metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

The sodium chloride complex catena-poly[[{μ3-2-[bis­­(2-hy­dr­oxy­eth­yl)amino]­ethan-1-ol}sodium] chloride], N(CH2CH2OH)3·NaCl

CROSSMARK_Color_square_no_text.svg

aLehrstuhl für Anorganische Chemie II, Technische Universität Dortmund, 44221 Dortmund, Germany
*Correspondence e-mail: klaus.jurkschat@tu-dortmund.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 December 2018; accepted 15 February 2019; online 22 February 2019)

The reaction of sodium chloride with 2-[bis­(2-hy­droxy­eth­yl)amino]­ethan-1-ol results in the formation of the title salt {[Na{N(CH2CH2OH)3}]Cl}n. The polymeric structure is characterized by a sodium cation coordinated by one nitro­gen and five oxygen atoms in a distorted octa­hedral environment. The resulting one-dimensional {—O—Na—O—Na—O}— coordination polymer extends parallel to [010] and is connected through the chloride counter-anion via O—H⋯Cl hydrogen bonding, giving rise to a two-dimensional supra­molecular structure parallel to (001).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the context of our long-standing focus on tin derivatives of amino­alcohols, as for instance stannatranes (Glowacki et al., 2016[Glowacki, B., Lutter, M., Schollmeyer, D., Hiller, W. & Jurkschat, K. (2016). Inorg. Chem. 55, 10218-10228.], 2017[Glowacki, B., Lutter, M., Alnasr, H., Seymen, R., Hiller, W. & Jurkschat, K. (2017). Inorg. Chem. 56, 4937-4949.]; Zöller et al., 2011[Zöller, T., Iovkova-Berends, L., Dietz, C., Berends, T. & Jurkschat, K. (2011). Chem. Eur. J. 17, 2361-2364.], 2012[Zöller, T., Dietz, C., Iovkova-Berends, L., Karsten, O., Bradtmöller, G., Wiegand, A.-K., Wang, Y., Jouikov, V. & Jurkschat, K. (2012). Inorg. Chem. 51, 1041-1056.]; Zöller & Jurkschat, 2013[Zöller, T. & Jurkschat, K. (2013). Inorg. Chem. 52, 1872-1882.]), we are also inter­ested in the structures of selected starting materials such as salt complexes of the amino alcohol N(CH2CH2OH)3. Sodium complexes of this alcohol with iodide (Voegele et al., 1974[Voegele, J. C., Fischer, J. & Weiss, R. (1974). Acta Cryst. B30, 62-65.]) and perchlorate (Naiini et al., 1994[Naiini, A. A., Pinkas, J., Plass, W., Young, V. G. & Verkade, J. G. (1994). Inorg. Chem. 33, 2137-2141.]) counter-anions have been reported previously. In both these mol­ecular structures, the three alcohol functional groups of one mol­ecule coordinate the sodium cation in addition to the nitro­gen atom. However, the title compound (Fig. 1[link]) shows another coordination pattern. The sodium cation Na1 is six-coordinated by N1, O3, O5 of one mol­ecule and by O1A, O2A and O3B of symmetry-related mol­ecules at distances of 2.533 (3), 2.495 (3), 2.438 (3), 2.389 (3), 2.355 (4), and 2.463 (3) Å, respectively [Symmetry code: (A) 1 − x, y − [{1\over 2}], 1 − z. (B) 1 − x, y + [{1\over 2}], 1 − z.]. The sodium cation exhibits a distorted octa­hedral environment with O3, O5, O5A and O3B occupying the equatorial positions, and with N1 and O1A axial. The distortion from the ideal octa­hedral environment is expressed by the trans angles [N1—Na1—O2A = 141.31 (12)°; O1—Na1—O1A = 165.04 (12)°; O3—Na1—O3B = 167.27 (11)°] deviating clearly from 180°. As a result of this coordination pattern, a one-dimensional polymer is formed along [010].

[Figure 1]
Figure 1
The crystal structure of [Na(N(CH2CH2OH)3)]Cl, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms bonded to carbon atoms have been omitted for clarity. Atoms Cl1A and Cl1B are not shown because they are located behind and in front of the bc plane. Hydrogen bonds are drawn as dashed lines. [Symmetry codes: (A) 1 − x, y − [{1\over 2}], 1 − z. (B) 1 − x, y + [{1\over 2}], 1 − z.]

In the crystal structure three hydrogen bonds between chloride anions and oxygen atoms of the alcohol functional groups are present (Table 1[link], Fig. 1[link]). A graph-set analysis according to Etter and Bernstein (Bernstein et al., 1990[Bernstein, J., Etter, M. C. & MacDonald, J. C. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 695-698.], 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.], 1991[Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.]) gives the unitary graph set N1 = DDD. These hydrogen bonds create a two-dimensional supra­molecular network structure extending parallel to (001).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.86 (4) 2.21 (4) 3.061 (3) 169 (4)
O2—H2⋯Cl1i 0.72 (5) 2.44 (5) 3.141 (4) 165 (6)
O3—H3⋯Cl1ii 0.83 (3) 2.33 (3) 3.124 (3) 161 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+1].

Synthesis and crystallization

After addition of N(CH2CH2OH)3 (3.14 g, 0.02 mmol) to a solution of sodium chloride (2.46 g, 0.04 mmol) in THF, two thirds of the solvent were distilled off. The title compound crystallized from the solution as colourless plate-shaped crystals.

1H-NMR: (400.13 MHz, DMSO-d6) δ 2.57 (s, ν1/2 = 8 Hz, 6 H, NCH2), 3.42 (s, ν1/2 = 8 Hz, 6 H, OCH2), 4.38 (s, ν1/2 = 8 Hz, 3 H, OH).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. For the X-ray data collection, a strategy for centrosymmetric space groups was chosen. As a result of the oxygen atoms O1, O3, and O5 being crystallographically non-equivalent, the N1 atom is a stereogenic center, and thus the compound crystallizes in a non-centrosymmetric space-group type. Consequently, the number of collected data is less than expected for this symmetry and probably explains the goodness-of-fit parameter lying outside the usual range. However, the absolute structure was determined correctly (Table 2[link]).

Table 2
Experimental details

Crystal data
Chemical formula [Na(C6H15NO3)]·Cl
Mr 207.63
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 7.7981 (10), 7.2249 (8), 8.9956 (11)
β (°) 110.380 (14)
V3) 475.09 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.32 × 0.06 × 0.03
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])
Tmin, Tmax 0.903, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3110, 1719, 1201
Rint 0.035
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.043, 0.70
No. of reflections 1719
No. of parameters 121
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.18
Absolute structure Flack x determined using 408 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.07 (7)
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[{µ3-2-[bis(2-hydroxyethyl)amino]ethan-1-ol}sodium] chloride] top
Crystal data top
[Na(C6H15NO3)]·ClF(000) = 220
Mr = 207.63Dx = 1.451 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.7981 (10) ÅCell parameters from 1217 reflections
b = 7.2249 (8) Åθ = 2.4–28.9°
c = 8.9956 (11) ŵ = 0.42 mm1
β = 110.380 (14)°T = 173 K
V = 475.09 (11) Å3Column, colourless
Z = 20.32 × 0.06 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1719 independent reflections
Graphite monochromator1201 reflections with I > 2σ(I)
Detector resolution: 16.0560 pixels mm-1Rint = 0.035
ω und ψ scanθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 49
Tmin = 0.903, Tmax = 1.000k = 88
3110 measured reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0132P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max < 0.001
S = 0.70Δρmax = 0.20 e Å3
1719 reflectionsΔρmin = 0.18 e Å3
121 parametersAbsolute structure: Flack x determined using 408 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.07 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms of the OH groups were located in a difference Fourier map and were refined with Uiso(H) = 1.2Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11499 (13)0.52160 (16)0.72753 (10)0.0212 (3)
Na10.4707 (2)0.2903 (2)0.49696 (18)0.0163 (4)
N10.3494 (4)0.3861 (4)0.2080 (3)0.0125 (8)
O10.2902 (4)0.5714 (4)0.4739 (3)0.0169 (7)
H10.237 (5)0.574 (6)0.543 (4)0.033 (14)*
O20.6300 (4)0.6951 (4)0.2967 (3)0.0222 (8)
H20.697 (6)0.756 (8)0.285 (5)0.05 (2)*
O30.3064 (3)0.0176 (5)0.3419 (3)0.0170 (6)
H30.202 (4)0.010 (7)0.347 (4)0.021 (12)*
C210.6635 (5)0.5139 (7)0.2528 (4)0.0194 (10)
H21A0.7133800.4391220.3476420.023*
H21B0.7545370.5200990.2019300.023*
C220.4935 (5)0.4210 (5)0.1415 (4)0.0180 (11)
H22A0.4432020.4978380.0479060.022*
H22B0.5285540.3038700.1078000.022*
C110.1473 (5)0.5556 (6)0.3212 (4)0.0191 (10)
H11A0.0635740.6592340.3039720.023*
H11B0.0789000.4420750.3157030.023*
C120.2370 (4)0.5544 (6)0.1967 (4)0.0141 (10)
H12A0.1432270.5601730.0922540.017*
H12B0.3138160.6630930.2098700.017*
C310.3015 (5)0.0465 (6)0.1825 (4)0.0179 (10)
H31A0.2248550.0473980.1139260.021*
H31B0.4239760.0333510.1794930.021*
C320.2286 (5)0.2344 (5)0.1218 (4)0.0155 (10)
H32A0.2131210.2423770.0102630.019*
H32B0.1092130.2497890.1311880.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0187 (6)0.0235 (6)0.0250 (5)0.0026 (6)0.0121 (4)0.0014 (6)
Na10.0148 (10)0.0159 (9)0.0183 (7)0.0024 (8)0.0057 (7)0.0008 (7)
N10.0098 (19)0.0107 (19)0.0178 (18)0.0020 (14)0.0056 (15)0.0012 (14)
O10.0136 (16)0.0215 (19)0.0169 (14)0.0010 (13)0.0069 (14)0.0008 (12)
O20.021 (2)0.019 (2)0.0310 (18)0.0079 (15)0.0150 (16)0.0067 (15)
O30.0136 (16)0.0200 (16)0.0171 (13)0.0014 (18)0.0050 (12)0.0013 (16)
C210.016 (2)0.023 (3)0.022 (2)0.002 (3)0.0100 (18)0.000 (3)
C220.021 (3)0.012 (3)0.024 (2)0.001 (2)0.011 (2)0.0001 (18)
C110.013 (2)0.017 (3)0.025 (2)0.001 (2)0.0027 (18)0.002 (2)
C120.010 (2)0.010 (3)0.0174 (19)0.003 (2)0.0008 (16)0.003 (2)
C310.019 (2)0.020 (3)0.0165 (19)0.004 (2)0.0090 (17)0.006 (2)
C320.017 (2)0.014 (3)0.015 (2)0.0020 (18)0.0048 (19)0.0006 (17)
Geometric parameters (Å, º) top
Na1—O2i2.355 (4)C21—C221.512 (5)
Na1—O1i2.389 (3)C21—H21A0.9700
Na1—O12.438 (3)C21—H21B0.9700
Na1—O3ii2.463 (3)C22—H22A0.9700
Na1—O32.495 (3)C22—H22B0.9700
Na1—N12.533 (3)C11—C121.513 (4)
Na1—C113.123 (4)C11—H11A0.9700
N1—C221.467 (4)C11—H11B0.9700
N1—C321.477 (4)C12—H12A0.9700
N1—C121.481 (4)C12—H12B0.9700
O1—C111.441 (4)C31—C321.499 (5)
O1—H10.86 (4)C31—H31A0.9700
O2—C211.418 (5)C31—H31B0.9700
O2—H20.72 (5)C32—H32A0.9700
O3—C311.436 (4)C32—H32B0.9700
O3—H30.83 (3)
O2i—Na1—O1i100.48 (12)Na1—O3—H3110 (3)
O2i—Na1—O188.25 (12)O2—C21—C22113.0 (3)
O1i—Na1—O1165.04 (12)O2—C21—H21A109.0
O2i—Na1—O3ii95.27 (11)C22—C21—H21A109.0
O1i—Na1—O3ii90.72 (10)O2—C21—H21B109.0
O1—Na1—O3ii76.30 (10)C22—C21—H21B109.0
O2i—Na1—O387.85 (11)H21A—C21—H21B107.8
O1i—Na1—O376.57 (10)N1—C22—C21115.2 (3)
O1—Na1—O3116.20 (10)N1—C22—H22A108.5
O3ii—Na1—O3167.27 (11)C21—C22—H22A108.5
O2i—Na1—N1141.31 (12)N1—C22—H22B108.5
O1i—Na1—N1106.95 (12)C21—C22—H22B108.5
O1—Na1—N171.76 (11)H22A—C22—H22B107.5
O3ii—Na1—N1110.88 (11)O1—C11—C12107.6 (3)
O3—Na1—N172.95 (10)O1—C11—Na149.17 (18)
O2i—Na1—C1198.40 (12)C12—C11—Na182.6 (2)
O1i—Na1—C11157.45 (11)O1—C11—H11A110.2
O1—Na1—C1126.55 (9)C12—C11—H11A110.2
O3ii—Na1—C1199.73 (11)Na1—C11—H11A159.2
O3—Na1—C1191.99 (11)O1—C11—H11B110.2
N1—Na1—C1150.65 (10)C12—C11—H11B110.2
C22—N1—C32110.7 (3)Na1—C11—H11B80.8
C22—N1—C12110.5 (3)H11A—C11—H11B108.5
C32—N1—C12108.6 (3)N1—C12—C11111.7 (3)
C22—N1—Na1113.6 (2)N1—C12—H12A109.3
C32—N1—Na1106.1 (2)C11—C12—H12A109.3
C12—N1—Na1107.1 (2)N1—C12—H12B109.3
C11—O1—Na1ii118.2 (2)C11—C12—H12B109.3
C11—O1—Na1104.3 (2)H12A—C12—H12B107.9
Na1ii—O1—Na197.85 (10)O3—C31—C32111.7 (3)
C11—O1—H1106 (2)O3—C31—H31A109.3
Na1ii—O1—H1118 (3)C32—C31—H31A109.3
Na1—O1—H1111 (3)O3—C31—H31B109.3
C21—O2—Na1ii129.3 (3)C32—C31—H31B109.3
C21—O2—H2108 (4)H31A—C31—H31B107.9
Na1ii—O2—H2113 (4)N1—C32—C31112.9 (3)
C31—O3—Na1i116.9 (2)N1—C32—H32A109.0
C31—O3—Na1105.8 (3)C31—C32—H32A109.0
Na1i—O3—Na194.46 (8)N1—C32—H32B109.0
C31—O3—H3112 (2)C31—C32—H32B109.0
Na1i—O3—H3115 (3)H32A—C32—H32B107.8
Na1ii—O2—C21—C2285.8 (3)Na1—N1—C12—C1130.7 (3)
C32—N1—C22—C21156.9 (3)O1—C11—C12—N166.4 (4)
C12—N1—C22—C2182.8 (4)Na1—C11—C12—N123.5 (3)
Na1—N1—C22—C2137.7 (4)Na1i—O3—C31—C32155.0 (2)
O2—C21—C22—N164.2 (4)Na1—O3—C31—C3251.4 (3)
Na1ii—O1—C11—C1244.2 (4)C22—N1—C32—C3184.7 (4)
Na1—O1—C11—C1263.1 (3)C12—N1—C32—C31153.9 (3)
Na1ii—O1—C11—Na1107.2 (2)Na1—N1—C32—C3139.0 (3)
C22—N1—C12—C11155.0 (3)O3—C31—C32—N165.8 (4)
C32—N1—C12—C1183.5 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.86 (4)2.21 (4)3.061 (3)169 (4)
O2—H2···Cl1ii0.72 (5)2.44 (5)3.141 (4)165 (6)
O3—H3···Cl1iii0.83 (3)2.33 (3)3.124 (3)161 (3)
Symmetry codes: (ii) x+1, y+1/2, z+1; (iii) x, y1/2, z+1.
 

Acknowledgements

We acknowledge financial support by the Deutsche Forschungsgemeinschaft and Technische Universität Dortmund within the funding programme Open Access Publishing.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Etter, M. C. & MacDonald, J. C. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 695–698.  CrossRef Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1991). J. Phys. Chem. 95, 4601–4610.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlowacki, B., Lutter, M., Alnasr, H., Seymen, R., Hiller, W. & Jurkschat, K. (2017). Inorg. Chem. 56, 4937–4949.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGlowacki, B., Lutter, M., Schollmeyer, D., Hiller, W. & Jurkschat, K. (2016). Inorg. Chem. 55, 10218–10228.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNaiini, A. A., Pinkas, J., Plass, W., Young, V. G. & Verkade, J. G. (1994). Inorg. Chem. 33, 2137–2141.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVoegele, J. C., Fischer, J. & Weiss, R. (1974). Acta Cryst. B30, 62–65.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZöller, T., Dietz, C., Iovkova-Berends, L., Karsten, O., Bradtmöller, G., Wiegand, A.-K., Wang, Y., Jouikov, V. & Jurkschat, K. (2012). Inorg. Chem. 51, 1041–1056.  Google Scholar
First citationZöller, T., Iovkova-Berends, L., Dietz, C., Berends, T. & Jurkschat, K. (2011). Chem. Eur. J. 17, 2361–2364.  Web of Science PubMed Google Scholar
First citationZöller, T. & Jurkschat, K. (2013). Inorg. Chem. 52, 1872–1882.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds