organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Allyl 6-amino-4-(4-chloro­phen­yl)-5-cyano-2-methyl-4H-pyran-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Saranathan College of Engineering, Panjappur, Tiruchirappalli 620 012, Tamilnadu, India, bDepartment of Physics, K. Ramakrishnan College of Engineering, Samayapuram, Tiruchirappalli 621 112, Tamilnadu, India, cDepartment of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamil Nadu, India, and dDepartment of Physics, Urumu Dhanalakshmi College, Tiruchirappalli, Tamilnadu, India
*Correspondence e-mail: m.velayuthampillai@klu.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 September 2018; accepted 5 March 2019; online 29 March 2019)

In the title compound, C17H15ClN2O3, the 4H-pyran ring exhibits a shallow-boat conformation and the chloro­benzene ring occupies an axial position. The O-allyl side chain is disordered over two orientations in a 0.585 (14):0.415 (14) ratio. In the crystal, inversion dimers linked by pairs of weak N—H⋯N hydrogen bonds generate R22(12) loops and N—H⋯O hydrogen bonds link the dimers into [001] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyran derivatives possess various biological properties such as anti­microbial (Aytemir et al., 2003[Aytemir, M. D., Erol, D. D., Hider, R. C. & Ozalp, M. (2003). Turk. J. Chem. 757-764.]) and anti-mycobacterial (Kumar et al., 2007[Kumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2007). Bioorg. Med. Chem. Lett. 17, 6459-6462.]) activities. As part of our studies in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

The 4H-pyran ring exhibits a shallow boat conformation with puckering parameters Q = 0.2185 (3) Å, θ = 77.49 (7)° and φ = 170.4 (8)°: atoms O1 and C7 deviate by 0.108 (2) and 0.135 (2) Å, respectively, from the mean plane of the other atoms. The dihedral angle between the phenyl ring and the 4H-pyran ring (all atoms) is 82.43 (14)°.

In the crystal, inversion dimers linked by pairs of weak N2—H2A⋯N1 hydrogen bonds generate [R_{2}^{2}](12) loops and N2—H2B⋯O2 hydrogen bonds link the dimers into [001] chains (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.83 (3) 2.33 (3) 3.126 (4) 160 (2)
N2—H2B⋯O2ii 0.88 (4) 2.05 (3) 2.894 (3) 161 (3)
Symmetry codes: (i) -x, -y, -z-1; (ii) x, y, z-1.
[Figure 2]
Figure 2
Partial packing diagram for the title compound showing the N—H⋯N and N—H⋯O inter­actions as dashed lines.

Synthesis and crystallization

A mixture of 4-chloro­benzaldehyde (1.0 mmol), malono­nitrile (1.0 mmol), allyl 3-oxo­butano­ate (1.0 mmol) and a few drops of piperidine was stirred magnetically in 30 ml of absolute ethanol at 80°C for 90 min. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and the solvent was evaporated. The solid thus appeared was collected and washed with cold water and recrystallized from ethanol solution to result in colourless blocks of the title compound (yield 84%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The atoms of the allyl group (C15 and C16 and attached H atoms) are disordered over two sets of sites in a 0.585 (14):0.415 (14) ratio.

Table 2
Experimental details

Crystal data
Chemical formula C17H15ClN2O3
Mr 330.73
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.3609 (6), 20.3984 (16), 8.5280 (7)
β (°) 95.691 (2)
V3) 1620.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.963, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 17502, 2850, 2011
Rint 0.036
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.05
No. of reflections 2850
No. of parameters 241
No. of restraints 38
Δρmax, Δρmin (e Å−3) 0.35, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Allyl 6-amino-4-(4-chlorophenyl)-5-cyano-2-methyl-4H-pyran-3-carboxylate top
Crystal data top
C17H15ClN2O3F(000) = 688
Mr = 330.73Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5292 reflections
a = 9.3609 (6) Åθ = 2.6–24.2°
b = 20.3984 (16) ŵ = 0.25 mm1
c = 8.5280 (7) ÅT = 296 K
β = 95.691 (2)°BLOCK, colourless
V = 1620.4 (2) Å30.15 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2850 independent reflections
Radiation source: fine-focus sealed tube2011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and φ scanθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1110
Tmin = 0.963, Tmax = 0.975k = 2424
17502 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters not defined?
S = 1.05 w = 1/[σ2(Fo2) + (0.0544P)2 + 1.3356P]
where P = (Fo2 + 2Fc2)/3
2850 reflections(Δ/σ)max = 0.002
241 parametersΔρmax = 0.35 e Å3
38 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All esds are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The hydrogen atoms bound to the C atoms are treated as riding atoms. The H atoms bonded to N were freely refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.00313 (10)0.32803 (5)0.07877 (13)0.0874 (4)
O10.46275 (18)0.07969 (10)0.32817 (19)0.0440 (6)
O20.4430 (2)0.07085 (12)0.2207 (2)0.0600 (8)
O30.6401 (2)0.11435 (10)0.1389 (2)0.0516 (7)
N10.0094 (3)0.00114 (14)0.2957 (3)0.0595 (10)
N20.2910 (3)0.04447 (15)0.5067 (3)0.0551 (10)
C10.0785 (3)0.25483 (16)0.0326 (4)0.0542 (11)
C20.0284 (4)0.19701 (19)0.0833 (4)0.0700 (16)
C30.0968 (3)0.13891 (16)0.0521 (4)0.0563 (11)
C40.2143 (3)0.13860 (13)0.0331 (3)0.0357 (8)
C50.2604 (3)0.19807 (15)0.0864 (4)0.0528 (11)
C60.1941 (3)0.25649 (15)0.0529 (4)0.0609 (11)
C70.2883 (3)0.07482 (12)0.0704 (3)0.0344 (8)
C80.2411 (3)0.05042 (12)0.2353 (3)0.0341 (8)
C90.3244 (3)0.05766 (13)0.3537 (3)0.0373 (8)
C100.5275 (3)0.08513 (13)0.1753 (3)0.0381 (8)
C110.4502 (3)0.08235 (12)0.0517 (3)0.0341 (8)
C120.1022 (3)0.02369 (13)0.2684 (3)0.0392 (9)
C130.5096 (3)0.08802 (13)0.1148 (3)0.0385 (8)
C140.6952 (4)0.12629 (18)0.3027 (4)0.0575 (11)
C150.6737 (10)0.1954 (4)0.3396 (10)0.063 (3)0.585 (14)
C160.6009 (11)0.2171 (7)0.4480 (10)0.088 (4)0.585 (14)
C170.6848 (3)0.09330 (16)0.1840 (3)0.0519 (10)
C15'0.6098 (16)0.1800 (5)0.3735 (17)0.075 (4)0.415 (14)
C16'0.660 (2)0.2373 (7)0.391 (3)0.127 (8)0.415 (14)
H2B0.355 (4)0.0512 (16)0.574 (4)0.062 (10)*
H30.062960.099570.089280.0675*
H50.338160.199010.146300.0633*
H60.227860.296180.088170.0728*
H70.262550.041500.004590.0413*
H14A0.796550.115620.318210.0690*0.585 (14)
H14B0.644920.098800.372130.0690*0.585 (14)
H150.716490.226210.278980.0751*0.585 (14)
H16A0.556310.187940.511410.1052*0.585 (14)
H16B0.592780.262010.463470.1052*0.585 (14)
H17A0.704570.093220.292300.0778*
H17B0.735350.057820.129290.0778*
H17C0.715720.134130.135930.0778*
H20.052070.196340.139040.0840*
H2A0.207 (3)0.0344 (14)0.538 (3)0.045 (9)*
H14C0.812 (9)0.126 (4)0.277 (9)0.0690*0.415 (14)
H14D0.681 (8)0.084 (4)0.364 (9)0.0690*0.415 (14)
H15'0.519420.170570.404280.0903*0.415 (14)
H16C0.750060.247020.360550.1522*0.415 (14)
H16D0.606340.269820.434680.1522*0.415 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0708 (6)0.0727 (7)0.1122 (8)0.0276 (5)0.0227 (5)0.0415 (6)
O10.0404 (10)0.0636 (13)0.0290 (10)0.0127 (9)0.0085 (8)0.0011 (9)
O20.0564 (13)0.0928 (17)0.0314 (11)0.0153 (11)0.0075 (9)0.0024 (10)
O30.0510 (12)0.0656 (14)0.0369 (11)0.0125 (10)0.0025 (9)0.0035 (9)
N10.0499 (15)0.0711 (19)0.0576 (17)0.0178 (14)0.0059 (12)0.0069 (14)
N20.0469 (16)0.089 (2)0.0302 (13)0.0183 (15)0.0084 (12)0.0110 (13)
C10.0465 (18)0.055 (2)0.058 (2)0.0072 (15)0.0106 (15)0.0197 (16)
C20.060 (2)0.076 (3)0.079 (3)0.0079 (19)0.0318 (19)0.016 (2)
C30.0572 (19)0.057 (2)0.059 (2)0.0054 (15)0.0276 (15)0.0046 (15)
C40.0351 (14)0.0424 (15)0.0298 (13)0.0040 (12)0.0044 (10)0.0037 (11)
C50.0490 (17)0.0488 (19)0.063 (2)0.0017 (14)0.0174 (15)0.0013 (15)
C60.061 (2)0.0420 (18)0.078 (2)0.0004 (15)0.0014 (18)0.0006 (16)
C70.0378 (14)0.0384 (15)0.0277 (13)0.0049 (11)0.0071 (10)0.0009 (11)
C80.0348 (14)0.0364 (14)0.0314 (13)0.0050 (11)0.0055 (10)0.0017 (11)
C90.0365 (14)0.0428 (16)0.0328 (14)0.0062 (11)0.0050 (11)0.0018 (11)
C100.0384 (14)0.0404 (15)0.0356 (14)0.0042 (12)0.0045 (11)0.0006 (12)
C110.0374 (14)0.0347 (14)0.0305 (13)0.0029 (11)0.0054 (10)0.0001 (11)
C120.0431 (16)0.0411 (16)0.0344 (14)0.0042 (12)0.0085 (12)0.0025 (12)
C130.0414 (15)0.0395 (15)0.0345 (14)0.0013 (12)0.0036 (12)0.0008 (12)
C140.061 (2)0.066 (2)0.0419 (17)0.0012 (17)0.0130 (15)0.0092 (15)
C150.068 (6)0.047 (5)0.071 (5)0.002 (4)0.006 (4)0.009 (4)
C160.101 (7)0.090 (8)0.072 (5)0.023 (6)0.006 (5)0.001 (5)
C170.0387 (16)0.069 (2)0.0493 (17)0.0069 (14)0.0110 (13)0.0054 (15)
C15'0.099 (9)0.063 (7)0.063 (7)0.027 (6)0.004 (7)0.018 (6)
C16'0.154 (14)0.074 (10)0.159 (15)0.028 (9)0.049 (11)0.019 (10)
Geometric parameters (Å, º) top
Cl1—C11.740 (3)C11—C131.477 (4)
O1—C91.368 (3)C14—C151.463 (9)
O1—C101.387 (3)C14—C15'1.516 (13)
O2—C131.199 (3)C15—C161.281 (13)
O3—C131.332 (3)C15'—C16'1.263 (19)
O3—C141.461 (4)C2—H20.9298
N1—C121.144 (4)C3—H30.9299
N2—C91.339 (4)C5—H50.9300
N2—H2A0.83 (3)C6—H60.9299
N2—H2B0.88 (4)C7—H70.9796
C1—C21.356 (5)C14—H14A0.9696
C1—C61.364 (4)C14—H14B0.9705
C2—C31.385 (5)C14—H14C1.14 (8)
C3—C41.377 (4)C14—H14D1.02 (8)
C4—C51.380 (4)C15—H150.9294
C4—C71.522 (4)C15'—H15'0.9304
C5—C61.386 (4)C16—H16A0.9302
C7—C81.516 (4)C16—H16B0.9297
C7—C111.516 (4)C16'—H16C0.9278
C8—C121.412 (4)C16'—H16D0.9318
C8—C91.344 (4)C17—H17A0.9598
C10—C171.491 (4)C17—H17B0.9600
C10—C111.338 (4)C17—H17C0.9602
C9—O1—C10119.7 (2)C1—C2—H2119.95
C13—O3—C14116.5 (2)C3—C2—H2119.93
C9—N2—H2B120 (2)C2—C3—H3119.55
H2A—N2—H2B121 (3)C4—C3—H3119.53
C9—N2—H2A119.0 (18)C4—C5—H5119.11
Cl1—C1—C2120.0 (3)C6—C5—H5119.09
Cl1—C1—C6119.3 (2)C1—C6—H6120.51
C2—C1—C6120.7 (3)C5—C6—H6120.55
C1—C2—C3120.1 (3)C4—C7—H7108.06
C2—C3—C4120.9 (3)C8—C7—H7108.05
C5—C4—C7121.3 (2)C11—C7—H7108.05
C3—C4—C7121.2 (2)O3—C14—H14A109.94
C3—C4—C5117.5 (3)O3—C14—H14B109.91
C4—C5—C6121.8 (3)O3—C14—H14C94 (4)
C1—C6—C5118.9 (3)O3—C14—H14D107 (4)
C4—C7—C8112.2 (2)C15—C14—H14A109.92
C4—C7—C11111.2 (2)C15—C14—H14B109.89
C8—C7—C11109.1 (2)H14A—C14—H14B108.32
C7—C8—C12119.3 (2)C15'—C14—H14C129 (4)
C7—C8—C9121.6 (2)C15'—C14—H14D108 (4)
C9—C8—C12118.9 (2)H14C—C14—H14D106 (6)
O1—C9—N2110.3 (2)C14—C15—H15117.13
O1—C9—C8121.8 (2)C16—C15—H15117.22
N2—C9—C8127.8 (3)C16'—C15'—H15'119.74
C11—C10—C17131.2 (2)C14—C15'—H15'119.53
O1—C10—C17107.7 (2)C15—C16—H16B119.99
O1—C10—C11121.2 (2)C15—C16—H16A120.02
C7—C11—C10122.3 (2)H16A—C16—H16B119.99
C7—C11—C13112.7 (2)C15'—C16'—H16C120.16
C10—C11—C13124.9 (3)C15'—C16'—H16D119.80
N1—C12—C8179.0 (3)H16C—C16'—H16D120.04
O3—C13—C11115.6 (2)H17A—C17—H17C109.49
O2—C13—O3122.6 (2)H17B—C17—H17C109.47
O2—C13—C11121.8 (3)C10—C17—H17A109.47
O3—C14—C15108.9 (4)C10—C17—H17B109.46
O3—C14—C15'110.6 (6)C10—C17—H17C109.46
C14—C15—C16125.7 (9)H17A—C17—H17B109.49
C14—C15'—C16'120.7 (14)
C9—O1—C10—C17165.8 (2)C4—C7—C8—C1272.5 (3)
C10—O1—C9—N2168.6 (2)C4—C7—C8—C9102.8 (3)
C10—O1—C9—C810.3 (4)C11—C7—C8—C12163.7 (2)
C9—O1—C10—C1113.8 (4)C4—C7—C11—C10106.8 (3)
C14—O3—C13—C11174.3 (2)C11—C7—C8—C920.9 (3)
C13—O3—C14—C1599.1 (5)C8—C7—C11—C13164.1 (2)
C14—O3—C13—O24.6 (4)C8—C7—C11—C1017.5 (3)
Cl1—C1—C6—C5178.7 (3)C4—C7—C11—C1371.6 (3)
C2—C1—C6—C50.4 (5)C12—C8—C9—O1176.2 (2)
C6—C1—C2—C31.7 (5)C12—C8—C9—N22.5 (4)
Cl1—C1—C2—C3177.4 (3)C7—C8—C9—O18.4 (4)
C1—C2—C3—C41.3 (5)C7—C8—C9—N2172.9 (3)
C2—C3—C4—C7178.9 (3)O1—C10—C11—C71.5 (4)
C2—C3—C4—C50.3 (4)C17—C10—C11—C130.8 (5)
C3—C4—C7—C11138.7 (3)C17—C10—C11—C7178.9 (3)
C5—C4—C7—C1142.8 (3)O1—C10—C11—C13179.7 (2)
C7—C4—C5—C6179.8 (3)C10—C11—C13—O318.1 (4)
C3—C4—C5—C61.6 (5)C7—C11—C13—O218.7 (4)
C3—C4—C7—C898.8 (3)C10—C11—C13—O2163.0 (3)
C5—C4—C7—C879.7 (3)C7—C11—C13—O3160.2 (2)
C4—C5—C6—C11.3 (5)O3—C14—C15—C16121.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.83 (3)2.33 (3)3.126 (4)160 (2)
N2—H2B···O2ii0.88 (4)2.05 (3)2.894 (3)161 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y, z1.
 

Acknowledgements

TM thanks Dr D. Srinivasan, Principal of K. Ramakrishnan College of Engineering, Trichy for support.

References

First citationAytemir, M. D., Erol, D. D., Hider, R. C. & Ozalp, M. (2003). Turk. J. Chem. 757–764.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2007). Bioorg. Med. Chem. Lett. 17, 6459–6462.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds