metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­bromido­bis­­(3-bromo­benzyl-κC)(4,7-di­phenyl-1,10-phenanthroline-κ2N,N′)tin(IV)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, K. Ramakrishnan College of Engineering, Samayapuram, Tiruchirappalli 621 112, Tamilnadu, India, bArignar Anna Government Arts College, Musiri, Tiruchirappalli 621 211, Tamilnadu, India, cDepartment of Physics, K. Ramakrishnan College of Engineering, Samayapuram, Tiruchirappalli 621 112, Tamilnadu, India, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: baskarvsp@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 5 March 2019; accepted 8 March 2019; online 15 March 2019)

In the title compound, [SnBr2(C7H6Br)2(C24H16N2)], the Sn atom is coordinated to a 4,7-diphenyl-1,10-phenanthroline, two 3-bromo­benzyl and two bromide ligands, leading to a six-coordinate C2Br2N2 donor set. The bromo­benzyl ligands are trans to each other, while the Br anions are in a cis arrangement. One of the two 3-bromo­benzyl ligands is disordered over two similar conformations, with occupancies of 0.7078 (18) and 0.2922 (18). In the crystal, mol­ecules are linked into centrosymmetric dimers by Br⋯Br halogen bonds [3.5972 (12) Å], which are linked into a supra­molecular layer in the ac plane by weak inter­molecular C—H⋯Br inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Organotin compounds are mostly known for their biocidal effects and have been used for multiple applications, being utilized as wood preservatives, acaricides, disinfectants, bactericides, fungicides, molluscicides, PVC stabilizers and marine anti­fouling products (Snoeij et al., 1987[Snoeij, N. J., Penninks, A. H. & Seinen, W. (1987). Environ. Res. 44, 335-353.]). In addition, much recent inter­est has focused on the potential applications of organotin compounds for their cytotoxicity and anti­tumour activities against various cell lines (Yadav et al., 2015[Yadav, S., Yousuf, I., Usman, M., Ahmad, M. F., Arjmanda, F. & Tabassum, S. (2015). RSC Adv. 5, 50673-50690.]; Varela-Ramirez et al., 2011[Varela-Ramirez, A., Costanzo, M., Carrasco, Y. P., Pannell, K. H. & Aguilera, R. J. (2011). Cell Biol. Toxicol. 27, 159-168.]). Metal complexes of 1,10-phenanthroline have also been found to show excellent biological activity, playing several roles, displaying both anti­microbial and anti­fungal activities (McCann et al., 2012a[McCann, M., Kellett, A., Kavanagh, K., Devereux, M. & Santos, A. L. (2012a). Curr. Med. Chem. 19, 2703-2714.]) and anti­cancer potential (McCann et al., 2012b[McCann, M., Santos, A. L. S., da Silva, B. A., Romanos, M. T. V., Pyrrho, A. S., Devereux, M., Kavanagh, K., Fichtner, I. & Kellett, A. (2012b). Toxicol. Res. 1, 47-54.]). Several studies show that this ligand and a number of its complexes are effective against various strains of microorganisms (Josa Parada et al., 2017[Parada, J., Ana, M. A., Guillermo, W. E. R. & Gino, C. (2017). J. Chil. Chem. Soc. 62, 3746-3751.]). Both diorgano- and triorganotin compounds have been confirmed to show cytotoxicity against various cancer cell lines (Yadav et al., 2015[Yadav, S., Yousuf, I., Usman, M., Ahmad, M. F., Arjmanda, F. & Tabassum, S. (2015). RSC Adv. 5, 50673-50690.]).

In light of these biological activities for both organotin compounds and metal complexes of phenanthroline derivatives, and the lack of such examples in the literature where both Sn and 4,7-diphenyl-1,10-phenanthroline were combined [the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave two hits: (4,7-diphenyl-1,10-phenanthroline)di­methyl­bis­(iso­thio­cyanato)­tin(IV) (Najafi et al., 2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m244.]) and di-n-butyl-di­chlorido­(4,7-di­phenyl­phenanthroline)tin(IV) (Hu et al., 1989[Hu, S.-Z., Lin, W., Wan, J. & Huang, Z. (1989). Jiegou Huaxue (Chin. J. Struct. Chem.), 8, 36-42.])], it was decided to synthesize and structurally characterize the title compound, (I). Its biological activity will be reported elsewhere.

In (I), the Sn atom is coordinated by a 4,7-diphenyl-1,10-phenanthroline, two 3-bromo­benzyl and two bromide ligands, leading to a six-coordinate C2Br2N2 donor set (see Fig. 1[link]). The bromo­benzyl ligands are trans to each other, while the Br anions are in a cis arrangement. The geometry about the Sn atom is distorted octa­hedral due in part to the small bite distance of the 4,7-diphenyl-1,10-phenanthroline ligand. The cis angles range from 70.32 (11) to 94.2 (2)° and the trans angles range from 174.0 (3) to 161.60 (8)° (Table 1[link]). One of the inter­esting aspects of the structure is the conformation adopted by the 3-bromo­benzyl ligands. As indicated above, these are arranged in a trans fashion in the Sn coordination sphere. However, they are not arranged in the normal way to minimize steric repulsion, but rather are both tilted away from the SnN2Br2 plane, with a dihedral angle of 40.1 (2)° between them. The reason for this appears to be so that they can form intra­molecular ππ inter­actions with the central phenanthroline moiety [CgCg = 3.584 (2) and 3.694 (3) Å]. The 3-bromo­benzyl rings and the phenanthroline ring are not mutually parallel, but make dihedral angles of 24.4 (2) and 21.7 (3)°. These values are about the closest these rings can approach each other while maintaining a tetra­hedral (sp3) angle at the benzyl C atoms.

Table 1
Selected geometric parameters (Å, °)

Sn1—C25 2.211 (4) Sn1—N2 2.353 (3)
Sn1—C32 2.218 (13) Sn1—Br2 2.6355 (6)
Sn1—N1 2.320 (3) Sn1—Br1 2.7059 (5)
       
C25—Sn1—C32 174.0 (3) N1—Sn1—Br2 91.31 (8)
C25—Sn1—N1 91.65 (13) N2—Sn1—Br2 161.60 (8)
C32—Sn1—N1 89.8 (2) C25—Sn1—Br1 88.35 (10)
C25—Sn1—N2 88.03 (15) C32—Sn1—Br1 88.7 (2)
C32—Sn1—N2 87.0 (2) N1—Sn1—Br1 164.19 (8)
N1—Sn1—N2 70.32 (11) N2—Sn1—Br1 93.89 (8)
C25—Sn1—Br2 91.60 (13) Br2—Sn1—Br1 104.49 (2)
C32—Sn1—Br2 94.2 (2)    
[Figure 1]
Figure 1
The mol­ecular structure of (I), showing the folding of the 3-bromo­benzyl rings in order to form ππ inter­actions with the 4,7-diphenyl-1,10-phenanthroline ligand. Displacement ellipsoids are drawn at the 30% probability level.

As far as comparisons with related structures are concerned, there is only one other structure which bears some resemblance to (I), namely di­bromo­bis­(penta­fluoro­eth­yl)(1,10-phenanthroline)tin(IV), (II) (Klosener et al., 2017[Klosener, J., Wiesemann, M., Niemann, M., Neumann, B., Stammler, H.-G. & Hoge, B. (2017). Chem. Eur. J. 23, 8295-8298.]). The phenanthroline bite angle for (II) is 72.40 (9)°, which is slightly wider that the value found for (I) of 70.32 (11)°

In the crystal, mol­ecules are linked into centrosymmetric dimers (Fig. 2[link]) by Br⋯Br halogen bonds [Br3⋯Br4 = 3.5972 (12) Å] and the dimers are linked into a supra­molecular layer in the ac plane by weak inter­molecular C—H⋯Br inter­actions (Table 2[link] and Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Br2 0.93 2.78 3.477 (4) 133
C12—H12A⋯Br1 0.93 2.97 3.656 (5) 132
C36—H36A⋯Br2i 0.93 3.00 3.883 (3) 159
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
Diagram of (I) (major component only), showing the formation of R22(22) rings due to the formation of inter­molecular Br⋯Br inter­actions (shown as dashed lines).
[Figure 3]
Figure 3
Packing diagram for (I), showing both the formation of R22(22) rings due to the formation of inter­molecular Br⋯Br inter­actions, as well as the C—H⋯Br inter­actions linking these dimers into a two-dimensional layer (all inter­actions are shown as dashed lines).

Synthesis and crystallization

3-Bromo­benzyl bromide, tin powder and 4,7-diphenyl-1,10-phenanthroline were purchased from Sigma–Aldrich and used without further purification. All solvents were dried according to standard procedures.

Synthesis of bis (3-bromo­benz­yl) tin dibromide. Tin powder (2 g, 16.8 mmol) and 3-bromo­benzyl bromide (4.21 g, 16.8 mmol) in toluene (60 ml) were refluxed at 110 °C for 3 h. The crystallized products were extracted under vacuum, purified with chloro­form and used for the synthesis of the complex.

Synthesis of di­bromido­bis­(3-bromo­benz­yl)(4,7-diphenyl-1,10-phenanthroline)tin(IV), (I). Bis(3-bromo­benz­yl)tin dibromide (0.46 g, 0.752 mmol) in methanol (50 ml) was reacted with 4,7-diphenyl-1,10-phenanthroline (0.25 g, 0.752 mmol) at room temperature for 24 h. The yellow product was recrystallized by the vapour-diffusion method using chloro­form as solvent and petroleum ether as anti­solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. One of the two 3-bromo­benzyl ligands is disordered over two similar conformations, with occupancies of 0.7078 (18) and 0.2929 (18), and were constrained to have similar geometries using the SAME command in SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). H atoms were idealized using a riding model, with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron-density peaks of 1.14 and −1.47 Å−3, respectively, were located 0.71 and 0.77 Å from the C12 and Br3 atoms.

Table 3
Experimental details

Crystal data
Chemical formula [SnBr2(C7H6Br)2(C24H16N2)]
Mr 950.95
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 10.1328 (3), 11.2430 (3), 16.7726 (4)
α, β, γ (°) 83.216 (2), 72.639 (2), 71.787 (1)
V3) 1731.72 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.38
Crystal size (mm) 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.588, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 77114, 10637, 6920
Rint 0.056
(sin θ/λ)max−1) 0.719
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.123, 1.04
No. of reflections 10637
No. of parameters 444
No. of restraints 342
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.14, −1.47
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), XPREP (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

Dibromidobis(3-bromobenzyl-κC)(4,7-diphenyl-1,10-phenanthroline-κ2N,N')tin(IV) top
Crystal data top
[SnBr2(C7H6Br)2(C24H16N2)]Z = 2
Mr = 950.95F(000) = 920
Triclinic, P1Dx = 1.824 Mg m3
a = 10.1328 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2430 (3) ÅCell parameters from 9823 reflections
c = 16.7726 (4) Åθ = 3.0–28.6°
α = 83.216 (2)°µ = 5.38 mm1
β = 72.639 (2)°T = 296 K
γ = 71.787 (1)°Block, yellow
V = 1731.72 (8) Å30.10 × 0.10 × 0.05 mm
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
6920 reflections with I > 2σ(I)
ω and φ scanRint = 0.056
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 30.7°, θmin = 3.2°
Tmin = 0.588, Tmax = 0.746h = 1414
77114 measured reflectionsk = 1616
10637 independent reflectionsl = 2324
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0373P)2 + 5.1192P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
10637 reflectionsΔρmax = 1.14 e Å3
444 parametersΔρmin = 1.47 e Å3
342 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.38752 (3)0.17331 (3)0.72938 (2)0.03379 (10)
Br10.33777 (7)0.02517 (5)0.63249 (4)0.06410 (18)
Br20.16984 (6)0.19942 (6)0.86610 (4)0.06052 (16)
N10.4864 (4)0.2968 (3)0.7817 (2)0.0308 (7)
N20.5998 (4)0.1939 (3)0.6302 (2)0.0341 (7)
C10.4282 (5)0.3489 (4)0.8548 (3)0.0366 (9)
H1A0.3413610.3367260.8876680.044*
C20.4896 (5)0.4216 (4)0.8856 (3)0.0371 (9)
H2A0.4426920.4583850.9372830.045*
C30.6184 (4)0.4389 (4)0.8402 (2)0.0319 (8)
C40.6838 (4)0.3835 (3)0.7609 (2)0.0298 (8)
C50.6128 (4)0.3139 (3)0.7340 (2)0.0281 (7)
C60.6732 (4)0.2596 (3)0.6529 (2)0.0286 (8)
C70.8030 (4)0.2756 (4)0.6007 (2)0.0328 (8)
C80.8698 (5)0.3509 (4)0.6294 (3)0.0410 (10)
H8A0.9536860.3659470.5944060.049*
C90.8143 (5)0.4001 (4)0.7055 (3)0.0395 (10)
H9A0.8622300.4463050.7225920.047*
C100.8584 (4)0.2214 (4)0.5210 (2)0.0347 (9)
C110.7795 (5)0.1564 (4)0.4997 (3)0.0426 (10)
H11A0.8119340.1206070.4475480.051*
C120.6517 (5)0.1440 (4)0.5558 (3)0.0451 (11)
H12A0.6009430.0989140.5401850.054*
C130.9940 (5)0.2357 (4)0.4614 (2)0.0357 (9)
C140.9906 (5)0.2837 (4)0.3814 (3)0.0440 (10)
H14A0.9052370.3041620.3658720.053*
C151.1139 (6)0.3008 (5)0.3255 (3)0.0537 (12)
H15A1.1116800.3336510.2722560.064*
C161.2389 (6)0.2699 (5)0.3477 (3)0.0570 (14)
H16A1.3214960.2833530.3098740.068*
C171.2442 (5)0.2190 (5)0.4256 (4)0.0565 (13)
H17A1.3309920.1956710.4397540.068*
C181.1215 (5)0.2023 (5)0.4826 (3)0.0469 (11)
H18A1.1250850.1683490.5355560.056*
C190.6850 (5)0.5157 (4)0.8721 (2)0.0359 (9)
C200.8143 (6)0.4632 (5)0.8906 (3)0.0525 (12)
H20A0.8622730.3785580.8817960.063*
C210.8736 (7)0.5360 (7)0.9224 (4)0.0700 (18)
H21A0.9606600.4997600.9357130.084*
C220.8050 (8)0.6607 (7)0.9343 (4)0.077 (2)
H22A0.8459810.7096000.9546800.092*
C230.6777 (8)0.7127 (6)0.9163 (4)0.0697 (18)
H23A0.6311270.7976930.9247070.084*
C240.6150 (6)0.6415 (4)0.8855 (3)0.0481 (11)
H24A0.5265260.6780990.8739460.058*
Br30.17356 (10)0.71660 (8)0.85740 (6)0.0998 (3)
C250.2648 (5)0.3378 (4)0.6683 (3)0.0419 (10)
H25A0.2865280.3211740.6096030.050*
H25B0.1621710.3494580.6931840.050*
C260.2978 (4)0.4559 (2)0.67555 (18)0.0470 (11)
C270.2270 (3)0.5234 (3)0.74818 (16)0.0504 (12)
H27A0.1575100.4968400.7900110.060*
C280.2602 (4)0.6307 (3)0.75830 (17)0.0594 (14)
C290.3642 (4)0.6704 (3)0.6958 (2)0.0749 (19)
H29A0.3863640.7421390.7025560.090*
C300.4349 (4)0.6028 (3)0.62315 (19)0.0682 (16)
H30A0.5044350.6293890.5813190.082*
C310.4017 (4)0.4956 (3)0.61303 (16)0.0599 (14)
H31A0.4490460.4503630.5644270.072*
Br40.74161 (13)0.12905 (11)0.99659 (6)0.0867 (4)0.7078 (18)
C320.5264 (7)0.0032 (13)0.7775 (6)0.0418 (14)0.7078 (18)
H32A0.4677480.0259460.8282960.050*0.7078 (18)
H32D0.5599120.0618250.7367710.050*0.7078 (18)
C330.6549 (4)0.0197 (5)0.7958 (2)0.0411 (12)0.7078 (18)
C340.6406 (3)0.0586 (5)0.8744 (2)0.0452 (13)0.7078 (18)
H34A0.5520330.0733680.9149140.054*0.7078 (18)
C350.7588 (4)0.0755 (5)0.8924 (2)0.0522 (14)0.7078 (18)
C360.8912 (4)0.0534 (5)0.8319 (3)0.0576 (15)0.7078 (18)
H36A0.9702920.0647170.8439030.069*0.7078 (18)
C370.9055 (4)0.0145 (5)0.7533 (2)0.0583 (16)0.7078 (18)
H37A0.9941270.0002510.7127610.070*0.7078 (18)
C380.7874 (4)0.0024 (5)0.73526 (19)0.0489 (14)0.7078 (18)
H38A0.7969160.0284100.6826940.059*0.7078 (18)
Br4'1.0330 (2)0.0096 (2)0.73285 (14)0.0682 (7)0.2922 (18)
C32'0.4920 (14)0.010 (4)0.7812 (12)0.045 (3)0.2922 (18)
H32B0.4202100.0197520.8239190.054*0.2922 (18)
H32C0.5375650.0519490.7382350.054*0.2922 (18)
C33'0.6043 (6)0.0184 (14)0.8195 (6)0.045 (2)0.2922 (18)
C34'0.7443 (7)0.0041 (13)0.7687 (5)0.045 (2)0.2922 (18)
H34B0.7683300.0166920.7130790.054*0.2922 (18)
C35'0.8483 (5)0.0208 (12)0.8011 (4)0.050 (2)0.2922 (18)
C36'0.8124 (7)0.0519 (13)0.8843 (4)0.052 (2)0.2922 (18)
H36B0.8819690.0630770.9059340.063*0.2922 (18)
C37'0.6724 (7)0.0662 (13)0.9350 (4)0.057 (2)0.2922 (18)
H37B0.6482950.0869770.9906550.069*0.2922 (18)
C38'0.5683 (6)0.0495 (13)0.9026 (5)0.051 (2)0.2922 (18)
H38B0.4746360.0590430.9365890.061*0.2922 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03763 (16)0.03340 (15)0.03712 (16)0.01548 (11)0.01446 (12)0.00210 (11)
Br10.0924 (4)0.0533 (3)0.0721 (4)0.0312 (3)0.0480 (3)0.0061 (3)
Br20.0514 (3)0.0794 (4)0.0558 (3)0.0348 (3)0.0020 (2)0.0114 (3)
N10.0349 (17)0.0314 (17)0.0296 (16)0.0130 (14)0.0109 (14)0.0003 (13)
N20.0368 (18)0.0363 (18)0.0328 (17)0.0127 (15)0.0096 (14)0.0088 (14)
C10.035 (2)0.039 (2)0.039 (2)0.0182 (18)0.0082 (18)0.0038 (17)
C20.039 (2)0.043 (2)0.030 (2)0.0129 (18)0.0060 (17)0.0088 (17)
C30.039 (2)0.0291 (19)0.0292 (19)0.0091 (16)0.0122 (16)0.0048 (15)
C40.035 (2)0.0280 (18)0.0278 (19)0.0086 (15)0.0092 (15)0.0062 (15)
C50.0321 (19)0.0286 (18)0.0253 (18)0.0079 (15)0.0099 (15)0.0039 (14)
C60.036 (2)0.0269 (18)0.0247 (18)0.0088 (15)0.0098 (15)0.0044 (14)
C70.038 (2)0.034 (2)0.0267 (19)0.0104 (17)0.0086 (16)0.0049 (15)
C80.042 (2)0.049 (3)0.034 (2)0.023 (2)0.0020 (18)0.0083 (19)
C90.042 (2)0.045 (2)0.036 (2)0.023 (2)0.0018 (18)0.0116 (18)
C100.038 (2)0.034 (2)0.028 (2)0.0054 (17)0.0073 (17)0.0040 (16)
C110.046 (2)0.051 (3)0.032 (2)0.016 (2)0.0057 (19)0.0146 (19)
C120.055 (3)0.038 (2)0.054 (3)0.017 (2)0.027 (2)0.008 (2)
C130.041 (2)0.035 (2)0.028 (2)0.0105 (17)0.0029 (17)0.0089 (16)
C140.049 (3)0.042 (2)0.038 (2)0.011 (2)0.010 (2)0.0022 (19)
C150.064 (3)0.051 (3)0.040 (3)0.020 (2)0.003 (2)0.003 (2)
C160.054 (3)0.055 (3)0.053 (3)0.022 (2)0.009 (2)0.013 (2)
C170.039 (3)0.060 (3)0.067 (4)0.011 (2)0.009 (2)0.016 (3)
C180.041 (2)0.052 (3)0.045 (3)0.008 (2)0.014 (2)0.005 (2)
C190.045 (2)0.042 (2)0.0265 (19)0.0201 (19)0.0087 (17)0.0046 (16)
C200.051 (3)0.067 (3)0.047 (3)0.020 (2)0.017 (2)0.016 (2)
C210.060 (3)0.116 (5)0.053 (3)0.044 (4)0.017 (3)0.020 (3)
C220.092 (5)0.114 (6)0.050 (3)0.075 (5)0.002 (3)0.027 (3)
C230.107 (5)0.057 (3)0.052 (3)0.052 (3)0.002 (3)0.017 (3)
C240.065 (3)0.043 (3)0.038 (2)0.023 (2)0.008 (2)0.0061 (19)
Br30.1022 (6)0.0841 (5)0.1170 (7)0.0153 (4)0.0318 (5)0.0468 (5)
C250.051 (3)0.038 (2)0.047 (3)0.016 (2)0.028 (2)0.0059 (19)
C260.054 (3)0.039 (2)0.050 (3)0.008 (2)0.025 (2)0.006 (2)
C270.055 (3)0.041 (3)0.060 (3)0.014 (2)0.027 (2)0.006 (2)
C280.065 (3)0.044 (3)0.075 (4)0.006 (2)0.038 (3)0.003 (3)
C290.088 (5)0.042 (3)0.108 (5)0.028 (3)0.046 (4)0.019 (3)
C300.083 (4)0.061 (4)0.061 (4)0.027 (3)0.023 (3)0.020 (3)
C310.076 (4)0.054 (3)0.053 (3)0.025 (3)0.021 (3)0.013 (2)
Br40.1113 (9)0.1036 (8)0.0660 (6)0.0356 (6)0.0479 (6)0.0095 (5)
C320.039 (3)0.032 (3)0.060 (3)0.008 (4)0.026 (3)0.000 (3)
C330.043 (3)0.032 (2)0.054 (3)0.012 (2)0.022 (2)0.000 (2)
C340.046 (3)0.042 (3)0.054 (3)0.012 (2)0.024 (2)0.003 (2)
C350.055 (3)0.050 (3)0.060 (3)0.013 (3)0.030 (3)0.004 (3)
C360.046 (3)0.059 (3)0.075 (4)0.013 (3)0.030 (3)0.003 (3)
C370.041 (3)0.060 (3)0.071 (4)0.009 (3)0.016 (3)0.005 (3)
C380.044 (3)0.043 (3)0.061 (3)0.007 (3)0.021 (3)0.006 (3)
Br4'0.0440 (11)0.0825 (15)0.0820 (15)0.0203 (10)0.0192 (9)0.0073 (11)
C32'0.043 (5)0.036 (5)0.062 (5)0.011 (6)0.025 (5)0.000 (5)
C33'0.044 (4)0.036 (4)0.057 (4)0.009 (4)0.022 (3)0.002 (4)
C34'0.043 (4)0.041 (4)0.056 (4)0.009 (4)0.023 (4)0.000 (4)
C35'0.046 (4)0.047 (4)0.063 (4)0.011 (4)0.025 (3)0.001 (4)
C36'0.050 (4)0.051 (4)0.062 (4)0.013 (4)0.026 (4)0.004 (4)
C37'0.057 (5)0.058 (5)0.059 (5)0.010 (4)0.027 (4)0.003 (4)
C38'0.049 (4)0.048 (4)0.057 (4)0.011 (4)0.023 (4)0.000 (4)
Geometric parameters (Å, º) top
Sn1—C32'2.05 (4)C22—C231.347 (10)
Sn1—C252.211 (4)C22—H22A0.9300
Sn1—C322.218 (13)C23—C241.387 (7)
Sn1—N12.320 (3)C23—H23A0.9300
Sn1—N22.353 (3)C24—H24A0.9300
Sn1—Br22.6355 (6)Br3—Br4i3.5972 (12)
Sn1—Br12.7059 (5)Br3—C281.856 (2)
N1—C11.310 (5)C25—C261.493 (4)
N1—C51.350 (5)C25—H25A0.9700
N2—C121.317 (6)C25—H25B0.9700
N2—C61.351 (5)C26—C271.3900
C1—C21.390 (6)C26—C311.3900
C1—H1A0.9300C27—C281.3900
C2—C31.360 (6)C27—H27A0.9300
C2—H2A0.9300C28—C291.3900
C3—C41.417 (5)C29—C301.3900
C3—C191.477 (5)C29—H29A0.9300
C4—C51.401 (5)C30—C311.3900
C4—C91.424 (6)C30—H30A0.9300
C5—C61.435 (5)C31—H31A0.9300
C6—C71.398 (6)Br4—C351.857 (2)
C7—C101.415 (5)C32—C331.492 (4)
C7—C81.434 (6)C32—H32A0.9700
C8—C91.339 (6)C32—H32D0.9700
C8—H8A0.9300C33—C341.3900
C9—H9A0.9300C33—C381.3900
C10—C111.377 (6)C34—C351.3900
C10—C131.481 (6)C34—H34A0.9300
C11—C121.392 (7)C35—C361.3900
C11—H11A0.9300C36—C371.3900
C12—H12A0.9300C36—H36A0.9300
C13—C181.370 (6)C37—C381.3900
C13—C141.393 (6)C37—H37A0.9300
C14—C151.373 (7)C38—H38A0.9300
C14—H14A0.9300Br4'—C35'1.854 (3)
C15—C161.356 (8)C32'—C33'1.493 (4)
C15—H15A0.9300C32'—H32B0.9700
C16—C171.372 (8)C32'—H32C0.9700
C16—H16A0.9300C33'—C34'1.3900
C17—C181.375 (7)C33'—C38'1.3900
C17—H17A0.9300C34'—C35'1.3900
C18—H18A0.9300C34'—H34B0.9300
C19—C201.370 (7)C35'—C36'1.3900
C19—C241.380 (6)C36'—C37'1.3900
C20—C211.385 (7)C36'—H36B0.9300
C20—H20A0.9300C37'—C38'1.3900
C21—C221.365 (10)C37'—H37B0.9300
C21—H21A0.9300C38'—H38B0.9300
C32'—Sn1—C25174.2 (5)C21—C20—H20A120.0
C25—Sn1—C32174.0 (3)C22—C21—C20120.3 (6)
C32'—Sn1—N194.2 (5)C22—C21—H21A119.9
C25—Sn1—N191.65 (13)C20—C21—H21A119.9
C32—Sn1—N189.8 (2)C23—C22—C21119.9 (5)
C32'—Sn1—N294.0 (4)C23—C22—H22A120.1
C25—Sn1—N288.03 (15)C21—C22—H22A120.1
C32—Sn1—N287.0 (2)C22—C23—C24120.9 (6)
N1—Sn1—N270.32 (11)C22—C23—H23A119.5
C32'—Sn1—Br288.2 (4)C24—C23—H23A119.5
C25—Sn1—Br291.60 (13)C19—C24—C23119.5 (5)
C32—Sn1—Br294.2 (2)C19—C24—H24A120.3
N1—Sn1—Br291.31 (8)C23—C24—H24A120.3
N2—Sn1—Br2161.60 (8)C26—C25—Sn1113.4 (3)
C32'—Sn1—Br186.1 (5)C26—C25—H25A108.9
C25—Sn1—Br188.35 (10)Sn1—C25—H25A108.9
C32—Sn1—Br188.7 (2)C26—C25—H25B108.9
N1—Sn1—Br1164.19 (8)Sn1—C25—H25B108.9
N2—Sn1—Br193.89 (8)H25A—C25—H25B107.7
Br2—Sn1—Br1104.49 (2)C27—C26—C31120.0
C1—N1—C5118.5 (3)C27—C26—C25118.7 (3)
C1—N1—Sn1124.0 (3)C31—C26—C25121.3 (3)
C5—N1—Sn1117.5 (2)C28—C27—C26120.0
C12—N2—C6118.9 (4)C28—C27—H27A120.0
C12—N2—Sn1124.4 (3)C26—C27—H27A120.0
C6—N2—Sn1116.7 (2)C29—C28—C27120.0
N1—C1—C2123.3 (4)C29—C28—Br3119.64 (18)
N1—C1—H1A118.4C27—C28—Br3120.28 (18)
C2—C1—H1A118.4C28—C29—C30120.0
C3—C2—C1120.0 (4)C28—C29—H29A120.0
C3—C2—H2A120.0C30—C29—H29A120.0
C1—C2—H2A120.0C31—C30—C29120.0
C2—C3—C4117.8 (4)C31—C30—H30A120.0
C2—C3—C19120.7 (4)C29—C30—H30A120.0
C4—C3—C19121.5 (4)C30—C31—C26120.0
C5—C4—C3118.3 (4)C30—C31—H31A120.0
C5—C4—C9118.3 (3)C26—C31—H31A120.0
C3—C4—C9123.3 (3)C33—C32—Sn1115.4 (8)
N1—C5—C4122.0 (3)C33—C32—H32A108.4
N1—C5—C6118.0 (3)Sn1—C32—H32A108.4
C4—C5—C6120.0 (3)C33—C32—H32D108.4
N2—C6—C7122.3 (3)Sn1—C32—H32D108.4
N2—C6—C5117.4 (3)H32A—C32—H32D107.5
C7—C6—C5120.3 (3)C34—C33—C38120.0
C6—C7—C10118.5 (4)C34—C33—C32119.2 (3)
C6—C7—C8118.0 (3)C38—C33—C32120.8 (3)
C10—C7—C8123.5 (4)C33—C34—C35120.0
C9—C8—C7121.6 (4)C33—C34—H34A120.0
C9—C8—H8A119.2C35—C34—H34A120.0
C7—C8—H8A119.2C36—C35—C34120.0
C8—C9—C4121.8 (4)C36—C35—Br4119.3 (2)
C8—C9—H9A119.1C34—C35—Br4120.7 (2)
C4—C9—H9A119.1C37—C36—C35120.0
C11—C10—C7117.5 (4)C37—C36—H36A120.0
C11—C10—C13120.7 (4)C35—C36—H36A120.0
C7—C10—C13121.8 (4)C36—C37—C38120.0
C10—C11—C12120.4 (4)C36—C37—H37A120.0
C10—C11—H11A119.8C38—C37—H37A120.0
C12—C11—H11A119.8C37—C38—C33120.0
N2—C12—C11122.4 (4)C37—C38—H38A120.0
N2—C12—H12A118.8C33—C38—H38A120.0
C11—C12—H12A118.8C33'—C32'—Sn1116 (2)
C18—C13—C14119.6 (4)C33'—C32'—H32B108.3
C18—C13—C10122.0 (4)Sn1—C32'—H32B108.3
C14—C13—C10118.4 (4)C33'—C32'—H32C108.3
C15—C14—C13119.7 (5)Sn1—C32'—H32C108.3
C15—C14—H14A120.2H32B—C32'—H32C107.4
C13—C14—H14A120.2C34'—C33'—C38'120.0
C16—C15—C14120.3 (5)C34'—C33'—C32'118.7 (4)
C16—C15—H15A119.8C38'—C33'—C32'121.1 (4)
C14—C15—H15A119.8C33'—C34'—C35'120.0
C15—C16—C17120.3 (5)C33'—C34'—H34B120.0
C15—C16—H16A119.8C35'—C34'—H34B120.0
C17—C16—H16A119.8C36'—C35'—C34'120.0
C16—C17—C18120.2 (5)C36'—C35'—Br4'119.5 (3)
C16—C17—H17A119.9C34'—C35'—Br4'120.4 (3)
C18—C17—H17A119.9C37'—C36'—C35'120.0
C13—C18—C17119.9 (5)C37'—C36'—H36B120.0
C13—C18—H18A120.1C35'—C36'—H36B120.0
C17—C18—H18A120.1C36'—C37'—C38'120.0
C20—C19—C24119.4 (4)C36'—C37'—H37B120.0
C20—C19—C3120.8 (4)C38'—C37'—H37B120.0
C24—C19—C3119.8 (4)C37'—C38'—C33'120.0
C19—C20—C21120.1 (5)C37'—C38'—H38B120.0
C19—C20—H20A120.0C33'—C38'—H38B120.0
C5—N1—C1—C20.3 (6)C14—C13—C18—C171.5 (7)
Sn1—N1—C1—C2179.3 (3)C10—C13—C18—C17179.1 (4)
N1—C1—C2—C31.6 (7)C16—C17—C18—C130.5 (8)
C1—C2—C3—C41.5 (6)C2—C3—C19—C20115.5 (5)
C1—C2—C3—C19179.9 (4)C4—C3—C19—C2066.0 (6)
C2—C3—C4—C50.2 (6)C2—C3—C19—C2463.0 (6)
C19—C3—C4—C5178.7 (4)C4—C3—C19—C24115.5 (5)
C2—C3—C4—C9176.5 (4)C24—C19—C20—C210.0 (7)
C19—C3—C4—C92.0 (6)C3—C19—C20—C21178.5 (5)
C1—N1—C5—C41.1 (6)C19—C20—C21—C221.0 (9)
Sn1—N1—C5—C4178.0 (3)C20—C21—C22—C231.1 (9)
C1—N1—C5—C6178.1 (4)C21—C22—C23—C240.2 (9)
Sn1—N1—C5—C62.8 (4)C20—C19—C24—C230.9 (7)
C3—C4—C5—N11.2 (6)C3—C19—C24—C23179.4 (4)
C9—C4—C5—N1178.1 (4)C22—C23—C24—C190.8 (8)
C3—C4—C5—C6178.0 (4)Sn1—C25—C26—C2782.9 (3)
C9—C4—C5—C61.1 (6)Sn1—C25—C26—C3194.2 (3)
C12—N2—C6—C70.6 (6)C31—C26—C27—C280.0
Sn1—N2—C6—C7178.2 (3)C25—C26—C27—C28177.1 (3)
C12—N2—C6—C5179.3 (4)C26—C27—C28—C290.0
Sn1—N2—C6—C52.0 (5)C26—C27—C28—Br3176.7 (3)
N1—C5—C6—N20.6 (5)C27—C28—C29—C300.0
C4—C5—C6—N2179.8 (4)Br3—C28—C29—C30176.7 (3)
N1—C5—C6—C7179.3 (3)C28—C29—C30—C310.0
C4—C5—C6—C70.1 (6)C29—C30—C31—C260.0
N2—C6—C7—C100.3 (6)C27—C26—C31—C300.0
C5—C6—C7—C10179.5 (4)C25—C26—C31—C30177.1 (3)
N2—C6—C7—C8177.7 (4)Sn1—C32—C33—C3488.1 (6)
C5—C6—C7—C82.1 (6)Sn1—C32—C33—C3891.4 (5)
C6—C7—C8—C93.1 (7)C38—C33—C34—C350.0
C10—C7—C8—C9179.7 (4)C32—C33—C34—C35179.5 (7)
C7—C8—C9—C41.9 (7)C33—C34—C35—C360.0
C5—C4—C9—C80.2 (7)C33—C34—C35—Br4179.3 (4)
C3—C4—C9—C8176.9 (4)C34—C35—C36—C370.0
C6—C7—C10—C110.5 (6)Br4—C35—C36—C37179.4 (4)
C8—C7—C10—C11176.8 (4)C35—C36—C37—C380.0
C6—C7—C10—C13179.0 (4)C36—C37—C38—C330.0
C8—C7—C10—C131.8 (6)C34—C33—C38—C370.0
C7—C10—C11—C121.0 (7)C32—C33—C38—C37179.4 (8)
C13—C10—C11—C12179.6 (4)Sn1—C32'—C33'—C34'86.4 (12)
C6—N2—C12—C110.1 (7)Sn1—C32'—C33'—C38'88.6 (14)
Sn1—N2—C12—C11178.6 (3)C38'—C33'—C34'—C35'0.0
C10—C11—C12—N20.7 (7)C32'—C33'—C34'—C35'175 (2)
C11—C10—C13—C18126.2 (5)C33'—C34'—C35'—C36'0.0
C7—C10—C13—C1855.2 (6)C33'—C34'—C35'—Br4'177.0 (9)
C11—C10—C13—C1453.2 (6)C34'—C35'—C36'—C37'0.0
C7—C10—C13—C14125.3 (4)Br4'—C35'—C36'—C37'177.0 (9)
C18—C13—C14—C152.1 (7)C35'—C36'—C37'—C38'0.0
C10—C13—C14—C15178.5 (4)C36'—C37'—C38'—C33'0.0
C13—C14—C15—C160.7 (7)C34'—C33'—C38'—C37'0.0
C14—C15—C16—C171.3 (8)C32'—C33'—C38'—C37'175 (2)
C15—C16—C17—C181.9 (8)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br20.932.783.477 (4)133
C12—H12A···Br10.932.973.656 (5)132
C36—H36A···Br2ii0.933.003.883 (3)159
Symmetry code: (ii) x+1, y, z.
 

Acknowledgements

The authors thank SAIF, IIT Madras, for providing the intensity data collection.

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, S.-Z., Lin, W., Wan, J. & Huang, Z. (1989). Jiegou Huaxue (Chin. J. Struct. Chem.), 8, 36–42.  CAS Google Scholar
First citationKlosener, J., Wiesemann, M., Niemann, M., Neumann, B., Stammler, H.-G. & Hoge, B. (2017). Chem. Eur. J. 23, 8295–8298.  Google Scholar
First citationMcCann, M., Kellett, A., Kavanagh, K., Devereux, M. & Santos, A. L. (2012a). Curr. Med. Chem. 19, 2703–2714.  CrossRef CAS Google Scholar
First citationMcCann, M., Santos, A. L. S., da Silva, B. A., Romanos, M. T. V., Pyrrho, A. S., Devereux, M., Kavanagh, K., Fichtner, I. & Kellett, A. (2012b). Toxicol. Res. 1, 47–54.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m244.  CrossRef IUCr Journals Google Scholar
First citationParada, J., Ana, M. A., Guillermo, W. E. R. & Gino, C. (2017). J. Chil. Chem. Soc. 62, 3746–3751.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSnoeij, N. J., Penninks, A. H. & Seinen, W. (1987). Environ. Res. 44, 335–353.  CrossRef CAS Google Scholar
First citationVarela-Ramirez, A., Costanzo, M., Carrasco, Y. P., Pannell, K. H. & Aguilera, R. J. (2011). Cell Biol. Toxicol. 27, 159–168.  CAS Google Scholar
First citationYadav, S., Yousuf, I., Usman, M., Ahmad, M. F., Arjmanda, F. & Tabassum, S. (2015). RSC Adv. 5, 50673–50690.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds