metal-organic compounds
Chloridobis(ethane-1,2-diamine)(4-fluoroaniline)cobalt(III) dichloride monohydrate
aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Chemistry, Chellammal Womens College, Chennai 600 032, India, and cDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: aspandian59@gmail.com
The hydrated title salt, [CoCl(C6H6FN)(C2H8N2)2]Cl2·H2O, comprises of one chloridobis(ethane-1,2-diamine)(4-fluoroaniline)cobalt(III) cation, two chloride counter-anions and a water molecule of crystallization. The CoIII ion has a distorted octahedral environment and is surrounded by four N atoms in the equatorial plane, with a fifth N atom and one Cl− ligand occupying the axial positions. One of the methylene C groups in one of the ethane-1,2-diamine ligands is disordered over two set of sites in a 0.832 (10):0.168 (10) ratio. In the crystal, the complex cation, the two counter-anions and the water molecule of crystallization are linked via N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen bonds, generating rings with R42(8), R21(6), R42(10) and R22(6) graph-set motifs within a three-dimensional network.
Keywords: crystal structure; ethane-1,2-diamine; fluoroaniline ligand; cobalt(III) complex; hydrogen bonding; C—H⋯Cl interactions.
CCDC reference: 785047
Structure description
As a result of the excellent coordination ability of ligands with N-donating groups, such as simple ; Deeth et al., 1984), (Wu et al., 2003; Shores et al., 2002), or N-heterocyclic rings (Hagrman et al., 1999; Willett et al., 2001), their respective transition-metal complexes have always been an active area in coordination chemistry. Ethylenediamine (en) has been used in innumerable coordination compounds as a ligand (Cullen & Lingafelter, 1970; Daniels et al., 1995; Jameson et al., 1982), because it not only chelates metal cations by two nitrogen atoms, but also donates hydrogen atoms to form N—H⋯X hydrogen bonds. In the vast majority of cases, en coordinates to a central metal ion as a bidentate ligand via the two N atoms, forming a five-membered chelate ring. This ligand has been widely used to prepare a number of cobalt(III) complexes (Bailar & Clapp, 1945; Bailar & Rollinson, 1946). Interestingly, mixed-ligand cobalt(III) complexes find potential applications in the fields of antitumor, antibacterial, antimicrobial, radiosenzitation and cytotoxicity activities (Sayed et al., 1992; Teicher et al., 1990; Arslan et al., 2009; Delehanty et al., 2008). It is well documented that cobalt(III)–chelate complexes can also function as efficient electron-transfer mediators in solar energy conversion schemes (Sapp et al., 2002). Complexes of cobalt are also useful for nutritional supplementation to provide cobalt in a form that effectively increases the bioavailability, for instance, vitamin B12 by microorganisms present in the gut. The of the title compound has been carried out against this background to ascertain the molecular conformation, binding modes and hydrogen-bonding interactions in the crystal structure.
(Mitzi, 1996The structural entities of the title salt are displayed in Fig. 1. The coordination environment around the CoIII atom is approximately octahedral and defined by one N-bound fluoroaniline ligand, one chloride ion and two ethylenediamine ligands. The angles subtended by the chelating en ligands deviate the most from 90° [N1—Co1—N2 = 85.23 (6)° and N3—Co1—N4 = 84.99 (6)°]. The N atoms N2, N3, N4 and N5 define the equatorial plane, and N1 and Cl1 the axial ligands. The Co—N bond lengths range from 1.9598 (14) to 2.0077 (13) Å, with the longest (Co1—N5) being the bond to the monodentate 4-fluoroaniline ligand. The methylene C2 atom in one of the five-membered en ligands is disordered over two sets of sites, with a refined occupancy ratio of 0.831 (10):0.168 (10). The chelate ring (Co1/N1/C1/C2/N2) adopts a twisted conformation on the C1—C2 bond with puckering parameters q2 = 0.4012 (18) Å, and φ2 = 92.2 (16)°. The chelate ring Co1/N1/C1/C2′/N2 with the minor contribution to the disorder at C2′ likewise exhibits a twisted conformation with puckering parameters q2 = 0.149 (5) Å, and φ2 = 19 (3)°. The chelate ring Co1/N3/C3/C4/N4 has puckering parameters q2 = 0.4275 (15) Å, and φ2 = 282.72 (15)°. The latter value indicates a conformation between a twisted and an envelope form.
The packing of the ) between the complex cation, the two counter-anions and the water molecule of crystallization, thereby generating rings with (8), (6), (10) and (6) graph-set motifs. Within the three-dimensional network (Figs. 2 and 3), no π–π stacking interactions are observed.
is dominated by N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen-bonding interactions (Table 1Synthesis and crystallization
The complex was synthesized using dichloridobis(1,2-diaminoethane)cobalt(III) chloride according to a reported method (Bailar & Clapp, 1945). 2 g of trans-[CoIII(en)2Cl2]Cl were suspended in 3–4 drops of deionized water. 3 ml of 4-fluoroaniline were added dropwise over 20 min, and the final mixture was ground well for 30 min. Grinding was continued for half an hour, and a colour change was observed for every addition of amine; the colour was found to change from dull green to rosey red. The reaction mixture was set aside until no further colour change was observed. The product was allowed to stand overnight. Finally, the solid was washed 3–4 times with ethanol. The final complex was dissolved in 5–10 ml of deionized water and the solution heated to 343 K. The cobalt(III) complex was recrystallized from hot water by addition of a few drops of conc. HCl and cooling. The crystals were filtered, washed with ethanol and dried under vacuum.
Refinement
Crystal data, data collection and structure . The methylene group at C2 is disordered over two sets of sites and was refined with a 0.832 (10):0.168 (10) ratio.
details are summarized in Table 2
|
Structural data
CCDC reference: 785047
https://doi.org/10.1107/S2414314619003274/wm4097sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619003274/wm4097Isup2.hkl
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).[CoCl(C6H6FN)(C2H8N2)2]Cl2·H2O | Z = 2 |
Mr = 414.62 | F(000) = 428 |
Triclinic, P1 | Dx = 1.587 Mg m−3 |
a = 8.1712 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.5435 (8) Å | Cell parameters from 6556 reflections |
c = 11.9771 (10) Å | θ = 1.8–25.0° |
α = 104.231 (4)° | µ = 1.47 mm−1 |
β = 99.490 (4)° | T = 293 K |
γ = 100.705 (4)° | Prism, dark-red |
V = 867.57 (12) Å3 | 0.25 × 0.20 × 0.15 mm |
Oxford Diffraction Xcalibur diffractometer with Eos detector | 3053 independent reflections |
Radiation source: fine-focus sealed tube | 2875 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω and φ scan | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −9→9 |
Tmin = 0.711, Tmax = 0.810 | k = −11→11 |
15546 measured reflections | l = −14→14 |
Refinement on F2 | 5 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.019 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.0314P)2 + 0.2678P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.040 |
3053 reflections | Δρmax = 0.47 e Å−3 |
243 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H atoms bonded to N and O atoms were freely refined. Other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.8028 (3) | 0.2984 (2) | 0.70155 (17) | 0.0433 (4) | |
H1A | 0.7069 | 0.2596 | 0.7323 | 0.052* | |
H1B | 0.8789 | 0.2314 | 0.6994 | 0.052* | |
C2 | 0.7412 (5) | 0.3087 (3) | 0.5810 (2) | 0.0366 (7) | 0.831 (10) |
H2A | 0.8363 | 0.3268 | 0.5434 | 0.044* | 0.831 (10) |
H2B | 0.6615 | 0.2167 | 0.5331 | 0.044* | 0.831 (10) |
C2' | 0.677 (2) | 0.2884 (16) | 0.5948 (9) | 0.0366 (7) | 0.168 (10) |
H2C | 0.7164 | 0.2443 | 0.5251 | 0.044* | 0.168 (10) |
H2D | 0.5688 | 0.2252 | 0.5932 | 0.044* | 0.168 (10) |
C3 | 0.8170 (2) | 0.7410 (2) | 0.97814 (14) | 0.0355 (4) | |
H3A | 0.8400 | 0.8379 | 1.0353 | 0.043* | |
H3B | 0.8582 | 0.6730 | 1.0177 | 0.043* | |
C4 | 0.6297 (2) | 0.6855 (2) | 0.92613 (16) | 0.0380 (4) | |
H4A | 0.5701 | 0.6584 | 0.9842 | 0.046* | |
H4B | 0.5839 | 0.7618 | 0.9003 | 0.046* | |
C5 | 1.07502 (19) | 0.79981 (17) | 0.68416 (13) | 0.0260 (3) | |
C6 | 1.0343 (2) | 0.91023 (19) | 0.63617 (15) | 0.0336 (4) | |
H6 | 0.9318 | 0.8913 | 0.5816 | 0.040* | |
C7 | 1.1462 (2) | 1.0489 (2) | 0.66945 (17) | 0.0398 (4) | |
H7 | 1.1207 | 1.1239 | 0.6376 | 0.048* | |
C8 | 1.2952 (2) | 1.0728 (2) | 0.75043 (17) | 0.0393 (4) | |
C9 | 1.3379 (2) | 0.9665 (2) | 0.80007 (17) | 0.0404 (4) | |
H9 | 1.4395 | 0.9871 | 0.8558 | 0.049* | |
C10 | 1.2267 (2) | 0.82760 (19) | 0.76570 (15) | 0.0330 (4) | |
H10 | 1.2539 | 0.7530 | 0.7974 | 0.040* | |
N1 | 0.89406 (19) | 0.44838 (15) | 0.77835 (13) | 0.0274 (3) | |
N2 | 0.65522 (19) | 0.43488 (16) | 0.59361 (13) | 0.0302 (3) | |
N3 | 0.90333 (18) | 0.75159 (16) | 0.87969 (12) | 0.0270 (3) | |
N4 | 0.60849 (19) | 0.55338 (17) | 0.82415 (13) | 0.0300 (3) | |
N5 | 0.96160 (18) | 0.65309 (15) | 0.64670 (12) | 0.0264 (3) | |
O1W | 0.8073 (3) | 1.0395 (2) | 0.8821 (2) | 0.0898 (7) | |
F1 | 1.40512 (17) | 1.20859 (13) | 0.78300 (13) | 0.0650 (4) | |
Cl1 | 0.63686 (5) | 0.75092 (4) | 0.66669 (4) | 0.03357 (11) | |
Cl2 | 0.77375 (5) | 0.36339 (5) | 1.00298 (4) | 0.03664 (11) | |
Cl3 | 0.77258 (5) | 0.56575 (4) | 0.37113 (3) | 0.03353 (11) | |
Co1 | 0.78188 (2) | 0.59758 (2) | 0.73432 (2) | 0.02174 (8) | |
H5A | 0.907 (2) | 0.641 (2) | 0.5793 (18) | 0.028 (5)* | |
H5B | 1.027 (3) | 0.586 (2) | 0.6397 (17) | 0.040 (5)* | |
H2E | 0.658 (3) | 0.459 (2) | 0.5306 (19) | 0.036 (5)* | |
H3C | 0.907 (3) | 0.841 (2) | 0.8705 (18) | 0.043 (6)* | |
H3D | 1.004 (3) | 0.744 (2) | 0.9011 (17) | 0.033 (5)* | |
H4C | 0.510 (3) | 0.535 (2) | 0.7820 (18) | 0.035 (5)* | |
H4D | 0.622 (3) | 0.478 (2) | 0.8502 (18) | 0.040 (5)* | |
H2F | 0.544 (3) | 0.417 (2) | 0.5982 (19) | 0.051 (6)* | |
H1D | 0.891 (3) | 0.446 (2) | 0.846 (2) | 0.040 (6)* | |
H1C | 0.995 (3) | 0.465 (2) | 0.7716 (17) | 0.034 (5)* | |
H2W | 0.747 (3) | 0.996 (3) | 0.8157 (14) | 0.087 (10)* | |
H1W | 0.778 (4) | 1.118 (2) | 0.903 (3) | 0.089 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0486 (11) | 0.0300 (9) | 0.0484 (11) | 0.0114 (8) | 0.0022 (9) | 0.0098 (8) |
C2 | 0.0345 (17) | 0.0298 (11) | 0.0397 (11) | 0.0034 (11) | 0.0061 (11) | 0.0039 (8) |
C2' | 0.0345 (17) | 0.0298 (11) | 0.0397 (11) | 0.0034 (11) | 0.0061 (11) | 0.0039 (8) |
C3 | 0.0345 (9) | 0.0432 (10) | 0.0253 (8) | 0.0069 (7) | 0.0098 (7) | 0.0032 (7) |
C4 | 0.0317 (9) | 0.0466 (10) | 0.0364 (9) | 0.0109 (8) | 0.0153 (7) | 0.0069 (8) |
C5 | 0.0250 (8) | 0.0295 (8) | 0.0247 (8) | 0.0055 (6) | 0.0088 (6) | 0.0084 (6) |
C6 | 0.0323 (9) | 0.0372 (9) | 0.0325 (9) | 0.0077 (7) | 0.0035 (7) | 0.0147 (7) |
C7 | 0.0443 (11) | 0.0340 (9) | 0.0450 (10) | 0.0078 (8) | 0.0102 (8) | 0.0190 (8) |
C8 | 0.0371 (10) | 0.0327 (9) | 0.0433 (10) | −0.0024 (7) | 0.0119 (8) | 0.0079 (8) |
C9 | 0.0259 (9) | 0.0485 (11) | 0.0409 (10) | 0.0023 (8) | 0.0007 (7) | 0.0110 (8) |
C10 | 0.0279 (9) | 0.0378 (9) | 0.0363 (9) | 0.0094 (7) | 0.0056 (7) | 0.0156 (7) |
N1 | 0.0255 (8) | 0.0334 (7) | 0.0262 (8) | 0.0088 (6) | 0.0064 (6) | 0.0119 (6) |
N2 | 0.0284 (8) | 0.0317 (7) | 0.0270 (7) | 0.0041 (6) | 0.0000 (6) | 0.0082 (6) |
N3 | 0.0217 (7) | 0.0317 (8) | 0.0252 (7) | 0.0055 (6) | 0.0041 (5) | 0.0053 (6) |
N4 | 0.0221 (7) | 0.0367 (8) | 0.0312 (7) | 0.0053 (6) | 0.0045 (6) | 0.0117 (6) |
N5 | 0.0266 (7) | 0.0289 (7) | 0.0234 (7) | 0.0066 (6) | 0.0048 (6) | 0.0075 (6) |
O1W | 0.0933 (15) | 0.0445 (10) | 0.0991 (16) | 0.0212 (10) | −0.0361 (12) | −0.0042 (10) |
F1 | 0.0572 (8) | 0.0422 (7) | 0.0782 (9) | −0.0157 (6) | 0.0012 (7) | 0.0149 (6) |
Cl1 | 0.0306 (2) | 0.0346 (2) | 0.0362 (2) | 0.01223 (17) | 0.00199 (17) | 0.01167 (17) |
Cl2 | 0.0293 (2) | 0.0498 (3) | 0.0349 (2) | 0.00972 (18) | 0.00575 (17) | 0.02020 (19) |
Cl3 | 0.0331 (2) | 0.0377 (2) | 0.0293 (2) | 0.00967 (17) | 0.00385 (16) | 0.00964 (16) |
Co1 | 0.01859 (12) | 0.02502 (12) | 0.02089 (12) | 0.00481 (8) | 0.00245 (8) | 0.00680 (9) |
C1—C2' | 1.472 (12) | C7—H7 | 0.9300 |
C1—N1 | 1.477 (2) | C8—F1 | 1.357 (2) |
C1—C2 | 1.482 (3) | C8—C9 | 1.365 (3) |
C1—H1A | 0.9700 | C9—C10 | 1.383 (3) |
C1—H1B | 0.9700 | C9—H9 | 0.9300 |
C2—N2 | 1.492 (3) | C10—H10 | 0.9300 |
C2—H2A | 0.9700 | N1—Co1 | 1.9598 (14) |
C2—H2B | 0.9700 | N1—H1D | 0.82 (2) |
C2'—N2 | 1.445 (12) | N1—H1C | 0.83 (2) |
C2'—H2C | 0.9700 | N2—Co1 | 1.9655 (14) |
C2'—H2D | 0.9700 | N2—H2E | 0.84 (2) |
C3—N3 | 1.485 (2) | N2—H2F | 0.91 (2) |
C3—C4 | 1.494 (2) | N3—Co1 | 1.9512 (14) |
C3—H3A | 0.9700 | N3—H3C | 0.88 (2) |
C3—H3B | 0.9700 | N3—H3D | 0.85 (2) |
C4—N4 | 1.484 (2) | N4—Co1 | 1.9613 (14) |
C4—H4A | 0.9700 | N4—H4C | 0.84 (2) |
C4—H4B | 0.9700 | N4—H4D | 0.87 (2) |
C5—C10 | 1.383 (2) | N5—Co1 | 2.0077 (13) |
C5—C6 | 1.384 (2) | N5—H5A | 0.83 (2) |
C5—N5 | 1.447 (2) | N5—H5B | 0.90 (2) |
C6—C7 | 1.384 (3) | O1W—H2W | 0.825 (10) |
C6—H6 | 0.9300 | O1W—H1W | 0.825 (10) |
C7—C8 | 1.369 (3) | Cl1—Co1 | 2.2610 (4) |
C2'—C1—N1 | 117.6 (6) | C1—N1—Co1 | 109.86 (11) |
N1—C1—C2 | 108.71 (17) | C1—N1—H1D | 105.6 (14) |
N1—C1—H1A | 109.9 | Co1—N1—H1D | 111.8 (14) |
C2—C1—H1A | 109.9 | C1—N1—H1C | 109.1 (13) |
N1—C1—H1B | 109.9 | Co1—N1—H1C | 110.6 (13) |
C2—C1—H1B | 109.9 | H1D—N1—H1C | 110 (2) |
H1A—C1—H1B | 108.3 | C2'—N2—Co1 | 115.5 (5) |
N2—C2—C1 | 107.1 (2) | C2—N2—Co1 | 109.53 (13) |
N2—C2—H2A | 110.3 | C2'—N2—H2E | 117.5 (14) |
C1—C2—H2A | 110.3 | C2—N2—H2E | 103.6 (13) |
N2—C2—H2B | 110.3 | Co1—N2—H2E | 112.5 (14) |
C1—C2—H2B | 110.3 | C2'—N2—H2F | 95.8 (11) |
H2A—C2—H2B | 108.6 | C2—N2—H2F | 118.2 (11) |
N2—C2'—C1 | 110.1 (9) | Co1—N2—H2F | 107.2 (13) |
N2—C2'—H2C | 109.6 | H2E—N2—H2F | 106 (2) |
C1—C2'—H2C | 109.7 | C3—N3—Co1 | 111.09 (10) |
N2—C2'—H2D | 109.6 | C3—N3—H3C | 107.5 (14) |
C1—C2'—H2D | 109.6 | Co1—N3—H3C | 110.8 (14) |
H2C—C2'—H2D | 108.1 | C3—N3—H3D | 107.2 (13) |
N3—C3—C4 | 107.41 (14) | Co1—N3—H3D | 111.6 (13) |
N3—C3—H3A | 110.2 | H3C—N3—H3D | 108.5 (19) |
C4—C3—H3A | 110.2 | C4—N4—Co1 | 108.62 (10) |
N3—C3—H3B | 110.2 | C4—N4—H4C | 108.8 (13) |
C4—C3—H3B | 110.2 | Co1—N4—H4C | 110.7 (13) |
H3A—C3—H3B | 108.5 | C4—N4—H4D | 109.1 (13) |
N4—C4—C3 | 106.80 (14) | Co1—N4—H4D | 109.6 (13) |
N4—C4—H4A | 110.4 | H4C—N4—H4D | 110.0 (19) |
C3—C4—H4A | 110.4 | C5—N5—Co1 | 121.40 (10) |
N4—C4—H4B | 110.4 | C5—N5—H5A | 107.3 (13) |
C3—C4—H4B | 110.4 | Co1—N5—H5A | 103.8 (13) |
H4A—C4—H4B | 108.6 | C5—N5—H5B | 107.7 (13) |
C10—C5—C6 | 120.28 (15) | Co1—N5—H5B | 109.6 (12) |
C10—C5—N5 | 119.46 (14) | H5A—N5—H5B | 106.0 (18) |
C6—C5—N5 | 120.23 (15) | H2W—O1W—H1W | 105 (3) |
C5—C6—C7 | 119.91 (16) | N3—Co1—N1 | 92.75 (6) |
C5—C6—H6 | 120.0 | N3—Co1—N4 | 84.99 (6) |
C7—C6—H6 | 120.0 | N1—Co1—N4 | 90.62 (7) |
C8—C7—C6 | 118.35 (16) | N3—Co1—N2 | 176.62 (6) |
C8—C7—H7 | 120.8 | N1—Co1—N2 | 85.23 (6) |
C6—C7—H7 | 120.8 | N4—Co1—N2 | 92.31 (6) |
F1—C8—C9 | 118.59 (17) | N3—Co1—N5 | 92.74 (6) |
F1—C8—C7 | 118.41 (17) | N1—Co1—N5 | 91.00 (6) |
C9—C8—C7 | 123.00 (16) | N4—Co1—N5 | 177.27 (6) |
C8—C9—C10 | 118.52 (16) | N2—Co1—N5 | 90.01 (6) |
C8—C9—H9 | 120.7 | N3—Co1—Cl1 | 93.15 (5) |
C10—C9—H9 | 120.7 | N1—Co1—Cl1 | 174.09 (4) |
C5—C10—C9 | 119.93 (15) | N4—Co1—Cl1 | 89.58 (5) |
C5—C10—H10 | 120.0 | N2—Co1—Cl1 | 88.86 (4) |
C9—C10—H10 | 120.0 | N5—Co1—Cl1 | 89.03 (4) |
N1—C1—C2—N2 | −48.3 (3) | N5—C5—C10—C9 | 178.51 (15) |
N1—C1—C2'—N2 | −6.3 (13) | C8—C9—C10—C5 | −1.0 (3) |
N3—C3—C4—N4 | 48.91 (19) | C2'—C1—N1—Co1 | 13.3 (8) |
C10—C5—C6—C7 | 0.3 (2) | C2—C1—N1—Co1 | 36.3 (2) |
N5—C5—C6—C7 | −177.80 (15) | C1—C2'—N2—Co1 | −3.8 (13) |
C5—C6—C7—C8 | −0.4 (3) | C1—C2—N2—Co1 | 38.2 (3) |
C6—C7—C8—F1 | 179.91 (17) | C4—C3—N3—Co1 | −32.55 (17) |
C6—C7—C8—C9 | −0.3 (3) | C3—C4—N4—Co1 | −43.33 (17) |
F1—C8—C9—C10 | −179.23 (16) | C10—C5—N5—Co1 | 88.59 (17) |
C7—C8—C9—C10 | 1.0 (3) | C6—C5—N5—Co1 | −93.27 (16) |
C6—C5—C10—C9 | 0.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···Cl2i | 0.83 (1) | 2.36 (1) | 3.158 (2) | 163 (3) |
O1W—H2W···Cl1 | 0.83 (1) | 2.47 (2) | 3.175 (2) | 144 (3) |
N1—H1C···Cl3ii | 0.83 (2) | 2.76 (2) | 3.5027 (16) | 148.7 (17) |
N1—H1D···Cl2 | 0.82 (2) | 2.47 (2) | 3.2421 (16) | 156.7 (19) |
N2—H2E···Cl3 | 0.84 (2) | 2.60 (2) | 3.4080 (16) | 160.7 (18) |
N2—H2F···Cl3iii | 0.91 (2) | 2.70 (2) | 3.5887 (16) | 166 (2) |
N3—H3C···O1W | 0.88 (2) | 2.18 (2) | 2.989 (2) | 152.2 (19) |
N3—H3D···Cl2iv | 0.85 (2) | 2.50 (2) | 3.2791 (16) | 154.0 (17) |
N4—H4D···Cl2 | 0.87 (2) | 2.61 (2) | 3.4007 (17) | 151.6 (18) |
N4—H4C···Cl3iii | 0.84 (2) | 2.56 (2) | 3.3815 (16) | 168.7 (17) |
N5—H5A···Cl3 | 0.83 (2) | 2.42 (2) | 3.2345 (15) | 168.6 (17) |
N5—H5B···Cl3ii | 0.90 (2) | 2.38 (2) | 3.2778 (15) | 173.0 (17) |
C4—H4A···Cl2v | 0.97 | 2.81 | 3.5148 (18) | 130 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+2; (v) −x+1, −y+1, −z+2. |
Acknowledgements
YA and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.
References
Arslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519–527. Web of Science CrossRef PubMed Google Scholar
Bailar, J. C. & Rollinson, C. L. (1946). Inorg. Synth. 22, 222–223. Google Scholar
Bailar, J. C. Jr & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171–175. CrossRef CAS Web of Science Google Scholar
Cullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858–1864. CrossRef CAS Web of Science Google Scholar
Daniels, L. M., Murillo, C. A. & Rodríguez, K. G. (1995). Inorg. Chim. Acta, 229, 27–32. CrossRef CAS Web of Science Google Scholar
Deeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310–1320. CrossRef CAS Web of Science Google Scholar
Delehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830–837. Web of Science CrossRef CAS Google Scholar
Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684. CrossRef CAS Google Scholar
Jameson, G. B., Schneider, R., Dubler, E. & Oswald, H. R. (1982). Acta Cryst. B38, 3016–3020. CrossRef CAS Web of Science IUCr Journals Google Scholar
Mitzi, D. B. (1996). Chem. Mater. 8, 791–800. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sapp, S. A., Elliott, C. M., Contado, C., Caramori, S. & Bignozzi, C. A. (2002). J. Am. Chem. Soc. 124, 11215–11222. CrossRef CAS Google Scholar
Sayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475–480. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shores, M. P., Sokol, J. J. & Long, J. R. (2002). J. Am. Chem. Soc. 124, 2279–2292. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971–6975. CAS PubMed Web of Science Google Scholar
Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352. Web of Science CrossRef PubMed CAS Google Scholar
Wu, A.-Q., Cai, L.-Z., Chen, W.-T., Guo, G.-C. & Huang, J.-S. (2003). Acta Cryst. C59, m491–m493. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.