metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Potassium bis­­(2-methyl­lactato)borate hemihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bPrincipal, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 January 2019; accepted 5 February 2019; online 8 February 2019)

The asymmetric unit of the title organic–inorganic hybrid salt poly[aqua­bis­[μ3-bis­(2-methyl­lactato)borato]dipotassium], [K(C8H12BO6)(H2O)0.5]n, consists of one bis­(2-methyl­lactato)borate anion, one potassium cation and one water mol­ecule that shows half occupancy due to disorder around a twofold rotation axis. The potassium cation is pseudo-octa­hedrally coordinated by five O atoms of four symmetry-related bis­(2-methyl­lactato)borate ligands and by the half-occupied water mol­ecule. O—H⋯O hydrogen bonds between the water mol­ecule and one of the borate O atoms of the bis­(2-methyl­lactato)borate ligand are present in the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Lithium-based salts are used in the development of lithium-ion batteries. Allen et al. (2012[Allen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.]) have reported the structure of lithium bis­(2-methyl­lactato)borate monohydrate. In our investigations we have replaced lithium by another alkali cation, i.e. rubidium (Gokila et al., 2019[Gokila, G., Thiruvalluvar, A. A. & Ramachandra Raja, C. (2019). IUCrData, 4, x190039.]). In this context, we report here the growth and structural analysis of potassium bis­(2-methyl­lactato)borate hemihydrate, prepared by the slow evaporation method. Whereas the lithium and rubidium salts crystallize in the space group Pbca with Z = 8 and P21/n with Z = 4, respectively, the potassium title salt crystallizes in the space group C2/c with Z = 8.

The asymmetric unit of the title compound consists of one bis­(2-methyl­lactato)borate anion, a potassium cation and a water mol­ecule (half occupancy) disordered about a twofold rotation axis (Fig. 1[link]). The B—O distances (Table 1[link]) are similar to that of the Rb analogue (Gokila et al., 2019[Gokila, G., Thiruvalluvar, A. A. & Ramachandra Raja, C. (2019). IUCrData, 4, x190039.]). The five-membered ring O2/C5/C6/O3/B1 adopts an envelope form on the O3 atom [puckering parameters Q2 = 0.177 (3) Å, φ2 = 106.7 (10)°] whereas the five-membered ring O4/C1/C2/O5/B1 is essentially planar (r.m.s. deviation from the least-squares plane = 0.0196 Å). The dihedral angle between the above two five-membered ring planes is 89.36 (17)°. The potassium cation is pseudo-octa­hedrally coordinated by five O atoms from four bis­(2-methyl­lactato)borate ligands (three monodentate, one chelating) and the half-occupied water mol­ecule (Table 1[link]). This arrangement leads to the formation of layers parallel to (001). In the crystal structure, these layers are linked by hydrogen bonds involving the water mol­ecule and the O3 borate O atom (Fig. 2[link], Table 2[link]).

Table 1
Selected bond lengths (Å)

K1—O6 2.612 (2) K1—O1iii 3.101 (2)
K1—O5i 2.6686 (19) O2—B1 1.514 (4)
K1—O1ii 2.674 (2) O3—B1 1.425 (4)
K1—O2iii 2.8460 (19) O4—B1 1.498 (3)
K1—O7 2.851 (6) O5—B1 1.427 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1⋯O3iv 0.83 (5) 2.49 (9) 2.870 (6) 109 (7)
O7—H2⋯O3i 0.83 (5) 2.14 (6) 2.865 (7) 146 (6)
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the asymmetric unit of the title compound showing the atom numbering with displacement ellipsoids drawn at the 25% probability level.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the b axis. Dashed lines indicate O—H⋯O hydrogen bonds.

As noted above, individual features in the crystal structure of rubidium bis­(2-methyl­lactato)borate monohydrate (Gokila et al., 2019[Gokila, G., Thiruvalluvar, A. A. & Ramachandra Raja, C. (2019). IUCrData, 4, x190039.]) are very similar to those of the title compound, with the rubidium cation in a likewise pseudo-octa­hedral coordination sphere defined by five O atoms from four bis­(2-methyl­lactato)borate ligands and by a fully occupied water mol­ecule.

Synthesis and crystallization

The title compound was synthesized by reacting 2-methyl­lactic acid, boric acid and potassium carbonate (molar ratio 4:2:1) in double-distilled water. Slow evaporation of the solvent yielded good quality crystals in a period of about 50 days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The occupancy of the O atom of the water mol­ecule (O7) was refined freely and converged with a value close to 0.5. For the final refinement it was constrained to 0.5.

Table 3
Experimental details

Crystal data
Chemical formula [K(C8H12BO6)(H2O)0.5]
Mr 263.09
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 12.3919 (7), 10.7917 (6), 19.9794 (12)
β (°) 103.138 (2)
V3) 2601.9 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.689, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 32254, 2474, 1904
Rint 0.063
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 1.16
No. of reflections 2474
No. of parameters 164
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Poly[aquabis[µ3-bis(2-methyllactato)borato]dipotassium] [K(C8H12BO6)(H2O)0.5] top
Crystal data top
[K(C8H12BO6)(H2O)0.5]F(000) = 1096
Mr = 263.09Dx = 1.343 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.3919 (7) ÅCell parameters from 9798 reflections
b = 10.7917 (6) Åθ = 3.0–25.6°
c = 19.9794 (12) ŵ = 0.42 mm1
β = 103.138 (2)°T = 296 K
V = 2601.9 (3) Å3Block, colourless
Z = 80.15 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
2474 independent reflections
Radiation source: fine-focus sealed tube1904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω and φ scanθmax = 25.7°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.689, Tmax = 0.745k = 1313
32254 measured reflectionsl = 2424
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0384P)2 + 3.8042P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
2474 reflectionsΔρmax = 0.26 e Å3
164 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms of the water molecule were discernable from difference Fourier maps and were refined with a distance constraint of d(O—H) = 0.85 (2) Å and Uiso(H) = 1.2Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.15628 (5)1.09153 (6)0.42734 (4)0.0506 (2)
C10.2944 (2)0.7909 (3)0.39898 (15)0.0472 (7)
C20.4166 (2)0.7875 (3)0.43384 (15)0.0487 (7)
C30.4309 (3)0.8111 (4)0.51015 (18)0.0821 (12)
H3A0.3921000.7485410.5295350.123*
H3B0.4015170.8911430.5170260.123*
H3C0.5082800.8083810.5322120.123*
C40.4813 (3)0.8766 (3)0.3993 (2)0.0771 (11)
H4A0.5579380.8754840.4230760.116*
H4B0.4522590.9587950.4006040.116*
H4C0.4748460.8519630.3524000.116*
C50.3054 (2)0.3895 (3)0.40145 (15)0.0480 (7)
C60.3190 (3)0.4065 (3)0.32830 (15)0.0528 (7)
C70.2039 (3)0.4120 (4)0.28002 (19)0.0860 (12)
H7A0.2109780.4330950.2345360.129*
H7B0.1600350.4737080.2961200.129*
H7C0.1685030.3327130.2791310.129*
C80.3929 (4)0.3084 (3)0.3078 (2)0.0838 (12)
H8A0.4656380.3137880.3373030.126*
H8B0.3974540.3214710.2610320.126*
H8C0.3623690.2278420.3122100.126*
O10.27906 (19)0.2950 (2)0.42639 (12)0.0672 (6)
O20.32499 (16)0.49337 (17)0.43563 (9)0.0484 (5)
O30.37049 (17)0.52461 (17)0.33094 (10)0.0528 (5)
O40.26098 (15)0.68262 (17)0.37398 (10)0.0485 (5)
O50.44883 (15)0.66399 (17)0.42278 (11)0.0524 (5)
O60.23570 (19)0.8815 (2)0.39470 (13)0.0689 (6)
B10.3552 (3)0.5923 (3)0.38934 (17)0.0426 (7)
O70.0564 (5)1.1217 (5)0.2850 (3)0.0830 (16)0.5
H10.116 (3)1.085 (6)0.287 (5)0.100*0.5
H20.003 (4)1.075 (5)0.284 (4)0.100*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0514 (4)0.0405 (3)0.0654 (4)0.0067 (3)0.0246 (3)0.0010 (3)
C10.0494 (16)0.0434 (16)0.0519 (17)0.0089 (13)0.0180 (13)0.0010 (13)
C20.0488 (16)0.0394 (14)0.0575 (18)0.0062 (13)0.0112 (13)0.0071 (13)
C30.089 (3)0.087 (3)0.064 (2)0.012 (2)0.004 (2)0.023 (2)
C40.060 (2)0.059 (2)0.114 (3)0.0066 (17)0.022 (2)0.005 (2)
C50.0484 (16)0.0454 (16)0.0549 (17)0.0027 (13)0.0219 (13)0.0039 (14)
C60.070 (2)0.0454 (16)0.0492 (17)0.0095 (15)0.0264 (15)0.0073 (14)
C70.096 (3)0.102 (3)0.057 (2)0.028 (2)0.011 (2)0.006 (2)
C80.124 (3)0.055 (2)0.091 (3)0.002 (2)0.063 (3)0.0203 (19)
O10.0784 (16)0.0540 (13)0.0759 (15)0.0148 (12)0.0314 (12)0.0125 (11)
O20.0640 (12)0.0447 (11)0.0418 (10)0.0017 (9)0.0231 (9)0.0006 (9)
O30.0756 (14)0.0422 (11)0.0522 (12)0.0075 (10)0.0384 (11)0.0040 (9)
O40.0395 (10)0.0466 (11)0.0583 (12)0.0044 (9)0.0089 (9)0.0035 (9)
O50.0405 (11)0.0397 (10)0.0752 (14)0.0069 (8)0.0092 (9)0.0081 (10)
O60.0674 (14)0.0531 (13)0.0881 (17)0.0248 (11)0.0218 (12)0.0003 (12)
B10.0435 (16)0.0383 (15)0.0492 (18)0.0034 (14)0.0177 (14)0.0007 (14)
O70.112 (4)0.074 (3)0.082 (3)0.023 (3)0.061 (3)0.024 (3)
Geometric parameters (Å, º) top
K1—O62.612 (2)C4—H4C0.9600
K1—O5i2.6686 (19)C5—O11.212 (3)
K1—O1ii2.674 (2)C5—O21.307 (3)
K1—O2iii2.8460 (19)C5—C61.520 (4)
K1—O72.851 (6)C6—O31.421 (3)
K1—O1iii3.101 (2)C6—C81.515 (4)
K1—C5iii3.351 (3)C6—C71.530 (5)
K1—K1iv4.7390 (13)C7—H7A0.9600
K1—H12.74 (9)C7—H7B0.9600
K1—H23.05 (7)C7—H7C0.9600
C1—O61.210 (3)C8—H8A0.9600
C1—O41.301 (3)C8—H8B0.9600
C1—C21.517 (4)C8—H8C0.9600
C2—O51.423 (3)O2—B11.514 (4)
C2—C41.515 (4)O3—B11.425 (4)
C2—C31.516 (4)O4—B11.498 (3)
C3—H3A0.9600O5—B11.427 (4)
C3—H3B0.9600O7—O7v1.738 (13)
C3—H3C0.9600O7—H10.83 (2)
C4—H4A0.9600O7—H20.83 (2)
C4—H4B0.9600
O6—K1—O5i131.34 (7)O1—C5—O2122.9 (3)
O6—K1—O1ii117.60 (8)O1—C5—C6126.6 (3)
O5i—K1—O1ii107.73 (7)O2—C5—C6110.5 (2)
O6—K1—O2iii90.45 (7)O1—C5—K1iii67.72 (17)
O5i—K1—O2iii89.68 (6)O2—C5—K1iii56.47 (13)
O1ii—K1—O2iii110.43 (7)C6—C5—K1iii162.42 (19)
O6—K1—O787.30 (12)O3—C6—C8110.0 (3)
O5i—K1—O774.69 (12)O3—C6—C5102.7 (2)
O1ii—K1—O791.02 (11)C8—C6—C5112.4 (3)
O2iii—K1—O7156.71 (12)O3—C6—C7109.6 (3)
O6—K1—O1iii123.14 (7)C8—C6—C7113.0 (3)
O5i—K1—O1iii87.54 (6)C5—C6—C7108.7 (3)
O1ii—K1—O1iii69.93 (7)C6—C7—H7A109.5
O2iii—K1—O1iii43.41 (6)C6—C7—H7B109.5
O7—K1—O1iii148.82 (11)H7A—C7—H7B109.5
O6—K1—C5iii109.51 (7)C6—C7—H7C109.5
O5i—K1—C5iii85.92 (7)H7A—C7—H7C109.5
O1ii—K1—C5iii90.47 (7)H7B—C7—H7C109.5
O2iii—K1—C5iii22.50 (6)C6—C8—H8A109.5
O7—K1—C5iii160.05 (12)C6—C8—H8B109.5
O1iii—K1—C5iii21.20 (6)H8A—C8—H8B109.5
O6—K1—K1iv128.25 (6)C6—C8—H8C109.5
O5i—K1—K1iv98.26 (5)H8A—C8—H8C109.5
O1ii—K1—K1iv37.93 (5)H8B—C8—H8C109.5
O2iii—K1—K1iv73.83 (4)C5—O1—K1vi154.3 (2)
O7—K1—K1iv124.74 (10)C5—O1—K1iii91.08 (19)
O1iii—K1—K1iv32.00 (4)K1vi—O1—K1iii110.07 (7)
C5iii—K1—K1iv52.73 (5)C5—O2—B1109.2 (2)
O6—C1—O4124.4 (3)C5—O2—K1iii101.03 (16)
O6—C1—C2125.0 (3)B1—O2—K1iii146.83 (16)
O4—C1—C2110.6 (2)C6—O3—B1110.4 (2)
O5—C2—C4109.1 (2)C1—O4—B1109.9 (2)
O5—C2—C3109.9 (3)C2—O5—B1110.7 (2)
C4—C2—C3113.5 (3)C2—O5—K1vii124.83 (16)
O5—C2—C1103.7 (2)B1—O5—K1vii122.08 (15)
C4—C2—C1110.6 (3)C1—O6—K1159.7 (2)
C3—C2—C1109.5 (3)O3—B1—O5114.6 (2)
C2—C3—H3A109.5O3—B1—O4114.1 (2)
C2—C3—H3B109.5O5—B1—O4104.8 (2)
H3A—C3—H3B109.5O3—B1—O2103.6 (2)
C2—C3—H3C109.5O5—B1—O2112.6 (2)
H3A—C3—H3C109.5O4—B1—O2107.1 (2)
H3B—C3—H3C109.5O7v—O7—K1152.9 (4)
C2—C4—H4A109.5O7v—O7—H1125 (6)
C2—C4—H4B109.5K1—O7—H174 (7)
H4A—C4—H4B109.5O7v—O7—H260 (6)
C2—C4—H4C109.5K1—O7—H296 (6)
H4A—C4—H4C109.5H1—O7—H2114 (4)
H4B—C4—H4C109.5
O6—C1—C2—O5177.6 (3)O6—C1—O4—B1179.5 (3)
O4—C1—C2—O52.3 (3)C2—C1—O4—B10.7 (3)
O6—C1—C2—C460.7 (4)C4—C2—O5—B1122.4 (3)
O4—C1—C2—C4119.1 (3)C3—C2—O5—B1112.6 (3)
O6—C1—C2—C365.1 (4)C1—C2—O5—B14.4 (3)
O4—C1—C2—C3115.0 (3)C4—C2—O5—K1vii40.3 (3)
O1—C5—C6—O3169.1 (3)C3—C2—O5—K1vii84.7 (3)
O2—C5—C6—O311.7 (3)C1—C2—O5—K1vii158.28 (16)
K1iii—C5—C6—O327.9 (8)O4—C1—O6—K1147.2 (5)
O1—C5—C6—C851.0 (4)C2—C1—O6—K133.0 (8)
O2—C5—C6—C8129.9 (3)C6—O3—B1—O5141.7 (3)
K1iii—C5—C6—C890.2 (7)C6—O3—B1—O497.4 (3)
O1—C5—C6—C774.9 (4)C6—O3—B1—O218.6 (3)
O2—C5—C6—C7104.3 (3)C2—O5—B1—O3130.7 (3)
K1iii—C5—C6—C7143.9 (6)K1vii—O5—B1—O332.6 (3)
O2—C5—O1—K1vi133.4 (4)C2—O5—B1—O44.8 (3)
C6—C5—O1—K1vi45.7 (6)K1vii—O5—B1—O4158.41 (15)
K1iii—C5—O1—K1vi146.1 (5)C2—O5—B1—O2111.2 (3)
O2—C5—O1—K1iii12.7 (3)K1vii—O5—B1—O285.5 (2)
C6—C5—O1—K1iii168.2 (3)C1—O4—B1—O3129.5 (2)
O1—C5—O2—B1179.8 (3)C1—O4—B1—O53.3 (3)
C6—C5—O2—B10.6 (3)C1—O4—B1—O2116.4 (2)
K1iii—C5—O2—B1166.1 (2)C5—O2—B1—O310.8 (3)
O1—C5—O2—K1iii14.1 (3)K1iii—O2—B1—O3143.6 (2)
C6—C5—O2—K1iii166.6 (2)C5—O2—B1—O5135.1 (2)
C8—C6—O3—B1138.6 (3)K1iii—O2—B1—O519.3 (4)
C5—C6—O3—B118.8 (3)C5—O2—B1—O4110.2 (2)
C7—C6—O3—B196.6 (3)K1iii—O2—B1—O495.4 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y+1, z; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y+5/2, z+1; (v) x, y, z+1/2; (vi) x, y1, z; (vii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O3viii0.83 (5)2.49 (9)2.870 (6)109 (7)
O7—H2···O3i0.83 (5)2.14 (6)2.865 (7)146 (6)
Symmetry codes: (i) x1/2, y+1/2, z; (viii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Madras (IITM), Chennai 600 036, Tamilnadu, India, for the single-crystal X-ray diffraction data.

References

First citationAllen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.  CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGokila, G., Thiruvalluvar, A. A. & Ramachandra Raja, C. (2019). IUCrData, 4, x190039.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds