organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl 4-(1H-indol-3-yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by O. Blacque, University of Zürich, Switzerland (Received 18 January 2019; accepted 3 February 2019; online 8 February 2019)

In the title compound, C21H24N2O4, the 1,4-di­hydro­pyridine ring adopts a very flattened boat conformation, with the 3-pyridine substituent in an axial orientation. The pyridine ring is almost orthogonally twisted relative to the 1,4-di­hydro­pyridine skeleton by 85.97 (2)°. In the crystal, pairs of N—H⋯O hydrogen bonds form inversion dimers enclosing R22(16) rings. Pairs of inter­molecular N—H⋯O hydrogen bonds link the dimers into chains along [100].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,4-di­hydro­pyridine (1,4-DHP) derivatives are known as Hantzsch compounds. According to our recent report, they show anti-cancer activities against the HCT116 human colon cancer cell lines (Ahn et al., 2018[Ahn, S., Lee, Y., Park, J., Lee, J., Shin, S. Y., Lee, Y. H., Koh, D. & Lim, Y. (2018). Med. Chem. 14, 851-862.]). Their biological activities include anti­convulsant (Prasanthi et al., 2014[Prasanthi, G., Prasad, K. V. S. R. G. & Bharathi, K. (2014). Eur. J. Med. Chem. 73, 97-104.]), calcium channel modulator (Budriesi et al., 2005[Budriesi, R., Bisi, A., Ioan, P., Rampa, A., Gobbi, S., Belluti, F., Piazzi, L., Valenti, P. & Chiarini, A. (2005). Bioorg. Med. Chem. 13, 3423-3430.]), anti-tubercular (Khoshneviszadeh et al., 2009[Khoshneviszadeh, M., Edraki, N., Javidnia, K., Alborzi, A., Pourabbas, B., Mardaneh, J. & Miri, R. (2009). Bioorg. Med. Chem. 17, 1579-1586.]) and anti­mycobacterial activities (Lentz et al., 2016[Lentz, F., Hemmer, M., Reiling, N. & Hilgeroth, A. (2016). Bioorg. Med. Chem. Lett. 26, 5896-5898.]).

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The 1,4-di­hydro­pyridine (C1–C5/N1) ring is slightly twisted from planarity, with a maximum deviation of 0.138 (1) Å at C3 (r.m.s. deviation = 0.091 Å). The dihedral angle formed between the plane of the 1,4-di­hydro­pyridine (C1–C5/N1) ring and the indole (C10–C17/N2; r.m.s. deviation = 0.011 Å) ring is 85.97 (2)°. One of the carbonyl groups (C7=O1) lies on the same side of the plane as the methyl group at C6, while the other carbonyl group (C18=O3) lies on the opposite side to the methyl group at C21.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level.

In the crystal structure, pairs of N2—H2⋯O3ii hydrogen bonds form inversion dimers enclosing R22(16) rings (Table 1[link], Fig. 2[link]). The dimers are linked into chains along the a-axis direction by pairs of N1—H1⋯O1i hydrogen bonds (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (2) 2.18 (2) 3.009 (2) 153 (2)
N2—H2⋯O3ii 0.91 (2) 2.00 (2) 2.906 (3) 173 (3)
C6—H6B⋯O1i 0.97 2.49 3.296 (3) 140
C13—H13⋯O1iii 0.94 2.58 3.357 (3) 140
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the structure showing a dimer formed by N—H⋯N hydrogen bonds (shown as blue dashed lines).
[Figure 3]
Figure 3
Part of the crystal structure showing N—H⋯N hydrogen bonds as orange dash lines. For clarity only those H atoms involved in hydrogen bonding are shown.

Synthesis and crystallization

Methyl aceto­acetate (20 mmol) and indole-3-carbaldehyde (10 mmol) were dissolved in 30 ml of ethanol to give a clear solution. To the mixture, ammonium acetate (10 mmol) was added and the reaction mixture was heated at 363 K for 2 h. After completion of the reaction (monitored by TLC), the mixture was cooled to room temperature to produce a solid product. This solid was recrystallized from ethanol solution to obtain single-crystal of the title the compound in 51% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H24N2O4
Mr 368.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 10.6258 (5), 10.2217 (5), 18.0993 (8)
β (°) 90.798 (2)
V3) 1965.64 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.24 × 0.18 × 0.14
 
Data collection
Diffractometer PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.686, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 83213, 4908, 3123
Rint 0.096
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.198, 1.03
No. of reflections 4908
No. of parameters 254
No. of restraints 4
H-atom treatment H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.54, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Diethyl 4-(1H-indol-3-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C21H24N2O4F(000) = 784
Mr = 368.42Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.6258 (5) ÅCell parameters from 9897 reflections
b = 10.2217 (5) Åθ = 2.3–25.4°
c = 18.0993 (8) ŵ = 0.09 mm1
β = 90.798 (2)°T = 223 K
V = 1965.64 (16) Å3Block, colourless
Z = 40.24 × 0.18 × 0.14 mm
Data collection top
PHOTON 100 CMOS
diffractometer
3123 reflections with I > 2σ(I)
φ and ω scansRint = 0.096
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 28.3°, θmin = 1.9°
Tmin = 0.686, Tmax = 0.746h = 1414
83213 measured reflectionsk = 1313
4908 independent reflectionsl = 2424
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H-atom parameters not refined
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.087P)2 + 1.2621P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4908 reflectionsΔρmax = 0.54 e Å3
254 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.00309 (17)0.61066 (19)0.15703 (10)0.0407 (4)
H10.0613 (19)0.648 (2)0.1808 (13)0.049*
C10.04291 (19)0.4898 (2)0.18142 (12)0.0381 (5)
C20.13159 (19)0.4253 (2)0.14337 (11)0.0358 (5)
C30.19820 (19)0.4892 (2)0.07873 (11)0.0367 (5)
H30.20500.42290.03910.044*
C40.12181 (19)0.6032 (2)0.04792 (11)0.0375 (5)
C50.0307 (2)0.6611 (2)0.08802 (12)0.0394 (5)
C60.0235 (3)0.4445 (3)0.24927 (14)0.0536 (6)
H6A0.05210.35520.24220.080*
H6B0.09520.50070.25820.080*
H6C0.03390.44820.29140.080*
C70.1697 (2)0.2926 (2)0.16465 (12)0.0401 (5)
O10.14621 (16)0.23585 (17)0.22188 (10)0.0525 (5)
O20.23841 (17)0.23580 (16)0.11138 (9)0.0528 (5)
C80.2857 (3)0.1066 (3)0.12725 (17)0.0689 (8)
H8A0.21600.04400.12910.083*
H8B0.32970.10590.17520.083*
C90.3752 (5)0.0696 (5)0.0667 (2)0.131 (2)
H9A0.33190.07470.01920.196*
H9B0.40510.01900.07470.196*
H9C0.44620.12930.06720.196*
C100.33057 (19)0.5307 (2)0.10047 (11)0.0366 (5)
C110.4375 (2)0.4691 (3)0.07841 (13)0.0443 (5)
H110.43940.39500.04760.053*
N20.54168 (18)0.5301 (2)0.10733 (11)0.0497 (5)
H20.6204 (18)0.505 (3)0.0940 (15)0.060*
C120.5038 (2)0.6340 (3)0.14898 (12)0.0434 (5)
C130.5751 (2)0.7250 (3)0.18868 (14)0.0569 (7)
H130.66350.72250.18840.068*
C140.5125 (3)0.8182 (3)0.22819 (16)0.0611 (7)
H140.55880.87980.25590.073*
C150.3812 (3)0.8233 (3)0.22806 (15)0.0554 (6)
H150.34040.88790.25580.067*
C160.3107 (2)0.7345 (2)0.18760 (13)0.0455 (5)
H160.22230.73960.18740.055*
C170.37063 (19)0.6372 (2)0.14690 (12)0.0379 (5)
C180.1572 (2)0.6424 (2)0.02674 (13)0.0434 (5)
O30.21205 (15)0.57075 (19)0.06892 (9)0.0527 (5)
O40.1257 (2)0.76502 (19)0.04444 (10)0.0688 (6)
C190.1540 (3)0.8084 (4)0.11777 (17)0.0840 (10)
H19A0.08120.85480.13900.101*
H19B0.17190.73280.14920.101*
C200.2678 (5)0.8993 (6)0.1152 (3)0.144 (2)
H20A0.25200.97060.08120.215*
H20B0.28230.93430.16420.215*
H20C0.34130.85080.09860.215*
C210.0505 (3)0.7756 (3)0.06674 (15)0.0557 (7)
H21A0.00350.85610.07400.084*
H21B0.12480.77680.09730.084*
H21C0.07560.76800.01520.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0359 (9)0.0443 (11)0.0421 (10)0.0035 (8)0.0093 (8)0.0045 (8)
C10.0335 (10)0.0409 (12)0.0400 (11)0.0048 (9)0.0042 (9)0.0035 (9)
C20.0310 (10)0.0386 (11)0.0380 (11)0.0024 (8)0.0031 (8)0.0007 (9)
C30.0333 (10)0.0409 (12)0.0361 (11)0.0004 (9)0.0038 (8)0.0014 (9)
C40.0308 (10)0.0453 (12)0.0362 (11)0.0004 (9)0.0004 (8)0.0025 (9)
C50.0349 (11)0.0415 (12)0.0417 (11)0.0006 (9)0.0035 (9)0.0031 (9)
C60.0570 (15)0.0502 (14)0.0542 (14)0.0020 (12)0.0224 (12)0.0021 (12)
C70.0323 (10)0.0420 (12)0.0461 (12)0.0039 (9)0.0041 (9)0.0024 (10)
O10.0498 (10)0.0510 (10)0.0570 (10)0.0044 (8)0.0163 (8)0.0125 (8)
O20.0616 (11)0.0435 (9)0.0536 (10)0.0114 (8)0.0154 (8)0.0003 (8)
C80.079 (2)0.0482 (16)0.080 (2)0.0195 (14)0.0211 (16)0.0032 (14)
C90.166 (5)0.105 (3)0.123 (3)0.075 (3)0.057 (3)0.013 (3)
C100.0309 (10)0.0454 (12)0.0335 (10)0.0019 (9)0.0050 (8)0.0062 (9)
C110.0351 (11)0.0564 (14)0.0414 (12)0.0046 (10)0.0052 (9)0.0003 (11)
N20.0293 (9)0.0713 (14)0.0486 (11)0.0064 (9)0.0059 (8)0.0001 (10)
C120.0322 (11)0.0590 (14)0.0392 (11)0.0001 (10)0.0037 (9)0.0073 (10)
C130.0368 (12)0.0796 (19)0.0540 (14)0.0115 (13)0.0055 (11)0.0054 (14)
C140.0548 (16)0.0669 (18)0.0614 (16)0.0131 (14)0.0099 (13)0.0080 (14)
C150.0530 (15)0.0546 (15)0.0586 (15)0.0028 (12)0.0026 (12)0.0103 (12)
C160.0387 (12)0.0481 (13)0.0498 (13)0.0004 (10)0.0002 (10)0.0027 (11)
C170.0318 (10)0.0455 (12)0.0365 (10)0.0004 (9)0.0016 (8)0.0070 (9)
C180.0360 (11)0.0508 (14)0.0432 (12)0.0003 (10)0.0059 (9)0.0014 (11)
O30.0418 (9)0.0740 (12)0.0424 (9)0.0091 (8)0.0071 (7)0.0025 (8)
O40.1006 (16)0.0565 (12)0.0496 (11)0.0063 (11)0.0064 (10)0.0113 (9)
C190.123 (3)0.077 (2)0.0526 (17)0.005 (2)0.0008 (18)0.0205 (16)
C200.187 (5)0.153 (5)0.092 (3)0.089 (4)0.022 (3)0.004 (3)
C210.0513 (14)0.0575 (16)0.0581 (15)0.0149 (12)0.0031 (12)0.0005 (13)
Geometric parameters (Å, º) top
N1—C11.376 (3)C11—N21.368 (3)
N1—C51.387 (3)C11—H110.9400
N1—H10.899 (16)N2—C121.366 (3)
C1—C21.348 (3)N2—H20.911 (17)
C1—C61.498 (3)C12—C131.393 (4)
C2—C71.465 (3)C12—C171.416 (3)
C2—C31.523 (3)C13—C141.369 (4)
C3—C101.516 (3)C13—H130.9400
C3—C41.521 (3)C14—C151.396 (4)
C3—H30.9900C14—H140.9400
C4—C51.354 (3)C15—C161.381 (3)
C4—C181.463 (3)C15—H150.9400
C5—C211.501 (3)C16—C171.397 (3)
C6—H6A0.9700C16—H160.9400
C6—H6B0.9700C18—O31.213 (3)
C6—H6C0.9700C18—O41.335 (3)
C7—O11.216 (3)O4—C191.435 (3)
C7—O21.349 (3)C19—C201.5250 (19)
O2—C81.440 (3)C19—H19A0.9800
C8—C91.509 (3)C19—H19B0.9800
C8—H8A0.9800C20—H20A0.9700
C8—H8B0.9800C20—H20B0.9700
C9—H9A0.9700C20—H20C0.9700
C9—H9B0.9700C21—H21A0.9700
C9—H9C0.9700C21—H21B0.9700
C10—C111.364 (3)C21—H21C0.9700
C10—C171.436 (3)
C1—N1—C5123.70 (18)C10—C11—N2110.5 (2)
C1—N1—H1117.4 (16)C10—C11—H11124.7
C5—N1—H1116.5 (16)N2—C11—H11124.7
C2—C1—N1119.32 (19)C12—N2—C11108.83 (19)
C2—C1—C6127.5 (2)C12—N2—H2130.1 (18)
N1—C1—C6113.22 (19)C11—N2—H2120.7 (18)
C1—C2—C7120.77 (19)N2—C12—C13129.9 (2)
C1—C2—C3121.2 (2)N2—C12—C17107.8 (2)
C7—C2—C3117.99 (18)C13—C12—C17122.3 (2)
C10—C3—C4111.69 (18)C14—C13—C12118.0 (2)
C10—C3—C2111.10 (17)C14—C13—H13121.0
C4—C3—C2111.04 (17)C12—C13—H13121.0
C10—C3—H3107.6C13—C14—C15121.2 (3)
C4—C3—H3107.6C13—C14—H14119.4
C2—C3—H3107.6C15—C14—H14119.4
C5—C4—C18124.7 (2)C16—C15—C14120.8 (3)
C5—C4—C3121.34 (19)C16—C15—H15119.6
C18—C4—C3113.93 (18)C14—C15—H15119.6
C4—C5—N1118.8 (2)C15—C16—C17120.0 (2)
C4—C5—C21128.0 (2)C15—C16—H16120.0
N1—C5—C21113.2 (2)C17—C16—H16120.0
C1—C6—H6A109.5C16—C17—C12117.7 (2)
C1—C6—H6B109.5C16—C17—C10135.6 (2)
H6A—C6—H6B109.5C12—C17—C10106.63 (19)
C1—C6—H6C109.5O3—C18—O4122.4 (2)
H6A—C6—H6C109.5O3—C18—C4123.2 (2)
H6B—C6—H6C109.5O4—C18—C4114.3 (2)
O1—C7—O2121.5 (2)C18—O4—C19117.2 (2)
O1—C7—C2127.3 (2)O4—C19—C20109.6 (3)
O2—C7—C2111.17 (19)O4—C19—H19A109.7
C7—O2—C8116.30 (19)C20—C19—H19A109.7
O2—C8—C9107.9 (3)O4—C19—H19B109.7
O2—C8—H8A110.1C20—C19—H19B109.7
C9—C8—H8A110.1H19A—C19—H19B108.2
O2—C8—H8B110.1C19—C20—H20A109.5
C9—C8—H8B110.1C19—C20—H20B109.5
H8A—C8—H8B108.4H20A—C20—H20B109.5
C8—C9—H9A109.5C19—C20—H20C109.5
C8—C9—H9B109.5H20A—C20—H20C109.5
H9A—C9—H9B109.5H20B—C20—H20C109.5
C8—C9—H9C109.5C5—C21—H21A109.5
H9A—C9—H9C109.5C5—C21—H21B109.5
H9B—C9—H9C109.5H21A—C21—H21B109.5
C11—C10—C17106.24 (19)C5—C21—H21C109.5
C11—C10—C3124.7 (2)H21A—C21—H21C109.5
C17—C10—C3129.07 (19)H21B—C21—H21C109.5
C5—N1—C1—C212.5 (3)C4—C3—C10—C1751.8 (3)
C5—N1—C1—C6166.3 (2)C2—C3—C10—C1772.8 (3)
N1—C1—C2—C7175.62 (19)C17—C10—C11—N20.4 (3)
C6—C1—C2—C73.0 (4)C3—C10—C11—N2180.0 (2)
N1—C1—C2—C36.4 (3)C10—C11—N2—C120.2 (3)
C6—C1—C2—C3175.0 (2)C11—N2—C12—C13179.6 (2)
C1—C2—C3—C10104.3 (2)C11—N2—C12—C170.8 (3)
C7—C2—C3—C1073.7 (2)N2—C12—C13—C14177.9 (3)
C1—C2—C3—C420.7 (3)C17—C12—C13—C141.6 (4)
C7—C2—C3—C4161.33 (18)C12—C13—C14—C150.8 (4)
C10—C3—C4—C5105.6 (2)C13—C14—C15—C160.3 (4)
C2—C3—C4—C519.0 (3)C14—C15—C16—C170.8 (4)
C10—C3—C4—C1873.9 (2)C15—C16—C17—C120.1 (3)
C2—C3—C4—C18161.51 (18)C15—C16—C17—C10179.2 (2)
C18—C4—C5—N1177.33 (19)N2—C12—C17—C16178.5 (2)
C3—C4—C5—N13.2 (3)C13—C12—C17—C161.1 (3)
C18—C4—C5—C211.1 (4)N2—C12—C17—C101.1 (2)
C3—C4—C5—C21178.4 (2)C13—C12—C17—C10179.3 (2)
C1—N1—C5—C414.2 (3)C11—C10—C17—C16178.5 (3)
C1—N1—C5—C21164.4 (2)C3—C10—C17—C161.1 (4)
C1—C2—C7—O113.3 (4)C11—C10—C17—C120.9 (2)
C3—C2—C7—O1164.7 (2)C3—C10—C17—C12179.5 (2)
C1—C2—C7—O2167.0 (2)C5—C4—C18—O3159.2 (2)
C3—C2—C7—O215.0 (3)C3—C4—C18—O321.3 (3)
O1—C7—O2—C82.1 (3)C5—C4—C18—O421.9 (3)
C2—C7—O2—C8177.6 (2)C3—C4—C18—O4157.6 (2)
C7—O2—C8—C9171.5 (3)O3—C18—O4—C193.1 (4)
C4—C3—C10—C11128.8 (2)C4—C18—O4—C19178.0 (2)
C2—C3—C10—C11106.7 (2)C18—O4—C19—C20104.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (2)2.18 (2)3.009 (2)153 (2)
N2—H2···O3ii0.91 (2)2.00 (2)2.906 (3)173 (3)
C6—H6B···O1i0.972.493.296 (3)140
C13—H13···O1iii0.942.583.357 (3)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Funding information

The authors acknowledge financial support from the Basic Science Research Program (award No. NRF– 2016R1D1A1B03931623).

References

First citationAhn, S., Lee, Y., Park, J., Lee, J., Shin, S. Y., Lee, Y. H., Koh, D. & Lim, Y. (2018). Med. Chem. 14, 851–862.  CrossRef CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBudriesi, R., Bisi, A., Ioan, P., Rampa, A., Gobbi, S., Belluti, F., Piazzi, L., Valenti, P. & Chiarini, A. (2005). Bioorg. Med. Chem. 13, 3423–3430.  CrossRef CAS Google Scholar
First citationKhoshneviszadeh, M., Edraki, N., Javidnia, K., Alborzi, A., Pourabbas, B., Mardaneh, J. & Miri, R. (2009). Bioorg. Med. Chem. 17, 1579–1586.  CrossRef CAS Google Scholar
First citationLentz, F., Hemmer, M., Reiling, N. & Hilgeroth, A. (2016). Bioorg. Med. Chem. Lett. 26, 5896–5898.  CrossRef CAS Google Scholar
First citationPrasanthi, G., Prasad, K. V. S. R. G. & Bharathi, K. (2014). Eur. J. Med. Chem. 73, 97–104.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds