metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Methanol-κO)bis­­(thio­cyanato-κN)[2,4,6-tris­(pyridin-2-yl)-1,3,5-triazine-κ3N2,N1,N6]nickel(II) methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aChonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 January 2019; accepted 30 January 2019; online 5 February 2019)

In the structure of the title compound, [Ni(NCS)2(C18H12N6)(CH3OH)]·CH3OH, the NiII ion is six-coordinated in an octa­hedral coordination environment defined by three N atoms from a 2,4,6-tris­(pyridin-2-yl)-1,3,5-triazine ligand, two N atoms from two mutually cis-positioned SCN anions and one O atom from a methanol ligand. The complex and methanol solvent mol­ecules are linked by inter­molecular hydrogen bonds. In the crystal, the complex mol­ecules are stacked in columns parallel to the b axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

With reference to the title compound, [Ni(NCS)2(tptz)(CH3OH)]·CH3OH, the crystal structures of related tptz-NiII [tptz = 2,4,6-tris­(pyridin-2-yl)-1,3,5-triazine] complexes [NiCl2(tptz)(CH3OH)] (Hadadzadeh et al., 2012[Hadadzadeh, H., Maghami, M., Simpson, J., Khalaji, A. D. & Abdi, K. (2012). J. Chem. Crystallogr. 42, 656-667.]), [NiBr(μ-Br)(tptz)]2 and [Ni(tptz)2](I3)2 (Aragoni et al., 2007[Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A., Soddu, S. & Verani, G. (2007). Dalton Trans. pp. 2127-2134.]) have previously been determined.

In the structure of the title complex, the central NiII ion is six-coordinated in a distorted octa­hedral coordination environment defined by three N atoms from a tridentate tptz ligand, two N atoms derived from two mutually cis-positioned SCN anions and one O atom from a methanol ligand (Fig. 1[link]). The acute N—Ni—N chelating angles of N1—Ni1—N4 = 76.33 (7)° and N1—Ni1—N6 = 76.39 (7)° contribute to the distortion of the octa­hedron. The axial O1—Ni1—N7, N1—Ni1—N8, and N4—Ni1—N6 bond angles are 175.85 (8), 174.35 (8) and 152.19 (7)°, respectively. The Ni—N(pyrid­yl) bonds [2.1623 (18) and 2.165 (2) Å] are considerably longer than the Ni—N(triazine, NCS) bonds [1.9943 (18)-2.049 (2) Å].

[Figure 1]
Figure 1
The mol­ecular entities in the crystal structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level for non-H atoms.

The two pyridyl rings coordinating to the NiII atom are positioned approximately parallel to their carrier triazine ring, making dihedral angles of 3.9 (1) and 8.2 (1)°. The dihedral angle between the non-coordinating pyridyl and triazine rings is 10.5 (1)°. The thio­cyanato ligands are almost linear, displaying N—C—S bond angles of 178.3 (2) and 179.6 (2)°; the Ni—N—C(NCS) bond angles are slightly bent with 170.6 (2) and 166.7 (2)°, characteristic of an N-bonded conformation (Ha, 2017[Ha, K. (2017). Z. Kristallogr. New Cryst. Struct. 232, 151-152.]). The complex and additional methanol solvent mol­ecules display inter­molecular O—H⋯N and O—H⋯S hydrogen bonds (Table 1[link], Fig. 2[link]). In the crystal structure, the complex mol­ecules are stacked in columns parallel to the b axis. In the columns, numerous inter­molecular ππ inter­actions between adjacent six-membered rings are present. For Cg1 (the centroid of ring N1–N3/C1/C7/C13) and Cg2i [the centroid of ring N4/C2–C6; symmetry code: (i) 2 − x, y, 1 − z], the centroid-to-centroid distance is 3.658 (1) Å, and the dihedral angle between the ring planes is 3.7 (1)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.83 2.61 3.154 (2) 124
O1—H1⋯N5i 0.83 1.97 2.784 (2) 165
O2—H2⋯S1ii 0.83 2.63 3.403 (2) 156
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The packing in the crystal structure of the title compound, viewed approximately along the b axis. Hydrogen-bonding inter­actions are drawn as dashed lines.

Synthesis and crystallization

To a solution of Ni(NCS)2·4H2O (0.1829 g, 0.741 mmol) in acetone (20 ml) was added 2,4,6-tris­(pyridin-2-yl)-1,3,5-triazine (0.2332 g, 0.747 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration, washed with acetone, and dried at 323 K, to give a green–yellow powder (0.2501 g). Green crystals suitable for X-ray analysis were obtained by slow evaporation from a methanol solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ni(NCS)2(C18H12N6)(CH4O)]·CH4O
Mr 551.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 10.5022 (3), 11.1772 (4), 20.8084 (7)
β (°) 95.1737 (12)
V3) 2432.65 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.01
Crystal size (mm) 0.25 × 0.14 × 0.09
 
Data collection
Diffractometer PHOTON 100 CMOS detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.677, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 66153, 4809, 3788
Rint 0.075
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.06
No. of reflections 4809
No. of parameters 320
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b).

(Methanol-κO)bis(thiocyanato-κN)[2,4,6-tris(pyridin-2-yl)-1,3,5-triazine-κ3N2,N1,N6]nickel(II) methanol monosolvate top
Crystal data top
[Ni(NCS)2(C18H12N6)(CH4O)]·CH4OF(000) = 1136
Mr = 551.29Dx = 1.505 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5022 (3) ÅCell parameters from 9985 reflections
b = 11.1772 (4) Åθ = 2.6–25.9°
c = 20.8084 (7) ŵ = 1.01 mm1
β = 95.1737 (12)°T = 223 K
V = 2432.65 (14) Å3Block, green
Z = 40.25 × 0.14 × 0.09 mm
Data collection top
PHOTON 100 CMOS detector
diffractometer
3788 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.075
φ and ω scansθmax = 26.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.677, Tmax = 0.745k = 1313
66153 measured reflectionsl = 2525
4809 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0342P)2 + 1.4276P]
where P = (Fo2 + 2Fc2)/3
4809 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.94 Å (CH) or 0.97 Å (CH3), O—H = 0.83 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O). The remaining maximum electron density (0.31 e- Å-3) and the minimum electron density (-0.27 e- Å-3) in the difference Fourier map are located 0.64 Å and 0.71 Å, respectively, from the atoms N1 and Ni1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.76420 (3)0.04297 (3)0.35072 (2)0.03224 (10)
S10.47633 (7)0.37353 (7)0.37185 (4)0.0615 (2)
S20.85612 (7)0.08721 (7)0.13357 (3)0.05033 (19)
N10.76531 (16)0.02980 (16)0.44635 (9)0.0298 (4)
N20.85785 (17)0.08124 (16)0.54915 (9)0.0289 (4)
N30.67864 (17)0.05148 (17)0.53620 (9)0.0332 (4)
N40.92575 (17)0.15144 (16)0.38653 (9)0.0297 (4)
N50.86950 (18)0.04978 (17)0.67830 (9)0.0348 (4)
N60.61519 (17)0.08624 (18)0.36378 (10)0.0360 (5)
N70.6425 (2)0.1862 (2)0.35067 (10)0.0450 (5)
N80.7806 (2)0.0500 (2)0.25666 (10)0.0471 (5)
C10.85167 (19)0.08808 (19)0.48540 (10)0.0268 (5)
C20.9443 (2)0.15844 (19)0.45141 (10)0.0279 (5)
C31.0426 (2)0.2232 (2)0.48358 (11)0.0329 (5)
H31.05190.22690.52890.039*
C41.1265 (2)0.2823 (2)0.44732 (12)0.0388 (6)
H41.19490.32660.46750.047*
C51.1085 (2)0.2755 (2)0.38089 (12)0.0390 (6)
H51.16470.31490.35530.047*
C61.0073 (2)0.2101 (2)0.35257 (11)0.0352 (5)
H60.99530.20670.30730.042*
C70.7682 (2)0.01166 (19)0.57226 (11)0.0288 (5)
C80.7681 (2)0.0024 (2)0.64301 (11)0.0299 (5)
C90.6692 (2)0.0542 (2)0.67030 (12)0.0417 (6)
H90.60210.09000.64420.050*
C100.6708 (3)0.0572 (3)0.73660 (14)0.0530 (7)
H100.60320.09250.75640.064*
C110.7721 (3)0.0080 (3)0.77305 (13)0.0506 (7)
H110.77530.00860.81830.061*
C120.8699 (3)0.0428 (2)0.74214 (12)0.0443 (6)
H120.94060.07400.76760.053*
C130.6837 (2)0.0412 (2)0.47331 (11)0.0304 (5)
C140.6000 (2)0.1117 (2)0.42620 (12)0.0346 (5)
C150.5189 (2)0.1993 (2)0.44523 (14)0.0452 (6)
H150.51200.21520.48910.054*
C160.4479 (2)0.2632 (3)0.39732 (16)0.0560 (8)
H160.39190.32400.40830.067*
C170.4602 (2)0.2369 (3)0.33408 (15)0.0533 (8)
H170.41170.27860.30120.064*
C180.5446 (2)0.1484 (2)0.31875 (13)0.0455 (7)
H180.55250.13150.27500.055*
C190.5753 (2)0.2647 (2)0.35972 (12)0.0396 (6)
C200.8120 (2)0.0659 (2)0.20530 (12)0.0366 (6)
O10.88931 (14)0.10777 (14)0.35803 (8)0.0349 (4)
H10.96470.08830.35450.052*
C210.8602 (2)0.2147 (2)0.32201 (13)0.0466 (6)
H21A0.80440.26480.34520.070*
H21B0.93870.25750.31630.070*
H21C0.81770.19420.28010.070*
O20.2762 (2)0.45232 (19)0.56669 (11)0.0695 (6)
H20.34920.47990.57490.104*
C220.1909 (4)0.5459 (3)0.54825 (16)0.0794 (11)
H22A0.10640.51320.53660.119*
H22B0.22030.58770.51150.119*
H22C0.18720.60120.58390.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03140 (17)0.03424 (17)0.03000 (16)0.00026 (13)0.00313 (11)0.00294 (13)
S10.0502 (4)0.0488 (4)0.0865 (6)0.0127 (3)0.0110 (4)0.0049 (4)
S20.0542 (4)0.0564 (4)0.0406 (4)0.0048 (3)0.0055 (3)0.0057 (3)
N10.0258 (9)0.0306 (10)0.0323 (10)0.0014 (8)0.0009 (8)0.0033 (8)
N20.0263 (9)0.0298 (10)0.0305 (10)0.0006 (8)0.0022 (8)0.0013 (8)
N30.0256 (10)0.0332 (11)0.0406 (11)0.0018 (8)0.0030 (8)0.0022 (9)
N40.0312 (10)0.0269 (10)0.0309 (10)0.0009 (8)0.0024 (8)0.0005 (8)
N50.0399 (11)0.0347 (11)0.0298 (10)0.0004 (9)0.0040 (8)0.0023 (9)
N60.0258 (10)0.0393 (11)0.0414 (12)0.0016 (8)0.0048 (8)0.0111 (9)
N70.0395 (12)0.0422 (13)0.0516 (14)0.0048 (10)0.0047 (10)0.0033 (10)
N80.0516 (13)0.0529 (14)0.0355 (12)0.0061 (11)0.0044 (10)0.0001 (11)
C10.0252 (11)0.0248 (11)0.0302 (12)0.0015 (9)0.0010 (9)0.0031 (9)
C20.0278 (11)0.0223 (11)0.0332 (12)0.0022 (9)0.0006 (9)0.0004 (9)
C30.0322 (12)0.0304 (12)0.0352 (13)0.0030 (10)0.0014 (10)0.0020 (10)
C40.0346 (13)0.0298 (13)0.0518 (15)0.0055 (10)0.0033 (11)0.0029 (11)
C50.0408 (14)0.0298 (13)0.0481 (15)0.0036 (11)0.0140 (11)0.0036 (11)
C60.0443 (14)0.0275 (12)0.0343 (13)0.0027 (11)0.0060 (10)0.0024 (10)
C70.0258 (11)0.0263 (12)0.0343 (12)0.0040 (9)0.0036 (9)0.0007 (9)
C80.0282 (12)0.0271 (11)0.0348 (12)0.0058 (9)0.0048 (10)0.0003 (9)
C90.0345 (13)0.0441 (15)0.0469 (15)0.0014 (11)0.0064 (11)0.0077 (12)
C100.0545 (17)0.0574 (18)0.0502 (17)0.0020 (14)0.0215 (14)0.0175 (14)
C110.0686 (19)0.0524 (17)0.0329 (14)0.0106 (15)0.0156 (13)0.0072 (12)
C120.0554 (16)0.0422 (15)0.0344 (13)0.0025 (13)0.0001 (11)0.0044 (12)
C130.0236 (11)0.0292 (12)0.0381 (13)0.0005 (10)0.0012 (9)0.0019 (10)
C140.0229 (11)0.0341 (13)0.0462 (14)0.0001 (10)0.0005 (10)0.0078 (11)
C150.0334 (13)0.0432 (15)0.0589 (17)0.0075 (11)0.0033 (12)0.0070 (13)
C160.0361 (15)0.0472 (17)0.084 (2)0.0138 (13)0.0011 (14)0.0133 (16)
C170.0324 (14)0.0535 (18)0.071 (2)0.0040 (13)0.0091 (13)0.0270 (16)
C180.0347 (14)0.0499 (16)0.0497 (16)0.0032 (12)0.0076 (11)0.0175 (13)
C190.0377 (14)0.0399 (15)0.0401 (14)0.0040 (12)0.0021 (11)0.0017 (11)
C200.0375 (13)0.0325 (13)0.0375 (14)0.0044 (10)0.0085 (11)0.0018 (10)
O10.0303 (8)0.0350 (9)0.0388 (9)0.0011 (7)0.0008 (7)0.0054 (7)
C210.0422 (15)0.0376 (15)0.0590 (17)0.0015 (12)0.0001 (12)0.0123 (13)
O20.0694 (14)0.0655 (14)0.0724 (15)0.0098 (12)0.0000 (12)0.0137 (12)
C220.095 (3)0.078 (2)0.060 (2)0.025 (2)0.0200 (19)0.0141 (18)
Geometric parameters (Å, º) top
Ni1—N81.982 (2)C6—H60.9400
Ni1—N11.9943 (18)C7—C81.476 (3)
Ni1—N72.049 (2)C8—C91.381 (3)
Ni1—O12.1336 (16)C9—C101.379 (4)
Ni1—N42.1623 (18)C9—H90.9400
Ni1—N62.165 (2)C10—C111.365 (4)
S1—C191.634 (3)C10—H100.9400
S2—C201.620 (3)C11—C121.381 (4)
N1—C131.329 (3)C11—H110.9400
N1—C11.332 (3)C12—H120.9400
N2—C11.324 (3)C13—C141.483 (3)
N2—C71.343 (3)C14—C151.379 (3)
N3—C131.320 (3)C15—C161.388 (4)
N3—C71.348 (3)C15—H150.9400
N4—C61.331 (3)C16—C171.366 (4)
N4—C21.349 (3)C16—H160.9400
N5—C121.330 (3)C17—C181.384 (4)
N5—C81.346 (3)C17—H170.9400
N6—C181.336 (3)C18—H180.9400
N6—C141.353 (3)O1—C211.429 (3)
N7—C191.152 (3)O1—H10.8300
N8—C201.160 (3)C21—H21A0.9700
C1—C21.479 (3)C21—H21B0.9700
C2—C31.383 (3)C21—H21C0.9700
C3—C41.379 (3)O2—C221.407 (4)
C3—H30.9400O2—H20.8300
C4—C51.380 (3)C22—H22A0.9700
C4—H40.9400C22—H22B0.9700
C5—C61.378 (3)C22—H22C0.9700
C5—H50.9400
N8—Ni1—N1174.35 (8)N5—C8—C7116.4 (2)
N8—Ni1—N794.50 (9)C9—C8—C7120.7 (2)
N1—Ni1—N790.32 (8)C10—C9—C8118.7 (2)
N8—Ni1—O189.64 (8)C10—C9—H9120.6
N1—Ni1—O185.55 (7)C8—C9—H9120.6
N7—Ni1—O1175.85 (8)C11—C10—C9119.0 (3)
N8—Ni1—N4100.53 (8)C11—C10—H10120.5
N1—Ni1—N476.33 (7)C9—C10—H10120.5
N7—Ni1—N491.83 (8)C10—C11—C12118.8 (2)
O1—Ni1—N487.66 (6)C10—C11—H11120.6
N8—Ni1—N6106.18 (8)C12—C11—H11120.6
N1—Ni1—N676.39 (7)N5—C12—C11123.6 (3)
N7—Ni1—N693.64 (8)N5—C12—H12118.2
O1—Ni1—N684.94 (7)C11—C12—H12118.2
N4—Ni1—N6152.19 (7)N3—C13—N1123.8 (2)
C13—N1—C1117.65 (19)N3—C13—C14122.3 (2)
C13—N1—Ni1121.29 (14)N1—C13—C14113.9 (2)
C1—N1—Ni1121.00 (15)N6—C14—C15123.6 (2)
C1—N2—C7114.80 (18)N6—C14—C13114.1 (2)
C13—N3—C7114.70 (19)C15—C14—C13122.2 (2)
C6—N4—C2117.47 (19)C14—C15—C16117.7 (3)
C6—N4—Ni1128.00 (16)C14—C15—H15121.1
C2—N4—Ni1114.53 (14)C16—C15—H15121.1
C12—N5—C8116.9 (2)C17—C16—C15119.3 (3)
C18—N6—C14117.2 (2)C17—C16—H16120.4
C18—N6—Ni1128.38 (19)C15—C16—H16120.4
C14—N6—Ni1114.20 (14)C16—C17—C18119.6 (2)
C19—N7—Ni1170.6 (2)C16—C17—H17120.2
C20—N8—Ni1166.7 (2)C18—C17—H17120.2
N2—C1—N1123.5 (2)N6—C18—C17122.4 (3)
N2—C1—C2122.32 (19)N6—C18—H18118.8
N1—C1—C2114.14 (19)C17—C18—H18118.8
N4—C2—C3123.3 (2)N7—C19—S1178.3 (2)
N4—C2—C1113.97 (18)N8—C20—S2179.6 (2)
C3—C2—C1122.7 (2)C21—O1—Ni1121.43 (14)
C4—C3—C2118.1 (2)C21—O1—H1109.5
C4—C3—H3120.9Ni1—O1—H1111.9
C2—C3—H3120.9O1—C21—H21A109.5
C3—C4—C5119.0 (2)O1—C21—H21B109.5
C3—C4—H4120.5H21A—C21—H21B109.5
C5—C4—H4120.5O1—C21—H21C109.5
C6—C5—C4119.2 (2)H21A—C21—H21C109.5
C6—C5—H5120.4H21B—C21—H21C109.5
C4—C5—H5120.4C22—O2—H2109.5
N4—C6—C5122.9 (2)O2—C22—H22A109.5
N4—C6—H6118.6O2—C22—H22B109.5
C5—C6—H6118.6H22A—C22—H22B109.5
N2—C7—N3125.5 (2)O2—C22—H22C109.5
N2—C7—C8117.47 (19)H22A—C22—H22C109.5
N3—C7—C8117.1 (2)H22B—C22—H22C109.5
N5—C8—C9122.9 (2)
C7—N2—C1—N11.0 (3)N2—C7—C8—C9171.4 (2)
C7—N2—C1—C2178.66 (19)N3—C7—C8—C99.2 (3)
C13—N1—C1—N21.8 (3)N5—C8—C9—C103.4 (4)
Ni1—N1—C1—N2179.04 (16)C7—C8—C9—C10177.8 (2)
C13—N1—C1—C2176.00 (18)C8—C9—C10—C112.3 (4)
Ni1—N1—C1—C21.2 (2)C9—C10—C11—C120.3 (4)
C6—N4—C2—C30.2 (3)C8—N5—C12—C111.1 (4)
Ni1—N4—C2—C3179.87 (17)C10—C11—C12—N52.1 (4)
C6—N4—C2—C1178.40 (18)C7—N3—C13—N13.3 (3)
Ni1—N4—C2—C11.3 (2)C7—N3—C13—C14174.84 (19)
N2—C1—C2—N4177.72 (19)C1—N1—C13—N34.2 (3)
N1—C1—C2—N40.2 (3)Ni1—N1—C13—N3178.65 (16)
N2—C1—C2—C30.9 (3)C1—N1—C13—C14174.09 (18)
N1—C1—C2—C3178.8 (2)Ni1—N1—C13—C143.1 (3)
N4—C2—C3—C40.8 (3)C18—N6—C14—C151.7 (3)
C1—C2—C3—C4177.7 (2)Ni1—N6—C14—C15173.79 (19)
C2—C3—C4—C50.6 (3)C18—N6—C14—C13178.6 (2)
C3—C4—C5—C60.1 (4)Ni1—N6—C14—C133.1 (2)
C2—N4—C6—C50.6 (3)N3—C13—C14—N6177.7 (2)
Ni1—N4—C6—C5179.05 (17)N1—C13—C14—N64.0 (3)
C4—C5—C6—N40.7 (4)N3—C13—C14—C155.3 (3)
C1—N2—C7—N31.9 (3)N1—C13—C14—C15172.9 (2)
C1—N2—C7—C8178.67 (18)N6—C14—C15—C161.1 (4)
C13—N3—C7—N20.1 (3)C13—C14—C15—C16177.7 (2)
C13—N3—C7—C8179.32 (19)C14—C15—C16—C170.3 (4)
C12—N5—C8—C91.7 (3)C15—C16—C17—C181.0 (4)
C12—N5—C8—C7179.5 (2)C14—N6—C18—C171.0 (3)
N2—C7—C8—N59.8 (3)Ni1—N6—C18—C17173.78 (18)
N3—C7—C8—N5169.66 (19)C16—C17—C18—N60.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.832.613.154 (2)124
O1—H1···N5i0.831.972.784 (2)165
O2—H2···S1ii0.832.633.403 (2)156
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2018R1D1A1B07050550).

References

First citationAragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A., Soddu, S. & Verani, G. (2007). Dalton Trans. pp. 2127–2134.  Web of Science CrossRef Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHa, K. (2017). Z. Kristallogr. New Cryst. Struct. 232, 151–152.  CAS Google Scholar
First citationHadadzadeh, H., Maghami, M., Simpson, J., Khalaji, A. D. & Abdi, K. (2012). J. Chem. Crystallogr. 42, 656–667.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds