18—C17175.2 (3)C21—C20—C19—C181.3 (4)
C8—C9—C16—C171.6 (4)C23—C18—C19—C201.2 (4)
C10—C9—C16—C17179.6 (2)C17—C18—C19—C20176.7 (3)
C7—N1—C17—C166.1 (4)C15—C10—C11—C121.2 (4)
Pt1—N1—C17—C16169.5 (2)C9—C10—C11—C12177.9 (2)
C7—N1—C17—C18170.9 (2)C16—C9—C8—C73.6 (4)
Pt1—N1—C17—C1813.5 (4)C10—C9—C8—C7177.7 (2)
C9—C16—C17—N13.3 (4)N1—C7—C8—C90.8 (4)
C9—C16—C17—C18173.8 (2)C6—C7—C8—C9178.4 (2)
C23—C18—C17—N153.1 (4)C10—C11—C12—F2179.4 (2)
C19—C18—C17—N1131.4 (3)C10—C11—C12—C131.4 (4)
C23—C18—C17—C16124.0 (3)F1—C14—C13—C12178.7 (3)
C19—C18—C17—C1651.5 (4)C15—C14—C13—C121.7 (5)
C14—C15—C10—C110.3 (4)F2—C12—C13—C14179.2 (3)
C14—C15—C10—C9179.4 (3)C11—C12—C13—C140.1 (5)
C8—C9—C10—C15157.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl1i0.932.773.545 (3)142
C25—H25A···F1ii0.962.423.202 (4)138
C25—H25B···Cl1iii0.962.663.613 (3)169
Symmetry codes: (i) x+1, y+2, z+2; (ii) x1, y+3/2, z1/2; (iii) x+1, y+2, z+1.
 

Funding information

This work was supported by the Undergraduate Research Training Program of Anhui University (award No. KYXL2017023) and the National Natural Science Foundation of China (award No. 51672002).

References

First citationBrandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoe, B. J. (2013). Coord. Chem. Rev. 257, 1438–1458.  CrossRef CAS Google Scholar
First citationFang, B., Zhu, Y. Z., Hu, L., Shen, Y., Jiang, G., Zhang, Q., Tian, X., Li, S., Zhou, H., Wu, J. & Tian, Y. (2018). Inorg. Chem. 57, 14134–14143.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds