metal-organic compounds
The sodium chloride complex catena-poly[[{μ3-2-[bis(2-hydroxyethyl)amino]ethan-1-ol}sodium] chloride], N(CH2CH2OH)3·NaCl
aLehrstuhl für Anorganische Chemie II, Technische Universität Dortmund, 44221 Dortmund, Germany
*Correspondence e-mail: klaus.jurkschat@tu-dortmund.de
The reaction of sodium chloride with 2-[bis(2-hydroxyethyl)amino]ethan-1-ol results in the formation of the title salt {[Na{N(CH2CH2OH)3}]Cl}n. The polymeric structure is characterized by a sodium cation coordinated by one nitrogen and five oxygen atoms in a distorted octahedral environment. The resulting one-dimensional {—O—Na—O—Na—O}— coordination polymer extends parallel to [010] and is connected through the chloride counter-anion via O—H⋯Cl hydrogen bonding, giving rise to a two-dimensional supramolecular structure parallel to (001).
CCDC reference: 1897488
Structure description
In the context of our long-standing focus on tin derivatives of aminoalcohols, as for instance stannatranes (Glowacki et al., 2016, 2017; Zöller et al., 2011, 2012; Zöller & Jurkschat, 2013), we are also interested in the structures of selected starting materials such as salt complexes of the amino alcohol N(CH2CH2OH)3. Sodium complexes of this alcohol with iodide (Voegele et al., 1974) and perchlorate (Naiini et al., 1994) counter-anions have been reported previously. In both these molecular structures, the three alcohol functional groups of one molecule coordinate the sodium cation in addition to the nitrogen atom. However, the title compound (Fig. 1) shows another coordination pattern. The sodium cation Na1 is six-coordinated by N1, O3, O5 of one molecule and by O1A, O2A and O3B of symmetry-related molecules at distances of 2.533 (3), 2.495 (3), 2.438 (3), 2.389 (3), 2.355 (4), and 2.463 (3) Å, respectively [Symmetry code: (A) 1 − x, y − , 1 − z. (B) 1 − x, y + , 1 − z.]. The sodium cation exhibits a distorted octahedral environment with O3, O5, O5A and O3B occupying the equatorial positions, and with N1 and O1A axial. The distortion from the ideal octahedral environment is expressed by the trans angles [N1—Na1—O2A = 141.31 (12)°; O1—Na1—O1A = 165.04 (12)°; O3—Na1—O3B = 167.27 (11)°] deviating clearly from 180°. As a result of this coordination pattern, a one-dimensional polymer is formed along [010].
In the , Fig. 1). A graph-set analysis according to Etter and Bernstein (Bernstein et al., 1990, 1995; Etter et al., 1990; Etter, 1990, 1991) gives the unitary graph set N1 = DDD. These hydrogen bonds create a two-dimensional supramolecular network structure extending parallel to (001).
three hydrogen bonds between chloride anions and oxygen atoms of the alcohol functional groups are present (Table 1Synthesis and crystallization
After addition of N(CH2CH2OH)3 (3.14 g, 0.02 mmol) to a solution of sodium chloride (2.46 g, 0.04 mmol) in THF, two thirds of the solvent were distilled off. The title compound crystallized from the solution as colourless plate-shaped crystals.
1H-NMR: (400.13 MHz, DMSO-d6) δ 2.57 (s, ν1/2 = 8 Hz, 6 H, NCH2), 3.42 (s, ν1/2 = 8 Hz, 6 H, OCH2), 4.38 (s, ν1/2 = 8 Hz, 3 H, OH).
Refinement
Crystal data, data collection and structure . For the X-ray data collection, a strategy for centrosymmetric space groups was chosen. As a result of the oxygen atoms O1, O3, and O5 being crystallographically non-equivalent, the N1 atom is a stereogenic center, and thus the compound crystallizes in a non-centrosymmetric space-group type. Consequently, the number of collected data is less than expected for this symmetry and probably explains the goodness-of-fit parameter lying outside the usual range. However, the was determined correctly (Table 2).
details are summarized in Table 2Structural data
CCDC reference: 1897488
https://doi.org/10.1107/S2414314619002384/wm4096sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619002384/wm4096Isup2.hkl
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).[Na(C6H15NO3)]·Cl | F(000) = 220 |
Mr = 207.63 | Dx = 1.451 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7981 (10) Å | Cell parameters from 1217 reflections |
b = 7.2249 (8) Å | θ = 2.4–28.9° |
c = 8.9956 (11) Å | µ = 0.42 mm−1 |
β = 110.380 (14)° | T = 173 K |
V = 475.09 (11) Å3 | Column, colourless |
Z = 2 | 0.32 × 0.06 × 0.03 mm |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 1719 independent reflections |
Graphite monochromator | 1201 reflections with I > 2σ(I) |
Detector resolution: 16.0560 pixels mm-1 | Rint = 0.035 |
ω und ψ scan | θmax = 25.5°, θmin = 2.4° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | h = −4→9 |
Tmin = 0.903, Tmax = 1.000 | k = −8→8 |
3110 measured reflections | l = −10→10 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0132P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.043 | (Δ/σ)max < 0.001 |
S = 0.70 | Δρmax = 0.20 e Å−3 |
1719 reflections | Δρmin = −0.18 e Å−3 |
121 parameters | Absolute structure: Flack x determined using 408 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.07 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The hydrogen atoms of the OH groups were located in a difference Fourier map and were refined with Uiso(H) = 1.2Ueq(O). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.11499 (13) | 0.52160 (16) | 0.72753 (10) | 0.0212 (3) | |
Na1 | 0.4707 (2) | 0.2903 (2) | 0.49696 (18) | 0.0163 (4) | |
N1 | 0.3494 (4) | 0.3861 (4) | 0.2080 (3) | 0.0125 (8) | |
O1 | 0.2902 (4) | 0.5714 (4) | 0.4739 (3) | 0.0169 (7) | |
H1 | 0.237 (5) | 0.574 (6) | 0.543 (4) | 0.033 (14)* | |
O2 | 0.6300 (4) | 0.6951 (4) | 0.2967 (3) | 0.0222 (8) | |
H2 | 0.697 (6) | 0.756 (8) | 0.285 (5) | 0.05 (2)* | |
O3 | 0.3064 (3) | 0.0176 (5) | 0.3419 (3) | 0.0170 (6) | |
H3 | 0.202 (4) | 0.010 (7) | 0.347 (4) | 0.021 (12)* | |
C21 | 0.6635 (5) | 0.5139 (7) | 0.2528 (4) | 0.0194 (10) | |
H21A | 0.713380 | 0.439122 | 0.347642 | 0.023* | |
H21B | 0.754537 | 0.520099 | 0.201930 | 0.023* | |
C22 | 0.4935 (5) | 0.4210 (5) | 0.1415 (4) | 0.0180 (11) | |
H22A | 0.443202 | 0.497838 | 0.047906 | 0.022* | |
H22B | 0.528554 | 0.303870 | 0.107800 | 0.022* | |
C11 | 0.1473 (5) | 0.5556 (6) | 0.3212 (4) | 0.0191 (10) | |
H11A | 0.063574 | 0.659234 | 0.303972 | 0.023* | |
H11B | 0.078900 | 0.442075 | 0.315703 | 0.023* | |
C12 | 0.2370 (4) | 0.5544 (6) | 0.1967 (4) | 0.0141 (10) | |
H12A | 0.143227 | 0.560173 | 0.092254 | 0.017* | |
H12B | 0.313816 | 0.663093 | 0.209870 | 0.017* | |
C31 | 0.3015 (5) | 0.0465 (6) | 0.1825 (4) | 0.0179 (10) | |
H31A | 0.224855 | −0.047398 | 0.113926 | 0.021* | |
H31B | 0.423976 | 0.033351 | 0.179493 | 0.021* | |
C32 | 0.2286 (5) | 0.2344 (5) | 0.1218 (4) | 0.0155 (10) | |
H32A | 0.213121 | 0.242377 | 0.010263 | 0.019* | |
H32B | 0.109213 | 0.249789 | 0.131188 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0187 (6) | 0.0235 (6) | 0.0250 (5) | 0.0026 (6) | 0.0121 (4) | 0.0014 (6) |
Na1 | 0.0148 (10) | 0.0159 (9) | 0.0183 (7) | 0.0024 (8) | 0.0057 (7) | 0.0008 (7) |
N1 | 0.0098 (19) | 0.0107 (19) | 0.0178 (18) | −0.0020 (14) | 0.0056 (15) | 0.0012 (14) |
O1 | 0.0136 (16) | 0.0215 (19) | 0.0169 (14) | 0.0010 (13) | 0.0069 (14) | −0.0008 (12) |
O2 | 0.021 (2) | 0.019 (2) | 0.0310 (18) | −0.0079 (15) | 0.0150 (16) | −0.0067 (15) |
O3 | 0.0136 (16) | 0.0200 (16) | 0.0171 (13) | −0.0014 (18) | 0.0050 (12) | 0.0013 (16) |
C21 | 0.016 (2) | 0.023 (3) | 0.022 (2) | 0.002 (3) | 0.0100 (18) | 0.000 (3) |
C22 | 0.021 (3) | 0.012 (3) | 0.024 (2) | −0.001 (2) | 0.011 (2) | 0.0001 (18) |
C11 | 0.013 (2) | 0.017 (3) | 0.025 (2) | −0.001 (2) | 0.0027 (18) | −0.002 (2) |
C12 | 0.010 (2) | 0.010 (3) | 0.0174 (19) | 0.003 (2) | −0.0008 (16) | 0.003 (2) |
C31 | 0.019 (2) | 0.020 (3) | 0.0165 (19) | −0.004 (2) | 0.0090 (17) | −0.006 (2) |
C32 | 0.017 (2) | 0.014 (3) | 0.015 (2) | −0.0020 (18) | 0.0048 (19) | 0.0006 (17) |
Na1—O2i | 2.355 (4) | C21—C22 | 1.512 (5) |
Na1—O1i | 2.389 (3) | C21—H21A | 0.9700 |
Na1—O1 | 2.438 (3) | C21—H21B | 0.9700 |
Na1—O3ii | 2.463 (3) | C22—H22A | 0.9700 |
Na1—O3 | 2.495 (3) | C22—H22B | 0.9700 |
Na1—N1 | 2.533 (3) | C11—C12 | 1.513 (4) |
Na1—C11 | 3.123 (4) | C11—H11A | 0.9700 |
N1—C22 | 1.467 (4) | C11—H11B | 0.9700 |
N1—C32 | 1.477 (4) | C12—H12A | 0.9700 |
N1—C12 | 1.481 (4) | C12—H12B | 0.9700 |
O1—C11 | 1.441 (4) | C31—C32 | 1.499 (5) |
O1—H1 | 0.86 (4) | C31—H31A | 0.9700 |
O2—C21 | 1.418 (5) | C31—H31B | 0.9700 |
O2—H2 | 0.72 (5) | C32—H32A | 0.9700 |
O3—C31 | 1.436 (4) | C32—H32B | 0.9700 |
O3—H3 | 0.83 (3) | ||
O2i—Na1—O1i | 100.48 (12) | Na1—O3—H3 | 110 (3) |
O2i—Na1—O1 | 88.25 (12) | O2—C21—C22 | 113.0 (3) |
O1i—Na1—O1 | 165.04 (12) | O2—C21—H21A | 109.0 |
O2i—Na1—O3ii | 95.27 (11) | C22—C21—H21A | 109.0 |
O1i—Na1—O3ii | 90.72 (10) | O2—C21—H21B | 109.0 |
O1—Na1—O3ii | 76.30 (10) | C22—C21—H21B | 109.0 |
O2i—Na1—O3 | 87.85 (11) | H21A—C21—H21B | 107.8 |
O1i—Na1—O3 | 76.57 (10) | N1—C22—C21 | 115.2 (3) |
O1—Na1—O3 | 116.20 (10) | N1—C22—H22A | 108.5 |
O3ii—Na1—O3 | 167.27 (11) | C21—C22—H22A | 108.5 |
O2i—Na1—N1 | 141.31 (12) | N1—C22—H22B | 108.5 |
O1i—Na1—N1 | 106.95 (12) | C21—C22—H22B | 108.5 |
O1—Na1—N1 | 71.76 (11) | H22A—C22—H22B | 107.5 |
O3ii—Na1—N1 | 110.88 (11) | O1—C11—C12 | 107.6 (3) |
O3—Na1—N1 | 72.95 (10) | O1—C11—Na1 | 49.17 (18) |
O2i—Na1—C11 | 98.40 (12) | C12—C11—Na1 | 82.6 (2) |
O1i—Na1—C11 | 157.45 (11) | O1—C11—H11A | 110.2 |
O1—Na1—C11 | 26.55 (9) | C12—C11—H11A | 110.2 |
O3ii—Na1—C11 | 99.73 (11) | Na1—C11—H11A | 159.2 |
O3—Na1—C11 | 91.99 (11) | O1—C11—H11B | 110.2 |
N1—Na1—C11 | 50.65 (10) | C12—C11—H11B | 110.2 |
C22—N1—C32 | 110.7 (3) | Na1—C11—H11B | 80.8 |
C22—N1—C12 | 110.5 (3) | H11A—C11—H11B | 108.5 |
C32—N1—C12 | 108.6 (3) | N1—C12—C11 | 111.7 (3) |
C22—N1—Na1 | 113.6 (2) | N1—C12—H12A | 109.3 |
C32—N1—Na1 | 106.1 (2) | C11—C12—H12A | 109.3 |
C12—N1—Na1 | 107.1 (2) | N1—C12—H12B | 109.3 |
C11—O1—Na1ii | 118.2 (2) | C11—C12—H12B | 109.3 |
C11—O1—Na1 | 104.3 (2) | H12A—C12—H12B | 107.9 |
Na1ii—O1—Na1 | 97.85 (10) | O3—C31—C32 | 111.7 (3) |
C11—O1—H1 | 106 (2) | O3—C31—H31A | 109.3 |
Na1ii—O1—H1 | 118 (3) | C32—C31—H31A | 109.3 |
Na1—O1—H1 | 111 (3) | O3—C31—H31B | 109.3 |
C21—O2—Na1ii | 129.3 (3) | C32—C31—H31B | 109.3 |
C21—O2—H2 | 108 (4) | H31A—C31—H31B | 107.9 |
Na1ii—O2—H2 | 113 (4) | N1—C32—C31 | 112.9 (3) |
C31—O3—Na1i | 116.9 (2) | N1—C32—H32A | 109.0 |
C31—O3—Na1 | 105.8 (3) | C31—C32—H32A | 109.0 |
Na1i—O3—Na1 | 94.46 (8) | N1—C32—H32B | 109.0 |
C31—O3—H3 | 112 (2) | C31—C32—H32B | 109.0 |
Na1i—O3—H3 | 115 (3) | H32A—C32—H32B | 107.8 |
Na1ii—O2—C21—C22 | 85.8 (3) | Na1—N1—C12—C11 | −30.7 (3) |
C32—N1—C22—C21 | −156.9 (3) | O1—C11—C12—N1 | 66.4 (4) |
C12—N1—C22—C21 | 82.8 (4) | Na1—C11—C12—N1 | 23.5 (3) |
Na1—N1—C22—C21 | −37.7 (4) | Na1i—O3—C31—C32 | −155.0 (2) |
O2—C21—C22—N1 | −64.2 (4) | Na1—O3—C31—C32 | −51.4 (3) |
Na1ii—O1—C11—C12 | 44.2 (4) | C22—N1—C32—C31 | 84.7 (4) |
Na1—O1—C11—C12 | −63.1 (3) | C12—N1—C32—C31 | −153.9 (3) |
Na1ii—O1—C11—Na1 | 107.2 (2) | Na1—N1—C32—C31 | −39.0 (3) |
C22—N1—C12—C11 | −155.0 (3) | O3—C31—C32—N1 | 65.8 (4) |
C32—N1—C12—C11 | 83.5 (3) |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x+1, y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl1 | 0.86 (4) | 2.21 (4) | 3.061 (3) | 169 (4) |
O2—H2···Cl1ii | 0.72 (5) | 2.44 (5) | 3.141 (4) | 165 (6) |
O3—H3···Cl1iii | 0.83 (3) | 2.33 (3) | 3.124 (3) | 161 (3) |
Symmetry codes: (ii) −x+1, y+1/2, −z+1; (iii) −x, y−1/2, −z+1. |
Acknowledgements
We acknowledge financial support by the Deutsche Forschungsgemeinschaft and Technische Universität Dortmund within the funding programme Open Access Publishing.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bernstein, J., Etter, M. C. & MacDonald, J. C. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 695–698. CrossRef Web of Science Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C. (1991). J. Phys. Chem. 95, 4601–4610. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Glowacki, B., Lutter, M., Alnasr, H., Seymen, R., Hiller, W. & Jurkschat, K. (2017). Inorg. Chem. 56, 4937–4949. Web of Science CrossRef CAS PubMed Google Scholar
Glowacki, B., Lutter, M., Schollmeyer, D., Hiller, W. & Jurkschat, K. (2016). Inorg. Chem. 55, 10218–10228. Web of Science CrossRef CAS PubMed Google Scholar
Naiini, A. A., Pinkas, J., Plass, W., Young, V. G. & Verkade, J. G. (1994). Inorg. Chem. 33, 2137–2141. CrossRef CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Voegele, J. C., Fischer, J. & Weiss, R. (1974). Acta Cryst. B30, 62–65. CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zöller, T., Dietz, C., Iovkova-Berends, L., Karsten, O., Bradtmöller, G., Wiegand, A.-K., Wang, Y., Jouikov, V. & Jurkschat, K. (2012). Inorg. Chem. 51, 1041–1056. Google Scholar
Zöller, T., Iovkova-Berends, L., Dietz, C., Berends, T. & Jurkschat, K. (2011). Chem. Eur. J. 17, 2361–2364. Web of Science PubMed Google Scholar
Zöller, T. & Jurkschat, K. (2013). Inorg. Chem. 52, 1872–1882. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.