organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(4-Fluoro­phen­yl)-5-methyl-N′-{1-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]ethyl­­idene}-1H-1,2,3-triazole-4-carbohydrazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, eNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by O. Blacque, University of Zürich, Switzerland (Received 6 February 2019; accepted 20 February 2019; online 22 February 2019)

The title mol­ecule, C22H21FN8O, comprises fluoro­phenyl (A), methyl­triazolyl (B), methyl­triazolyl (C) and tolyl (D) rings. The twist angles between the planes through neighbouring ring pairs A/B, B/C and C/D are 45.0 (1), 9.4 (1) and 43.2 (1)°, respectively. Inter­molecular ππ inter­actions between rings A and C and between B and D propagate the structure in the [010] direction and weak C—H⋯O inter­actions also occur.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Acyl hydrazides are common precursors for the synthesis of various heterocycles and have a wide range of applications such as use in pharmaceuticals, as chemical preservatives for plants, and in the manufacture of polymers (Abdel-Wahab et al., 2017[Abdel-Wahab, B. F., Alotaibi, M. H. & El-Hiti, G. A. (2017). Lett. Org. Chem. 14, 591-596.]; Hassan & Shawky, 2010[Hassan, A. A. & Shawky, A. M. (2010). J. Heterocycl. Chem. 47, 745-763.]; Sarma et al., 2011[Sarma, B. K., Yousufuddin, M. & Kodadek, T. (2011). Chem. Commun. 47, 10590-10592.]; Shamsabadi & Chudasama, 2017[Shamsabadi, A. & Chudasama, V. (2017). Org. Biomol. Chem. 15, 17-33.]).

The asymmetric unit comprises one mol­ecule of the title compound. The mol­ecule has fluoro­phenyl (A; C1–C6), methyl­triazolyl (B; N1–N3/C7/C8), methyl­triazolyl (C; N6–N8/C13/C14) and tolyl (D; C16–C21) rings (Fig. 1[link]). The twist angles between the planes through neighbouring ring pairs A/B, B/C and C/D are 45.0 (1), 9.4 (1) and 43.2 (1)°, respectively. Inter­molecular ππ inter­actions between rings A and C and between B and D with centroid-to-centroid distances in the range 3.774 (3) to 4.075 (3) Å propagate the structure in the [010] direction (Fig. 2[link]). Weak C—H⋯O inter­actions (Table 1[link]) also occur.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.96 2.48 3.229 (12) 135
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
An ORTEP representation of the asymmetric unit showing 50% probability ellipsoids.
[Figure 2]
Figure 2
A segment of the crystal structure showing inter­molecular ππ contacts as green dotted lines and C—H⋯O contacts in red.

Synthesis and crystallization

The title compound was synthesized by condensation of 1-(4-fluoro­phen­yl)-5-methyl-1H-1,2,3-triazole-4-carbohydrazide with 1-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)ethanone in ethanol in the presence of a catalytic amount of glacial acetic acid under reflux for 2 h. The solid obtained was collected by filtration, washed with ethanol, dried and recrystallized from di­methyl­formamide solution to give colourless crystals (78%), m.p. 241–242°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The geometries of the fluoro­phenyl and tolyl rings were restrained to be regular hexa­gons.

Table 2
Experimental details

Crystal data
Chemical formula C22H21FN8O
Mr 432.47
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 293
a, b, c (Å) 12.2574 (10), 7.6912 (8), 22.821 (3)
V3) 2151.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.25 × 0.16 × 0.09
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.329, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13165, 3917, 2393
Rint 0.059
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.178, 1.08
No. of reflections 3917
No. of parameters 272
No. of restraints 2
H-atom treatment H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.17, −0.23
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows and WinGX (Farrugia, 2012); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2001).

1-(4-Fluorophenyl)-5-methyl-N'-{1-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]ethylidene}-1H-1,2,3-triazole-4-carbohydrazide top
Crystal data top
C22H21FN8ODx = 1.335 Mg m3
Mr = 432.47Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1237 reflections
a = 12.2574 (10) Åθ = 3.7–22.8°
b = 7.6912 (8) ŵ = 0.09 mm1
c = 22.821 (3) ÅT = 293 K
V = 2151.5 (4) Å3Plate, colourless
Z = 40.25 × 0.16 × 0.09 mm
F(000) = 904
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
diffractometer
2393 reflections with I > 2σ(I)
ω scansRint = 0.059
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
θmax = 25.3°, θmin = 3.3°
Tmin = 0.329, Tmax = 1.000h = 1414
13165 measured reflectionsk = 99
3917 independent reflectionsl = 2727
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H-atom parameters not refined
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0857P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3917 reflectionsΔρmax = 0.17 e Å3
272 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms except N–H were placed in calculated positions and refined using a riding model. Bond distances for sp2 C–H H atoms were set to 0.93 Å with their Uiso set to 1.2 times Ueq(C). Bond distances for methyl C–H H atoms were set to 0.96 Å and their Uiso set to 1.5 times Ueq(C) with the group free to spin about the C–C bond. The bond distance for the N–H hydrogen was restrained to 0.86 (1) Å and the Uiso(H) set to 1.2 times Ueq(N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1001 (4)0.3862 (6)0.57816 (15)0.099 (2)
C20.0357 (3)0.3166 (6)0.5338 (2)0.0845 (18)
H20.0331520.2728170.5425050.101*
C30.0742 (3)0.3125 (5)0.47657 (17)0.0728 (15)
H30.0311400.2659950.4469190.087*
C40.1771 (3)0.3780 (5)0.46362 (15)0.0656 (16)
C50.2415 (3)0.4476 (5)0.5079 (2)0.0768 (17)
H50.3103620.4914230.4992690.092*
C60.2030 (4)0.4517 (6)0.56520 (18)0.100 (2)
H60.2460720.4982470.5948550.120*
C70.1671 (4)0.4180 (6)0.3554 (3)0.0631 (14)
C80.2445 (5)0.3941 (6)0.3136 (3)0.0690 (16)
C90.0536 (4)0.4855 (8)0.3510 (3)0.0775 (16)
H9A0.0356190.5481200.3861030.116*
H9B0.0039430.3899950.3462360.116*
H9C0.0479800.5618820.3178890.116*
C100.2357 (5)0.4209 (8)0.2504 (3)0.0759 (17)
C110.4198 (5)0.3741 (8)0.1336 (3)0.0767 (17)
C120.5277 (6)0.3532 (16)0.1639 (4)0.140 (4)
H12A0.5234740.2587800.1913500.209*
H12B0.5454070.4585340.1844260.209*
H12C0.5832980.3290260.1354410.209*
C130.4183 (5)0.3728 (7)0.0706 (3)0.0673 (16)
C140.3354 (4)0.4048 (6)0.0315 (3)0.0600 (14)
C150.2226 (5)0.4680 (8)0.0398 (3)0.0730 (15)
H15A0.1742590.3705970.0441150.110*
H15B0.2009890.5353700.0063140.110*
H15C0.2191630.5391280.0742980.110*
C160.3374 (3)0.3845 (5)0.07862 (13)0.0619 (15)
C170.3995 (3)0.4562 (5)0.12351 (18)0.0797 (17)
H170.4681080.5020430.1154720.096*
C180.3591 (4)0.4593 (5)0.18040 (15)0.0878 (19)
H180.4006190.5072280.2104320.105*
C190.2566 (4)0.3907 (5)0.19241 (14)0.0851 (19)
C200.1945 (3)0.3191 (5)0.14752 (19)0.0771 (16)
H200.1258930.2732170.1555600.092*
C210.2349 (3)0.3160 (5)0.09063 (16)0.0689 (15)
H210.1933800.2680320.0605990.083*
C220.2099 (9)0.3958 (12)0.2541 (4)0.121 (3)
H22A0.2369190.2983420.2759960.181*
H22B0.2315910.5017910.2729510.181*
H22C0.1317440.3903110.2521840.181*
N10.2179 (4)0.3754 (6)0.4059 (2)0.0660 (12)
N20.3231 (4)0.3254 (7)0.3958 (3)0.0812 (15)
N30.3393 (4)0.3382 (7)0.3394 (3)0.0783 (14)
N40.3292 (4)0.3919 (7)0.2199 (3)0.0825 (15)
H40.386 (4)0.375 (9)0.242 (3)0.099*
N50.3285 (4)0.3929 (6)0.1598 (3)0.0761 (14)
N60.5106 (4)0.3288 (7)0.0395 (3)0.0846 (15)
N70.4885 (4)0.3301 (7)0.0159 (3)0.0821 (14)
N80.3819 (4)0.3770 (5)0.0218 (2)0.0641 (12)
O10.1518 (4)0.4662 (7)0.2271 (2)0.1086 (16)
F10.0628 (5)0.3904 (9)0.6317 (2)0.149 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.110 (6)0.104 (5)0.083 (6)0.032 (4)0.008 (5)0.005 (4)
C20.073 (4)0.082 (4)0.099 (5)0.014 (3)0.001 (4)0.009 (4)
C30.066 (4)0.065 (3)0.087 (4)0.003 (3)0.005 (3)0.001 (3)
C40.058 (3)0.055 (3)0.084 (5)0.007 (2)0.012 (3)0.004 (3)
C50.070 (4)0.072 (3)0.088 (5)0.002 (3)0.018 (4)0.007 (3)
C60.115 (7)0.093 (5)0.094 (6)0.012 (4)0.029 (5)0.007 (4)
C70.052 (3)0.057 (3)0.080 (4)0.009 (2)0.007 (3)0.001 (3)
C80.061 (4)0.055 (3)0.091 (5)0.007 (2)0.009 (3)0.005 (3)
C90.054 (3)0.078 (3)0.101 (5)0.003 (3)0.013 (3)0.004 (3)
C100.065 (4)0.073 (3)0.090 (5)0.002 (3)0.011 (4)0.010 (3)
C110.058 (4)0.084 (4)0.088 (5)0.001 (3)0.005 (3)0.004 (3)
C120.074 (5)0.232 (11)0.112 (7)0.014 (5)0.015 (5)0.005 (6)
C130.051 (3)0.063 (3)0.088 (5)0.000 (2)0.006 (3)0.003 (3)
C140.047 (3)0.055 (3)0.079 (4)0.003 (2)0.008 (3)0.003 (3)
C150.057 (3)0.074 (3)0.088 (4)0.008 (3)0.011 (3)0.003 (3)
C160.054 (3)0.048 (3)0.083 (4)0.009 (2)0.013 (3)0.000 (2)
C170.077 (4)0.070 (4)0.092 (5)0.005 (3)0.027 (4)0.009 (3)
C180.103 (5)0.081 (4)0.080 (5)0.001 (4)0.028 (4)0.003 (3)
C190.098 (5)0.069 (3)0.088 (5)0.020 (3)0.001 (4)0.001 (3)
C200.070 (4)0.066 (3)0.095 (5)0.015 (3)0.007 (4)0.001 (3)
C210.058 (3)0.060 (3)0.088 (4)0.005 (3)0.004 (3)0.008 (3)
C220.151 (8)0.119 (6)0.091 (6)0.013 (5)0.004 (5)0.002 (5)
N10.055 (3)0.062 (3)0.081 (4)0.001 (2)0.012 (3)0.001 (2)
N20.054 (3)0.085 (3)0.105 (5)0.011 (2)0.005 (3)0.005 (3)
N30.060 (3)0.081 (3)0.094 (4)0.003 (2)0.004 (3)0.005 (3)
N40.067 (4)0.097 (4)0.084 (4)0.002 (3)0.006 (3)0.000 (3)
N50.064 (3)0.079 (3)0.085 (4)0.001 (2)0.002 (3)0.002 (3)
N60.058 (3)0.097 (4)0.099 (5)0.008 (3)0.002 (3)0.002 (3)
N70.051 (3)0.093 (3)0.102 (4)0.018 (2)0.010 (3)0.003 (3)
N80.048 (3)0.060 (3)0.085 (4)0.0050 (19)0.005 (3)0.002 (2)
O10.078 (3)0.159 (5)0.089 (3)0.020 (3)0.013 (3)0.011 (3)
F10.150 (5)0.216 (6)0.082 (3)0.031 (4)0.018 (3)0.001 (3)
Geometric parameters (Å, º) top
C1—F11.305 (6)C13—C141.375 (8)
C1—C21.3900C13—N61.378 (8)
C1—C61.3900C14—N81.360 (8)
C2—C31.3900C14—C151.478 (8)
C2—H20.9300C15—H15A0.9600
C3—C41.3900C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.3900C16—C171.3900
C4—N11.410 (6)C16—C211.3900
C5—C61.3900C16—N81.408 (6)
C5—H50.9300C17—C181.3900
C6—H60.9300C17—H170.9300
C7—N11.349 (8)C18—C191.3900
C7—C81.358 (9)C18—H180.9300
C7—C91.489 (8)C19—C201.3900
C8—N31.371 (8)C19—C221.519 (9)
C8—C101.462 (10)C20—C211.3900
C9—H9A0.9600C20—H200.9300
C9—H9B0.9600C21—H210.9300
C9—H9C0.9600C22—H22A0.9600
C10—O11.209 (7)C22—H22B0.9600
C10—N41.358 (8)C22—H22C0.9600
C11—N51.278 (8)N1—N21.365 (6)
C11—C131.438 (9)N2—N31.304 (7)
C11—C121.501 (10)N4—N51.373 (8)
C12—H12A0.9600N4—H40.867 (15)
C12—H12B0.9600N6—N71.294 (7)
C12—H12C0.9600N7—N81.362 (7)
F1—C1—C2119.5 (5)N8—C14—C15124.0 (5)
F1—C1—C6120.5 (5)C13—C14—C15131.8 (6)
C2—C1—C6120.0C14—C15—H15A109.5
C3—C2—C1120.0C14—C15—H15B109.5
C3—C2—H2120.0H15A—C15—H15B109.5
C1—C2—H2120.0C14—C15—H15C109.5
C2—C3—C4120.0H15A—C15—H15C109.5
C2—C3—H3120.0H15B—C15—H15C109.5
C4—C3—H3120.0C17—C16—C21120.0
C5—C4—C3120.0C17—C16—N8118.9 (3)
C5—C4—N1119.0 (3)C21—C16—N8121.1 (3)
C3—C4—N1121.0 (3)C16—C17—C18120.0
C6—C5—C4120.0C16—C17—H17120.0
C6—C5—H5120.0C18—C17—H17120.0
C4—C5—H5120.0C19—C18—C17120.0
C5—C6—C1120.0C19—C18—H18120.0
C5—C6—H6120.0C17—C18—H18120.0
C1—C6—H6120.0C20—C19—C18120.0
N1—C7—C8104.1 (5)C20—C19—C22119.1 (5)
N1—C7—C9125.0 (6)C18—C19—C22120.9 (5)
C8—C7—C9130.8 (6)C19—C20—C21120.0
C7—C8—N3109.4 (6)C19—C20—H20120.0
C7—C8—C10128.5 (6)C21—C20—H20120.0
N3—C8—C10122.1 (6)C20—C21—C16120.0
C7—C9—H9A109.5C20—C21—H21120.0
C7—C9—H9B109.5C16—C21—H21120.0
H9A—C9—H9B109.5C19—C22—H22A109.5
C7—C9—H9C109.5C19—C22—H22B109.5
H9A—C9—H9C109.5H22A—C22—H22B109.5
H9B—C9—H9C109.5C19—C22—H22C109.5
O1—C10—N4122.7 (7)H22A—C22—H22C109.5
O1—C10—C8122.5 (6)H22B—C22—H22C109.5
N4—C10—C8114.8 (6)C7—N1—N2111.1 (5)
N5—C11—C13117.1 (6)C7—N1—C4129.1 (4)
N5—C11—C12124.7 (7)N2—N1—C4119.8 (5)
C13—C11—C12118.2 (6)N3—N2—N1106.8 (5)
C11—C12—H12A109.5N2—N3—C8108.6 (5)
C11—C12—H12B109.5C10—N4—N5120.4 (5)
H12A—C12—H12B109.5C10—N4—H4115 (5)
C11—C12—H12C109.5N5—N4—H4125 (5)
H12A—C12—H12C109.5C11—N5—N4117.5 (5)
H12B—C12—H12C109.5N7—N6—C13109.3 (5)
C14—C13—N6108.4 (6)N6—N7—N8107.4 (5)
C14—C13—C11131.2 (6)C14—N8—N7110.9 (5)
N6—C13—C11120.4 (6)C14—N8—C16130.9 (4)
N8—C14—C13104.0 (5)N7—N8—C16118.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.962.483.229 (12)135
Symmetry code: (i) x+1/2, y+1/2, z.
 

Footnotes

Additional correspondence author, e-mail: kariukib@cardiff.ac.uk.

Funding information

MHA thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia, for financial support (award No. 020–0180).

References

First citationAbdel-Wahab, B. F., Alotaibi, M. H. & El-Hiti, G. A. (2017). Lett. Org. Chem. 14, 591–596.  CAS Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHassan, A. A. & Shawky, A. M. (2010). J. Heterocycl. Chem. 47, 745–763.  CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSarma, B. K., Yousufuddin, M. & Kodadek, T. (2011). Chem. Commun. 47, 10590–10592.  CrossRef Google Scholar
First citationShamsabadi, A. & Chudasama, V. (2017). Org. Biomol. Chem. 15, 17–33.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds